
Self-stabilizing Algorithms for Tree Metrics

Ajoy Kumar DATTAl Teofilo F. GONZALEZ2
Visalakshi THIAGARAJAN'

Department of Computer Science, University of Nevada, Las Vegas, Nevada 89154
Department of Computer Science, University of California, Santa Barbara, CA 93106

Abstract
This paper presents self-stabilizing algorithms for

finding the diameter, centroid(s) and media+) of a
tree. The algorithms compute these metria of a tree
in a finite number of steps. The distributed tree struc-
tured system is maintained by another self-stabilizing
spanning tree protocol over a graph. This makes the
system resilient to transient failures, from which it is
guaranteed to recover after a finite number of moves.
Keywords: Distributed algorithms, diameter, cen-
troid, and median of a tree, self-stabilization.

1 Introduction
Topological information, such as location of centroid
and median, plays an important role in distributed
networks. This information is used for dynamic rout-
ing of messages between nodes. But it cannot be
taken into account once and for all at design time since
several unpredictable factors make it time varying.
The problem of dynamically finding the diameter and
locating centroids and medians of a tree structured
network therefore assumes importance. This paper
presents protocols for finding the diameter and locat-
ing centroids and medians of a dynamic tree network.
The solutions presented require only local topologi-
cal knowledge at each node, and are self-stabilizing
[4, 11, 121. The self-stabilizing algorithm terminates
after it computes the metria, but any unexpected
perturbation reactivates it, and possibly new values
for the metria are computed if there are changes in
the network topology. The model assumes that there
are n nodes 1, ..., n arranged in a tree configuration, 1
being the root. The tree may be one maintained by a
spanning tree protocol over a graph, thus making the
model more general. Work has been done by Karaata
et al in this area. Refer to [14]. They require that each
action have a very large atomicity whereas we have
no such requirement. Also, every node in the network

knows the identity of the centroid and median of the
network when our protocol terminates, thus making
it an ideal underlying protocol for routing purposes.
In [14] only the medians and the centroids themselves
know who they are.

The rest of the paper is organized as follows. Sec-
tion 2 contains a description of the protocols while
Section 3 provides proofs of correctness. Section 4
states some conclusions. In the Appendix, we give
some properties of centroids and medians of a tree
which we used in developing the protocols.

2 Description of the Protocol
Each node in the network, i , maintains a readlwrite
register ri containing several fields.

A state of the system is defined by a value for every
field of the registers maintained by the nodes.

Each node in the system executes a protocol which
has the form

{Phase name} < phase > {Phase name}

{Phase name} < phase >

< rule > 11 ... 11 < rule >

< guard > - < assignment statement >
A guard is a Boolean expression over the state of

a node and its neighbors. An assignment statement
updates the state of a node. An rule whose guard is
true at some state of the system is said to be enabled
at that state..

A node i depends on a node j if a change in the
state of j enables some rule of i.

We define a phase to be convergent if its rules are
so constructed as to make the dependency relation
between the nodes of the system a partial order and
upon execution of these rules the state of the sys-
tem eventually satisfies a global state predicate. In-
tuitively, the dependency relation is antisymmetric so

...

Each phase is of the form

Each rule has the form

0-7803-2018-2/95/$4.00 0 1995 IEEE

that thrashing cannot occur. 2.1 Diameter and Centroid Protocols
A phase is defined to be closed if no rules in it are

enabled once the state of the system satisfies a global
state predicate.

A phase is said to be stabilizing if it is convergent
and closed [l].

The write sei of a phase is the set of register fields
that are updated in the phase. If the write sets of the
phases constituting the protocol are mutually disjoint
and each of the phases is individually stabilizing, then
the protocol is stabilizing.

The read/write register ri of node i contains the
following fields:

ri.parent

ri.ht
.dt.up

ri .center.up

ri.center.down
ri.count

ri.nodes
ri .median.up

ri.median.down

has the node index of the parent of
i, except for the root which has
zero
contains the height of i
used for convergecast of diameter
information
final result of the diameter of the
tree
used for convergecast of centroid
information
final result of centroid of the tree
number of nodes in the subtree
rooted at i
total number of nodes in the tree
used for convergecast of median
information
final result of median of the tree

i can perform readlwrite operations on its local reg-
ister r i , but it can only read from registers rj of its
neighbors (i .e . , its parent and children). We assume
that an underlying spanning tree protocol as in [2] or
[3] maintains the consistency of the field parent in the
registers. As in [8,13], our protocols make no assump-
tions about a fair scheduler and will also work with
a distributed scheduler [7, 91. Although a read/write
atomic model is not explicitly assumed in the model,
the protocols will also work correctly in such models
as in [2, 5, 81.

The protocols for diameter, centroid and median
computation work in two phases each. In the up
phase, the value of the metric is computed in each
node’s up variable using the up variables of its chil-
dren, so that the up of the root stabilizes to the cor-
rect value of the metric. The root then copies its
up variable to its down variable. In the down phase,
each node copies the down variable of its parent into
its down variable, so that down contains the correct
value for the metric.

The protocols consist of eight rules, RO ... R7;
RO ... €23 being for diameter calculation and R4 ... R7
being for centroid calculation. The function m a 2 in
R1 and R3 and the function ma22 in R3 calculate the
greatest and second greatest values of their parame-
ters, respectively. These functions return zero when
applied to the null set and the singleton set, respec-
tively.

Definition 2.1 The heighi of a non-leaf node is one
plus ihe mazimum height of ;is children; the height of
a leaf being one.

Definition 2.2 The diameter of a iree is the number
of edges in a longest simple paih in fhe iree.

The diameter protocol ensures that the register field
ri.dt.down in each node stabilizes to the value of the
diameter of the tree. This occurs in three phases. In
Phase I, rule RO calculates the height of the node in
ri.hl. This rule is straightforward, the ht of a node is
one greater than the maximum ht of all its children;
the hi of a leaf being 1.

Rule R1 performs a convergecast so that the vari-
able dt.up at the root stabilizes to the value of the
diameter of the tree. This is Phase 2. df .up at each
node is the sum of the two greatest hl values of its chil-
dren or the greatest &.up value of its children which is
the diameter of the subtree rooted at the node. dt.up
of a leaf is zero.

Rules R2 and R3 constituting Phase 3 broadcast
the diameter, so that the value of dt.down at each
node equals the diameter of the tree. Each node
copies dt.down from dt.down of its parent (R3), the
root copying it from its own dt.up instead (R2).

Definition 2.3 A node in a iree is called a centroid
if it i s a middle node in a longesf simple path in the
iree.

The centroid protocol has two phases. In Phase 1,
a convergecast of the index of the centroid occurs (R4
and R5). One of the two centroids of the tree (or the
only one: refer to Lemma A.3 in the Appendix) is the
node whose ht equals

In Phase 2 (R6 and R7), the index of the centroid is
broadcast to all nodes. Each node copies center.down
from center.down of its parent (R7); the root copies
center.down from its own center.up (R6).

{Compute ht values}
RO ::

1 (R4).

47 2

ri.ht 1 = (Vj) I (rj.parent = i) maz(rj.ht) + 1
-+ ri.ht := (V j) (rj.parent = i) maz(rj.ht) + 1

II
{Convergecast the diameter}
R1 :: ri.dt.up 7 =
maz[maz(rj.ht) + maz2(rj.ht), maz(rj.dt.up)]

maz[maz(rj.ht) + maz2(rj.ht), maz(rj.dt.up)]

{Broadcast the diameter}
R2 :: (ri.parent = 0) A

(Vj) (rj.parent = i)

.-t ri.dt.up := (Vj) (rj.parent = i)

II

(ri.dt.down 1 = ri.dt.up) - ri.dt.down := ri.dt.up
II
R3 :: (ri.parent = j 7 = 0) A

(ri.dt.down 1 = rj.dt.down)
-+ ri.dt.down := rj.dt.down

II
{Convergecast the centroid }2

R4 :: (ri.ht = [rm.d*focun] + 1) A
(ri.center.up 7 = i)

-+ ri.center.up := i
II
R5 : (ri.ht 7 = [r,.dtpn] + 1) A

(ri.center.up 7 =
(V j) (rj.parent = i) maz(rj.center.up))

---t (ri.center.up :=
(V j) (rj.parent = i) maz(rj.center.up))

It
{Broadcast the centroid}
R6 :: (ri.parent = 0) A

(ri.center.down 7 = ri.center.up)
-+ ri .center.down := ri.center.up

I I
R7 :: (ri.parent = j 7 = 0) A

(ri.center.down 7 = rj .center.down)
.-t ri.center.down := rj .center.down

2.2 Median Protocol

The protocol consists of seven rules, R8 ... R14. The
function maz in R11 and R12 Calculates the great-
est value of its .parameters, and the function sum in
R8 calculates the sum of its parameters. Both these
functions return 0 when applied to the null set.

The protocol ensures that the register field
ri.median.down in each node stabilizes to the index
of one of the medians of the tree. This occurs in four
phases. In Phase I, rule R8 calculates the count at
each node i , which is the number of nodes in the sub-

neighbor set of i
'In this and all other rules, j is the index of a node in the

2For the other centroid, substitute poor for ceiling

tree rooted at i. At the end of Phase I, the value of
count at the root is the count of nodes in the tree. In
Phase 11, the value of nodes at each node i stabilizes
to the value of the number of nodes in the tree. The
rules for Phase I1 involve the root copying its nodes
from its count (R9) and each node copying nodes from
the variable nodes of its parent (R10). In Phase 111,
the median is computed using the rules E11 and R12.

Definition 2.4 A node in a tne is called a median
if the sum of the distances from this node to all other
nodes in the i r e e is the least possible.

These rules perform a convergecast so that the
value of median.up at the root stabilizes to the node
index of one of the medians of the tree. A node i
checks if twice the greatest rj.count of all its chil-
dren is less than nodes, and if so it declares itself
the median by setting ri.mcdian.up to its own index
(R11). Otherwise, it copies the greatest median.up
from its children into ri.median.up (R12). The value
of median.up at the root stabilizes to the index of the
median of the tree.

In Phase IV, a broadcast of the index of the median
is done. The root copies its medianap variable into
its median.down variable (R13). Each non-root node
copies median.down from its parent's median.down
(R14). Thus the d u e of median.down at each node
stabilizes to the index of the median of the tree.
{Compute count values}
R8 :: ri.count 1 =

(V j) (rj.parent = i) sum(rj.count) + 1
-+ ri.count :=

(Vj) (rj.parent = i) sum(rj.count) + 1
II
{Broadcast value of nodes}
R9 :: (ri.parent = 0) A

(ri.nodes 1 = ri.count) - ri.nodes := ri.count
II
R10 :: (ri.parent = j 1 = 0) A

(ri.nodes 1 = rj.nodes)
-t ri .nodes := rj .nodes

II
{ Convergecast the median}
R11 :: (V j) (rj.parent = i) (2 * maz(rj.count) <
ri.nodes) A (ri.median.up 1 = i) - q.median.up := i
I1
R12 ::

ri.nodes) A
(3) (rj.parent = i) (2 * maz(rj.count) 7 <

(ri.median.up 7 = rj.median.up)

473

4 ri.median.up

{Broadcast the median}
R13 ::

(ri.parent = 0)
ri .median.up)

ri.median.up

R14 ::

II

I1

:= rj .median.up

A (ri.median.down i =

--+ ri.median.down :=

(f i .parent = j 1 = 0) A (ri.median.down 1 = - ri.median.down := r, .median.down
rj .median.down)

3 Proof of Correctness

To prove that a protocol is correct, we prove that
each phase constituting the protQcol convergent and
closed. Closure is proved by defining a global siafe
predicate for each phase and proving that once this
state is reached, no rule in the phase is enabled for
any node. In each phase, we prove convergence by in-
duction. This is acceptable since every phase is either
up convergent or down convergent. An up convergent
phase maintains a linear order 4 between the nodes
of the system such that

For a down convergent phase, the order 4 is such that

Intuitively, information flow is upwards towards the
root for an up convergent phase, while it is towards
the leaves for a down convergent phase. For an up
convergent phase, the leaves are the minimal elements
of the partial order while for a down convergent phase,
the root is the minimal element. Hence, for an up
convergent phase, induction is done with the leaves
as the bases, while for a down convergent phase, the
root forms the basis of the induction.

Convergence is guaranteed even with an unfair
scheduler because the nodes form a partial order
and thus the scheduler is constrained to schedule
those nodes which have not stabilized yet. Therefore,
comvergence will occur in finite time.

Distributed scheduling permits simultaneous ac-
tions by different nodes. Our protocols work with a
such a scheduler because the dependency graph of the
nodes is acyclical. Thus one node*executing actions
concurrently with another cannot interferewith, and
undo the actions of, another.

(V i)(V j) (i + j) iff ri.ht < rj .ht

(V i)(V j) (i + j) iff ri .ht > rj.ht

3.1 Diameter and Centroid Protocols
The following global state predicates are defined for
the phases in these protomls:

G h :: r i h t = (vj) (rj .porent = i) m a z (r j . h t)
Gdl :: Gh A ri.dt.up =

(Vj) (r,.parent = i)

m a d (r j . h t) , maz(rj .dt .up)]
mazi maz(rj .ht) +

G d a :: Gdl A (((ri .parent = 0) A
(ri.dt.down = ri .dt .up))
V ((ri.parent = j 1 = 0) A (ri .dt .down =

rj .dt.down)))

(ri.center.up = i))
V ((f i .h t 1 -

[r*.dt;dotunl+~) A (ri.center.up = (Vj) (rj .parent =
i) maz(rj .center.up))

Gcz :: Gel A (((q .parent = 0) A
(ri.center.down = ri.center.up))

(ri.center.down = rj .center.down)))

Lemma 3.1 The phase {Compute ht values} is sta-
bilizing.

Proof: It is evident that the only rule for this phase,
RO is not enabled in the state Gn, so the phase is
closed. This phase is up convergent by inspection,
this may be proved inductively using the definition of
ht of a node.

Lemma 3.2 The value of ri .dt .up in each node i sta-
bilizes t o the diameter of ihe subtree rooted at i after
a finite number of applications of Rule R1.

Proof: {Convergecast dt values} is up convergent
since the guard of R1 for i is an expression over reg-
isters rj of the children j of i. The guard of R1 is not
true in state Gdl, so this phase is closed.
A formal proof of convergence by induction on the
height of the subtree rooted at i follows.
Basis: The minimal elements are the leaves. If i is a
leaf, rule R1 stores in ri.dt.up the value zero which is
the diameter of the tree rooted at i . Thus the basis
case is true.
Induciion Hypothesis: Assume that RI converges
rj.dt.up to the diameter of the subtree rooted at j
where is are those nodes which have height h 2 1.
Induction Step: We now establish that R1 converges
ri.dt.up to the diameter of the subtree rooted in i
when the subtree has height h + 1 > 1.

Let p be a largest simple path in the subtree rooted
at i . Since the subtree rooted at i has height > 1, it
must have at least one child. We deal with two cases:

:: Gda A ((ri .ht = [5'dtforunl + 1) A

-

v ((ri.parent = j -.I = 0) A

47h

in one i has exactly one child ahd in the other it has
more than one child.
Case 1: Node i has exactly one child (node j) .
In this case, either path p has i as an endpoint, or it

does not include i . If i is an endpoint of p, the diam-
eter of the tree rooted at i is ri.ht which by definition
is greater than or equal to the diameter of the subtree
rooted at j . By the induction hypothesis, rj .dt .up has
converged, so that ri.di.up also converges.
If p does not include i , the diameter of the subtree
rooted at i equals the diameter of the subtree rooted
at j which by the hypothesis, has already converged.
Since path p does not include node i , r,.ht must
be less than or equal to the diameter of the subtree
rooted at j . Thus, in either case, the variable ri.dt.up
converges to the diameter of the subtree rooted at i.
Case 2: Node i has more than one child.

Again, either path p goes through node i or it does
not include i . In the former case, the rule R1 com-
putes ri.dt.up as the sum of the largest two heights of
the children of i (the value of ht at all nodes has sta-
bilized), which by definition is greater than or equal
to the diameter of any subtree rooted at a child of i .
By the induction hypothesis, the value of rj .dt .up has
converged to the value of the diameter of the subtree
rooted at j for every child j of i.
In the latter case, the diameter of the subtree rooted
at i is equal to the diameter of the subtree of a child
j of i . By definition, this value is greater or equal to
the sum of the largest two heights of the children of
i (which have already stabilized). In either case, it is
simple to verify that the value of ri.dt.up converges
to the value of the diameter of the subtree rooted at
1 . 0

Corollary 3.1 The variable dt .up ai ihe rooi 1 sia-
bilizes io the value of ihe diameier of the iree after 4

finiie number of applications of the rules RO and R1.

0

Lemma 3.3 The variable dt.down in each node i sta-
bilizes i o ihe value of the diameter of the tree affer 4

finiie number of applicaiions of R2 and R3.

Proof: The phase is closed with respect to G d 2 since
rules R2 and R3 are not enabled when the system is
in this state.
{Broadcast di values} is down convergent since since
the guards of R2 and R3 are expressions over registers
rj of the parent of i, if one exists. Proof by induction
follows:
Basis: The root is the basis of the induction. By
Corollary 3.1 , the value of r1.dt.down eventually be-
comes equal to the diameter of the tree. By applying

Proof: Follows directly from Lemma 3.2.

R2, the root sets register field dt.down equal to dt.up.
Hence the value of rl.dt.down equals the diameter of
the tree.
Induction Hypoihesis: Assume that all nodes at level
I have dt.down equal to the diameter of the tree.
Induction Siep: We now establish that all nodes at
level I + 1 will eventually have dt.down equal to the
diameter of the tree. The down convergence of this
phase implies that the nodes at level I + 1 depend only
on those at levels 1 and below, so that if those at level
I have converged, then so do those at level I + 1. 0

Theorem 3.1 The diameter proiocol is correct.

Proof: The write seis of the phases of this protocol
are { ri.ht }, { ri.dt.up } and { ri.dt.down }. These
are mutually disjoint, by observation.

Hence, the diameter protocol is correct since its in-
dividual phases have been proven correct by Lemma

0

Lemma 3.4 The value of r1.center.up at the rooi
siabilizes t o ihe indet of one of the medians of the
tree after a finiie number of applicaiions of rules R4
and R5.

Proof: It is evident that the guards of R4 and R5 are
not enabled once the system reaches Gel. Hence this
phase is closed with respect to Gel.
A proof of convergence follows:
For at least one node Pc, the expression (re.& =
rrn.dtpnl + 1) is true. Refer to Lemma A.1 in the
Appendix for a proof. This expression forms part of
the guards of R4 and R5 and hence will be true for
at least one node, namely, one of the centroids of the
tree. This node sets its register field rc.center.up to
its index.
Since this phase is up convergent, it may be proved
by induction using this node as the basis that the root
eventually gets the centroid’s index in its register field
center.up. 0

3.1, Corollary 3.1 , and Lemma 3.3.

Lemma 3.5 The variable center.down in each node
i siabilizes to the indet of the ceniroid of the tree after
a finite number of applications of R6 and R7.

Proof: It is evident that the guards of R6 and R7 are
not enabled once the system reaches Gcz. Hence this
phase is closed with respect to G,z.
The phase {Broadcast the centroid} being down con-
vergent, an inductive proof may be constructed for

0 this lemma along the lines of Lemma 3.3.

Theorem 3.2 The centroid protocol is c o m c i .

47 5

Proof: Notice that the centroid protocol includes the
three phases of the diameter protocol, apart from the
two phases that find the centroid. By inspection, the
wrife sets of the five phases are mutually disjoint.
Thus, the centroid protocol is correct since its individ-
ual phases have been proved correct by Lemma 3.1,

0 Corollary 3.1, lemmas 3.3, 3.4 and 3.5.

3.2 Median Protocol
The following global states are defined for the phases
in this protocol and will be used in the lemmas that
follow:

G, :: ri.count = (V j) (rj.parent =
i) sum(rj .count)

G, :: G, A ((r,.parent = 0) A (rixount =
ri.nodes))

V ((ri.parent 1 = 0) A (ri.count =
rj .count))

Gml :: G, A (Vj) (r j .parent = i) (2 *
maz(rj .count) < ri.nodes) A (ri.median = i)

V (2 1; maz(rj .count) 7 < ri.nodes) A
(ri.median = (V j) (rj.parent = i) mar(rj .median))

Gmz :: Cml A (ri.parent = 0) A
(ri.median.down = ri .median.down)

V (ri.parent -, = 0) A (ri.median.down =
rj .median.down)

Lemma 3.6 (Compute count values} stabilizes the
value of ri.count at each node i to ihe count of the
nodes in the subtree rooted at i .

Proof: It is easy to verify that this phase is closed
when the system reaches the state G,. This phase is
up convergent and a proof for this is inductive with
the leaves as the bases. 0

Lemma 3.7 {Broadcast value of nodes} stabilizes
the value of ri.nodes in each node to the count of
nodes in the tree.

Proof: We may construct a proof of this lemma along
the lines of Lemma 3.3. The system is closed when it
reaches the state G,. 0

Lemma 3.8 { Convergecast the median} stabilizes
the value of rl.median.up in the root t o the indez of
the median.

Proof: Refer to Lemma A.5 in the Appendix for
a proof that for at least one node Pm in the
tree, the statement (Vj) (rj.parent = m) (2 *
maz(rj .count) < r,.nodes) will be true, this node
being one of the medians of the tree. This exprek
sion being part of the guards of R11 and R12, the
node Pm sets r,.median.up to its node index. Using

this node the basis, we may prove up convergence
of this phase. The proof would be similar to that of
Lemma 3.4. The system is closed when it reaches the
state G,,. 0

Lemma 3.9 {Broadcast ihe median} siabilizes the
value of ri.median.down in each node to ihe indez
of the median.

Proof: The proof for this lemma is again identical to
that of Lemma 3.3. When the system reaches state
G,a, it is closed since no rules are enabled. 0

Theorem 3.3 The median protocol is correct.

Proof: Notice that the write sets of the phases consti-
tuting the median protocol are disjoint. Since we have
proved that each phase is individually stabilizing, the
median protocol is correct. 0

3.3 Complexity
Lemma 3.10 The lime complezity of any phase i s
proporlional i o the length of the longest dependency
chain of the partial order for the phase.

Proof: The minimal elements of the partial order sta-
bilize immediately. Each non-minimal element d e
pen& directly or indirectly on thaw elements that
precede it in the partial order. Thus the time taken for
a phase to stabilize increases with increasing length of
the longest dependency chain. 0

4 Conclusion
The protocols presented in this paper are self-
stabilized algorithm for calculating the diameter and
locating the centroids and medians of a distributed
tree structured network. They provide fault-tolerant
means of drawing topological information about a tree
network. No assumptions are made about the fair-
ness of the scheduler. A distributed scheduling model
may also be assumed for the network and the prote
col will still work correctly. The model assumed has
very weak atomicity - it is read/write atomic. The
ideas behind these algorithms could conceivably be
extended to finding the diameter, centroids, and me-
dians of a general graph network; this would be a
challenging problem.

References
(11 A. Arora and M. Gouda, “Closure and conver-

gence: A foundation of fault-tolerant comput-
ing,” 22nd International Symposium on Fault-
Tolerant Computing, pp. 396-403, 1992; also to

476

appear in IEEE Ransaciions on Software Engi-
neering.

A. Arora and M. Gouda, “Distributed Reset,”
10ih Conference on Foundations of Software
Technology and Theoreiical Compuier Science,
Bangalore, India, pp.316-331, December 17-19,
1990, Leciure Notes in Compuier Science 472,
Springer- Verlag; also IEEE lhnsac i ion of Com-
puters, Vol. 19, No. 11, November 1993, pp. 1015-
1027.

N. Chen, H. Yu, and S. Huang, “A Self-
Stabilizing Algorithm for Constructing Spanning
lkees,” Informaiion Processing Leiiers, Vol. 39,
pp. 147-151, 1991.

E. Dijkstra, “Self-stabilizing Systems in Spite
of Distributed Control,” Communicaiions of ihe
ACM, Vol. 17, 1974, pp. 643-644.

S. Dolev, A. Israeli, and S. Moran, “Self-
Stabilization of Dynamic Systems Assuming only
Read/Write Atomicity,” 9ih Annual AGM Sym-
posium on Principles of Distribuied Compuiing,
Quebec City, Canada, pp. 103-117, 1990; also
Distributed Computing Vol. 7, 1993, pp. 3-16.

E. Korach, D. Rotem, and N. Santoro, “Dis-
tributed Algorithms for Finding Centers and Me-
dians in Networks,” ACM Transactions on Pro-
gramming Languages and Sysiems, Vol. 6 , No. 3,
pp. 380-401, 1994.

G. Brown, XI. Gouda, and M. Wu, “Token Sys
tems that Self-stabilize,” IEEE Transactions on
Computers, Vol. 38, No. 6, pp. 845-852, 1989.

S. Ghosh and M. H. Karaata, “A Self-stabilizing
Algorithm for Coloring Planar Graphs,” Dis-
iributed Computing, Vol. 7, 1993, pp. 55-59.

J . Burns, M. Gouda, and R. Miller, “On Re-
laxing Interleaving Assumptions,” Proc. MCC
Workshop on Self-Siabilizaiion, Austin, Texas,
November 1989.

N. Deo, “Graph Theory with Applications to
Engineering and Computer Science,” Englewood
Cliffs, N. J., Prentice Hall, 1974.

M. Flatebo, A. K. Datta, and S. Ghosh, “Self-

[12] M. Schneider, “Self-Stabilization,” ACM Com-
puling Surveys, Vol. 25, No. 1, March 1993, pp.

[13] G. Varghese, “Self-Stabilization by Counter
Flushing,” Proceedings of ihe 13ih Annual AGM
Symposium on Principles of Disiribuied Comput-
ing, Los Angeles, California, August 1417,1994,
pp. 244-253; also Technical Report George Wash-
ington University, St. Louis.

(141 M. H. Karaata et al, “Self-stabilizing Algorithms
for Finding Centers and Medians of Trees,” The
l3ih Annual ACM Symposium on Principles of
Disiribuied Compufing , Los Angeles, CA, Au-
gust 1417, 1994, pp. 374.

45-67.

A Appendix

A.l Properties of Centroids
Lemma A.l [Korach, Rofem, and Sanioro [6]] The
sfaiement ri.ht = [ri.dtpnl + 1 holds f o r only one
node of the iree T , that node being a centroid of the
iree.

Proof: It is simple to see that for at least one centroid
P, of the tree, the statement r,ht = [rm.dtpnl + 1
holds.

We will prove Lemma A . l by contradiction, by as-
suming that there is another node Pel in the tree for
which the statement r,l.ht = [rc’.d\downl + 1 holds.

Since the nodes Pc and PCl are not identical, but
have the same height, it cannot be that one is a pre-
decessor of the other in the tree. Let P, be the ,node
which is the closest ancestor of both P, and Pel. Then
the path consisting of a longest path from P, to a leaf,
plus the path from P. to P,, plus the path from P,
to Pcl, plus a longest path form.Pcl to a leaf, is a
simple path and has length greater than or equal to
2 * [r*.dtfwnl + 2 > r,.di.down. Since this contra-
dicts the definition of diameter of a tree, it cannot be
that the statement ri.ht = [ri.dtfaunl + 1 holds for
more than one node in 7’. U

Lemma A.2 The siaiemeni ri.ht = [ri.dt$””nJ + 1
holds for only one node of the iree, ihai node being a
centroid of ihe iree.

Proof: The proof is similar to the proof of Lemma
A.1. 0

Stabilization In Distributed Systems,” Readings
in Distributed Computing Systems, IEEE Com-
puter Society Press, T.L. Casavant and M. Sing-
ha1 eds., pp. 100-114, 1994.

L~~~~ ~ , 3 [D ~ ~ [lo]] Then are at
froids in a fne .

two ten-

Proof: Refer to [lo] for the proof. 0

47 7

Lemma A.4 There may be more ihan one longesi
path in a tree, but all of them coniain the ceniroid(s)
in the tree.

Proof: Refer to (IO] for the proof.

A.2 Properties of Medians
Lemma A.5 A median of the tree, Pm, satisfies the
condition, 2 d (j) > n where c i (j) is ihe mazimum
couni of ihe children of P,,, as defined below and n
is the number of nodes in the tree.

Proof: Before we can prove this lemma, we will need
the following definitions and observations :

Definition A.1 The count of a leaf is 1, and ihe
couni of a non-leaf node is one plus the sum of the
counts of its children.

Definition A.2 The toial distance from node i t o all
the nodes in a tree i s the sum of the lengths of the
path from node i t o each node in the tree.

Observation A.l [Korach, Rotem and Santom [6]]
If node i in a free has total distance to all nodes in
T equal i o dis (i) , then the corresponding value fo r its
child j is

0

d i s (j) = dis (i) + n - 2 d (j) ,

where c i (j) is the count of j .

This formula follows from the fact that the length of
the path from a node i to a node L which is not j or a
descendant of j is one less than the length of the path
from node j to node k; the length of the path from
i to a node k which either is node j or a descendent
of j is one more than the length of the path from j
to node k; and the number of nodes in the subtree
rooted at i is d(i) .

Observation A.2 If node i in the tree T has 2 d (i) >
n then fo r a i mosf one of its children j , 2 4 j) 2 n.
When such a child exists, d i s (j) 5 dis(i) .

This follows from the fact that n is the total number
of nodes in the tree and d(i) 5 n.
The proof of Lemma A.5 can now be stated. Assum-
ing we know that all medians of the tree are in the
subtree rooted at i and that 2d(i) > n. Then by Ob-
servation A.2, one of the following three cases applies:
Case 1: There is one child j of i for which 2 d (j) >
n. Then by Observation A.l , dis(i) < dis(j) , and
dis(L) > dis (i) for all the other children k of i. There-
fore, all medians are in the subtree rooted at j and
2 d (j) > n.

Case 2: There is only one child j of i for which
2ct(j) = n. By Observation A.1, dis(i) = dis(j) and
dis(k) > dis(i) for all other children k of i . Therefore
j and i are the medians of the tree.
Case 3: There is no child j for which 2ct(j) 2 n.
By Observation A.1, there cannot be a median in the
eubtreea rooted at any child of i. Therefore node i is
the median of the tree. 0

Lemma A A [Korach, Roiem, and Sanioro [6]]
There are a i moat iwo medians in a tree.

Proof: Refer to [SI for the proof. 0

