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Abstract 
This paper presents self-stabilizing algorithms for 

finding the diameter, centroid(s) and media+) of a 
tree. The algorithms compute these metria of a tree 
in a finite number of steps. The distributed tree struc- 
tured system is maintained by another self-stabilizing 
spanning tree protocol over a graph. This makes the 
system resilient to transient failures, from which it is 
guaranteed to recover after a finite number of moves. 
Keywords: Distributed algorithms, diameter, cen- 
troid, and median of a tree, self-stabilization. 

1 Introduction 
Topological information, such as location of centroid 
and median, plays an important role in distributed 
networks. This information is used for dynamic rout- 
ing of messages between nodes. But it cannot be 
taken into account once and for all at design time since 
several unpredictable factors make it time varying. 
The problem of dynamically finding the diameter and 
locating centroids and medians of a tree structured 
network therefore assumes importance. This paper 
presents protocols for finding the diameter and locat- 
ing centroids and medians of a dynamic tree network. 
The solutions presented require only local topologi- 
cal knowledge at each node, and are self-stabilizing 
[4, 11, 121. The self-stabilizing algorithm terminates 
after it computes the metria, but any unexpected 
perturbation reactivates it, and possibly new values 
for the metria are computed if there are changes in 
the network topology. The model assumes that there 
are n nodes 1, ..., n arranged in a tree configuration, 1 
being the root. The tree may be one maintained by a 
spanning tree protocol over a graph, thus making the 
model more general. Work has been done by Karaata 
et al in this area. Refer to [14]. They require that each 
action have a very large atomicity whereas we have 
no such requirement. Also, every node in the network 

knows the identity of the centroid and median of the 
network when our protocol terminates, thus making 
it an ideal underlying protocol for routing purposes. 
In [14] only the medians and the centroids themselves 
know who they are. 

The rest of the paper is organized as follows. Sec- 
tion 2 contains a description of the protocols while 
Section 3 provides proofs of correctness. Section 4 
states some conclusions. In the Appendix, we give 
some properties of centroids and medians of a tree 
which we used in developing the protocols. 

2 Description of the Protocol 
Each node in the network, i ,  maintains a readlwrite 
register ri containing several fields. 

A state of the system is defined by a value for every 
field of the registers maintained by the nodes. 

Each node in the system executes a protocol which 
has the form 

{Phase name} < phase > {Phase name} 

{Phase name} < phase > 

< rule > 11 ... 11 < rule > 

< guard > - < assignment statement > 
A guard is a Boolean expression over the state of 

a node and its neighbors. An assignment statement 
updates the state of a node. An rule whose guard is 
true at some state of the system is said to be enabled 
at that state.. 

A node i depends on a node j if a change in the 
state of j enables some rule of i. 

We define a phase to be convergent if its rules are 
so constructed as to make the dependency relation 
between the nodes of the system a partial order and 
upon execution of these rules the state of the sys- 
tem eventually satisfies a global state predicate. In- 
tuitively, the dependency relation is antisymmetric so 

... 

Each phase is of the form 

Each rule has the form 
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that thrashing cannot occur. 2.1 Diameter and Centroid Protocols 
A phase is defined to be closed if no rules in it are 

enabled once the state of the system satisfies a global 
state predicate. 

A phase is said to be stabilizing if it is convergent 
and closed [l]. 

The write sei of a phase is the set of register fields 
that are updated in the phase. If the write sets of the 
phases constituting the protocol are mutually disjoint 
and each of the phases is individually stabilizing, then 
the protocol is stabilizing. 

The read/write register ri of node i contains the 
following fields: 

ri.parent 

ri.ht 
.dt.up 

ri .center.up 

ri.center.down 
ri.count 

ri.nodes 
ri .median.up 

ri.median.down 

has the node index of the parent of 
i, except for the root which has 
zero 
contains the height of i 
used for convergecast of diameter 
information 
final result of the diameter of the 
tree 
used for convergecast of centroid 
information 
final result of centroid of the tree 
number of nodes in the subtree 
rooted at i 
total number of nodes in the tree 
used for convergecast of median 
information 
final result of median of the tree 

i can perform readlwrite operations on its local reg- 
ister r i ,  but it can only read from registers rj of its 
neighbors ( i .e . ,  its parent and children). We assume 
that an underlying spanning tree protocol as in [2] or 
[3] maintains the consistency of the field parent in the 
registers. As in [8,13], our protocols make no assump- 
tions about a fair scheduler and will also work with 
a distributed scheduler [7, 91. Although a read/write 
atomic model is not explicitly assumed in the model, 
the protocols will also work correctly in such models 
as in [2, 5, 81. 

The protocols for diameter, centroid and median 
computation work in two phases each. In the up 
phase, the value of the metric is computed in each 
node’s up variable using the up variables of its chil- 
dren, so that the up of the root stabilizes to the cor- 
rect value of the metric. The root then copies its 
up variable to its down variable. In the down phase, 
each node copies the down variable of its parent into 
its down variable, so that down contains the correct 
value for the metric. 

The protocols consist of eight rules, RO ... R7; 
RO ... €23 being for diameter calculation and R4 ... R7 
being for centroid calculation. The function m a 2  in 
R1 and R3 and the function ma22 in R3 calculate the 
greatest and second greatest values of their parame- 
ters, respectively. These functions return zero when 
applied to the null set and the singleton set, respec- 
tively. 

Definition 2.1 The heighi of a non-leaf node is one 
plus ihe mazimum height of ;is children; the height of 
a leaf being one. 

Definition 2.2 The diameter of a iree is the number 
of edges in a longest simple paih in fhe iree. 

The diameter protocol ensures that the register field 
ri.dt.down in each node stabilizes to the value of the 
diameter of the tree. This occurs in three phases. In 
Phase I, rule RO calculates the height of the node in 
ri.hl. This rule is straightforward, the ht of a node is 
one greater than the maximum ht of all its children; 
the hi of a leaf being 1. 

Rule R1 performs a convergecast so that the vari- 
able dt.up at the root stabilizes to the value of the 
diameter of the tree. This is Phase 2. df .up at each 
node is the sum of the two greatest hl values of its chil- 
dren or the greatest &.up value of its children which is 
the diameter of the subtree rooted at  the node. dt.up 
of a leaf is zero. 

Rules R2 and R3 constituting Phase 3 broadcast 
the diameter, so that the value of dt.down at each 
node equals the diameter of the tree. Each node 
copies dt.down from dt.down of its parent (R3),  the 
root copying it from its own dt.up instead (R2). 

Definition 2.3 A node in a iree is called a centroid 
if it i s  a middle node in a longesf simple path in the 
iree. 

The centroid protocol has two phases. In Phase 1, 
a convergecast of the index of the centroid occurs (R4 
and R5). One of the two centroids of the tree (or the 
only one: refer to Lemma A.3 in the Appendix) is the 
node whose ht equals 

In Phase 2 (R6 and R7), the index of the centroid is 
broadcast to all nodes. Each node copies center.down 
from center.down of its parent (R7); the root copies 
center.down from its own center.up (R6). 

{Compute ht values} 
RO :: 

1 (R4). 
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ri.ht 1 = (Vj) I  (rj.parent = i )  maz(rj.ht) + 1 
-+ ri.ht := ( V j )  (rj.parent = i )  maz(rj.ht) + 1 

II 
{Convergecast the diameter} 
R1 :: ri.dt.up 7 = 
maz[ maz(rj.ht) + maz2(rj.ht), maz(rj.dt.up) ] 

maz[ maz(rj.ht) + maz2(rj.ht), maz(rj.dt.up) ] 

{Broadcast the diameter} 
R2 :: (ri.parent = 0) A 

(Vj)  (rj.parent = i )  

.-t ri.dt.up := (Vj) (rj.parent = i )  

II 

(ri.dt.down 1 = ri.dt.up) - ri.dt.down := ri.dt.up 
II 
R3 :: (ri.parent = j 7 = 0) A 

(ri.dt.down 1 = rj.dt.down) 
-+ ri.dt.down := rj.dt.down 

II 
{Convergecast the centroid }2 

R4 :: (ri.ht = [rm.d*focun] + 1) A 
(ri.center.up 7 = i )  

-+ ri.center.up := i 
II 
R5 : (ri.ht 7 = [r,.dtpn] + 1) A 

(ri.center.up 7 = 
( V j )  (rj.parent = i) maz( rj.center.up) ) 

---t (ri.center.up := 
( V j )  (rj.parent = i )  maz( rj.center.up ) ) 

It 
{Broadcast the centroid} 
R6 :: (ri.parent = 0) A 

(ri.center.down 7 = ri.center.up) 
-+ ri .center.down := ri.center.up 

I I  
R7 :: (ri.parent = j 7 = 0) A 

(ri.center.down 7 = rj .center.down) 
.-t ri.center.down := rj .center.down 

2.2 Median Protocol 

The protocol consists of seven rules, R8 ... R14. The 
function maz in R11 and R12 Calculates the great- 
est value of its .parameters, and the function sum in 
R8 calculates the sum of its parameters. Both these 
functions return 0 when applied to the null set. 

The protocol ensures that the register field 
ri.median.down in each node stabilizes to the index 
of one of the medians of the tree. This occurs in four 
phases. In Phase I, rule R8 calculates the count at 
each node i ,  which is the number of nodes in the sub- 

neighbor set of i 
'In this and all other rules, j is the index of a node in the 

2For the other centroid, substitute poor for ceiling 

tree rooted at i. At the end of Phase I, the value of 
count at the root is the count of nodes in the tree. In 
Phase 11, the value of nodes at each node i stabilizes 
to the value of the number of nodes in the tree. The 
rules for Phase I1 involve the root copying its nodes 
from its count (R9) and each node copying nodes from 
the variable nodes of its parent (R10). In Phase 111, 
the median is computed using the rules E11 and R12. 

Definition 2.4 A node in a tne  is called a median 
if the sum of the distances from this node to all other 
nodes in the i r e e  is the least possible. 

These rules perform a convergecast so that the 
value of median.up at the root stabilizes to the node 
index of one of the medians of the tree. A node i 
checks if twice the greatest rj.count of all its chil- 
dren is less than nodes, and if so it declares itself 
the median by setting ri.mcdian.up to its own index 
(R11). Otherwise, it copies the greatest median.up 
from its children into ri.median.up (R12). The value 
of median.up at the root stabilizes to the index of the 
median of the tree. 

In Phase IV, a broadcast of the index of the median 
is done. The root copies its medianap variable into 
its median.down variable (R13). Each non-root node 
copies median.down from its parent's median.down 
(R14). Thus the d u e  of median.down at  each node 
stabilizes to the index of the median of the tree. 
{Compute count values} 
R8 :: ri.count 1 = 

(V j )  (rj.parent = i) sum(rj.count) + 1 
-+ ri.count := 

(Vj) (rj.parent = i) sum(rj.count) + 1 
II 
{Broadcast value of nodes} 
R9 :: (ri.parent = 0) A 

(ri.nodes 1 = ri.count) - ri.nodes := ri.count 
II 
R10 :: (ri.parent = j 1 = 0) A 

(ri.nodes 1 = rj.nodes) 
-t ri .nodes := rj .nodes 

II 
{ Convergecast the median} 
R11 :: ( V j )  (rj.parent = i) (2 * maz(rj.count) < 
ri.nodes) A (ri.median.up 1 = i) - q.median.up := i 
I1 
R12 :: 

ri.nodes) A 
(3) (rj.parent = i) (2 * maz(rj.count) 7 < 

(ri.median.up 7 = rj.median.up) 
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4 ri.median.up 

{Broadcast the median} 
R13 :: 

(ri.parent = 0) 
ri .median.up) 

ri.median.up 

R14 :: 

II  

I1 

:= rj .median.up 

A (ri.median.down i = 

--+ ri.median.down := 

( f i .parent  = j 1 = 0 )  A (ri.median.down 1 = - ri.median.down := r, .median.down 
rj .median.down) 

3 Proof of Correctness 

To prove that a protocol is correct, we prove that 
each phase constituting the protQcol convergent and 
closed. Closure is proved by defining a global siafe 
predicate for each phase and proving that once this 
state is reached, no rule in the phase is enabled for 
any node. In each phase, we prove convergence by in- 
duction. This is acceptable since every phase is either 
up convergent or down convergent. An up convergent 
phase maintains a linear order 4 between the nodes 
of the system such that 

For a down convergent phase, the order 4 is such that 

Intuitively, information flow is upwards towards the 
root for an up convergent phase, while it is towards 
the leaves for a down convergent phase. For an up 
convergent phase, the leaves are the minimal elements 
of the partial order while for a down convergent phase, 
the root is the minimal element. Hence, for an up 
convergent phase, induction is done with the leaves 
as the bases, while for a down convergent phase, the 
root forms the basis of the induction. 

Convergence is guaranteed even with an unfair 
scheduler because the nodes form a partial order 
and thus the scheduler is constrained to schedule 
those nodes which have not stabilized yet. Therefore, 
comvergence will occur in finite time. 

Distributed scheduling permits simultaneous ac- 
tions by different nodes. Our protocols work with a 
such a scheduler because the dependency graph of the 
nodes is acyclical. Thus one node*executing actions 
concurrently with another cannot interferewith, and 
undo the actions of, another. 

(V i)(V j) (i + j) iff ri.ht < rj .ht 

(V i)(V j) (i + j) iff ri .ht > rj.ht 

3.1 Diameter and Centroid Protocols 
The following global state predicates are defined for 
the phases in these protomls: 

G h  :: r i h t  = (vj) (rj .porent = i )  m a z ( r j . h t )  
Gdl :: Gh A ri.dt.up = 

(Vj) (r,.parent = i )  

m a d ( r j . h t ) ,  maz(rj .dt .up) ] 
mazi  maz(rj .ht) + 

G d a  :: Gdl A (((ri .parent = 0) A 
(ri.dt.down = ri .dt .up)) 
V ((ri.parent = j 1 = 0) A (ri .dt .down = 

rj .dt.down))) 

(ri.center.up = i)) 
V ( ( f i .h t  1 - 

[r*.dt;dotunl+~) A (ri.center.up = (Vj) (rj .parent = 
i )  maz(  rj .center.up )) 

Gcz :: Gel A ( ( (q .parent  = 0) A 
(ri.center.down = ri.center.up)) 

(ri.center.down = rj .center.down))) 

Lemma 3.1 The phase {Compute ht values} is sta- 
bilizing. 

Proof: It is evident that the only rule for this phase, 
RO is not enabled in the state Gn, so the phase is 
closed. This phase is up convergent by inspection, 
this may be proved inductively using the definition of 
ht of a node. 

Lemma 3.2 The value of ri .dt .up in each node i sta- 
bilizes t o  the diameter of ihe subtree rooted at i after 
a finite number of applications of Rule R1. 

Proof: {Convergecast dt values} is up convergent 
since the guard of R1 for i is an expression over reg- 
isters rj of the children j of i. The guard of R1 is not 
true in state Gdl, so this phase is closed. 
A formal proof of convergence by induction on the 
height of the subtree rooted at  i follows. 
Basis: The minimal elements are the leaves. If i is a 
leaf, rule R1 stores in ri.dt.up the value zero which is 
the diameter of the tree rooted at  i .  Thus the basis 
case is true. 
Induciion Hypothesis: Assume that RI converges 
rj.dt.up to the diameter of the subtree rooted at  j 
where is are those nodes which have height h 2 1. 
Induction Step: We now establish that R1 converges 
ri.dt.up to the diameter of the subtree rooted in i 
when the subtree has height h + 1 > 1. 

Let p be a largest simple path in the subtree rooted 
at i .  Since the subtree rooted at  i has height > 1, it 
must have at  least one child. We deal with two cases: 

:: Gda A ((ri .ht  = [5'dtforunl + 1) A 

- 

v ((ri.parent = j -.I = 0) A 
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in one i has exactly one child ahd in the other it has 
more than one child. 
Case 1: Node i has exactly one child (node j ) .  
In this case, either path p has i as an endpoint, or it 

does not include i .  If i is an endpoint of p, the diam- 
eter of the tree rooted at i is ri.ht which by definition 
is greater than or equal to the diameter of the subtree 
rooted at j .  By the induction hypothesis, rj .dt .up has 
converged, so that ri.di.up also converges. 
If p does not include i ,  the diameter of the subtree 
rooted at i equals the diameter of the subtree rooted 
at j which by the hypothesis, has already converged. 
Since path p does not include node i ,  r,.ht must 
be less than or equal to the diameter of the subtree 
rooted at j .  Thus, in either case, the variable ri.dt.up 
converges to the diameter of the subtree rooted at i. 
Case 2: Node i has more than one child. 

Again, either path p goes through node i or it does 
not include i .  In the former case, the rule R1 com- 
putes ri.dt.up as the sum of the largest two heights of 
the children of i (the value of ht at all nodes has sta- 
bilized), which by definition is greater than or equal 
to the diameter of any subtree rooted at a child of i .  
By the induction hypothesis, the value of rj .dt .up has 
converged to the value of the diameter of the subtree 
rooted at j for every child j of i. 
In the latter case, the diameter of the subtree rooted 
at i is equal to the diameter of the subtree of a child 
j of i .  By definition, this value is greater or equal to 
the sum of the largest two heights of the children of 
i (which have already stabilized). In either case, it is 
simple to verify that the value of ri.dt.up converges 
to the value of the diameter of the subtree rooted at 
1 .  0 

Corollary 3.1 The variable dt .up ai ihe rooi 1 sia- 
bilizes io the value of ihe diameier of the iree after 4 

finiie number of applications of the rules RO and R1. 

0 

Lemma 3.3 The variable dt.down in each node i sta- 
bilizes i o  ihe value of the diameter of the tree affer 4 

finiie number of applicaiions of R2 and R3. 

Proof: The phase is closed with respect to G d 2  since 
rules R2 and R3 are not enabled when the system is 
in this state. 
{Broadcast di  values} is down convergent since since 
the guards of R2 and R3 are expressions over registers 
rj of the parent of i, if one exists. Proof by induction 
follows: 
Basis: The root is the basis of the induction. By 
Corollary 3.1 ,  the value of r1.dt.down eventually be- 
comes equal to the diameter of the tree. By applying 

Proof: Follows directly from Lemma 3.2.  

R2, the root sets register field dt.down equal to dt.up. 
Hence the value of rl.dt.down equals the diameter of 
the tree. 
Induction Hypoihesis: Assume that all nodes at level 
I have dt.down equal to the diameter of the tree. 
Induction Siep: We now establish that all nodes at  
level I + 1 will eventually have dt.down equal to the 
diameter of the tree. The down convergence of this 
phase implies that the nodes at level I +  1 depend only 
on those at levels 1 and below, so that if those at level 
I have converged, then so do those at level I + 1. 0 

Theorem 3.1 The diameter proiocol is correct. 

Proof: The write seis of the phases of this protocol 
are { ri.ht }, { ri.dt.up } and { ri.dt.down }. These 
are mutually disjoint, by observation. 

Hence, the diameter protocol is correct since its in- 
dividual phases have been proven correct by Lemma 

0 

Lemma 3.4 The value of r1.center.up at the rooi 
siabilizes t o  ihe indet of one of the medians of the 
tree after a finiie number of applicaiions of rules R4 
and R5. 

Proof: It is evident that the guards of R4 and R5 are 
not enabled once the system reaches Gel. Hence this 
phase is closed with respect to Gel. 
A proof of convergence follows: 
For at least one node Pc, the expression (re.& = 
rrn.dtpnl + 1) is true. Refer to Lemma A.1 in the 
Appendix for a proof. This expression forms part of 
the guards of R4 and R5 and hence will be true for 
at least one node, namely, one of the centroids of the 
tree. This node sets its register field rc.center.up to 
its index. 
Since this phase is up convergent, it may be proved 
by induction using this node as the basis that the root 
eventually gets the centroid’s index in its register field 
center.up. 0 

3.1, Corollary 3.1 ,  and Lemma 3.3. 

Lemma 3.5 The variable center.down in each node 
i siabilizes to  the indet of the ceniroid of the tree after 
a finite number of applications of R6 and R7. 

Proof: It is evident that the guards of R6 and R7 are 
not enabled once the system reaches Gcz. Hence this 
phase is closed with respect to G,z. 
The phase {Broadcast the centroid} being down con- 
vergent, an inductive proof may be constructed for 

0 this lemma along the lines of Lemma 3.3. 

Theorem 3.2 The centroid protocol is c o m c i .  
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Proof: Notice that the centroid protocol includes the 
three phases of the diameter protocol, apart from the 
two phases that find the centroid. By inspection, the 
wrife sets of the five phases are mutually disjoint. 
Thus, the centroid protocol is correct since its individ- 
ual phases have been proved correct by Lemma 3.1, 

0 Corollary 3.1, lemmas 3.3, 3.4 and 3.5. 

3.2 Median Protocol 
The following global states are defined for the phases 
in this protocol and will be used in the lemmas that 
follow: 

G, :: ri.count = ( V j )  (rj.parent = 
i )  sum(rj .count) 

G, :: G, A ((r,.parent = 0) A (rixount = 
ri.nodes)) 

V ((ri.parent 1 = 0) A (ri.count = 
rj .count)) 

Gml :: G, A (Vj) (r j .parent  = i) (2 * 
maz(rj .count) < ri.nodes) A (ri.median = i )  

V (2 1; maz(rj .count) 7 < ri.nodes) A 
(ri.median = ( V j )  (rj.parent = i) mar(rj .median)) 

Gmz :: Cml A (ri.parent = 0 )  A 
(ri.median.down = ri .median.down) 

V (ri.parent -, = 0) A (ri.median.down = 
rj .median.down) 

Lemma 3.6 (Compute count values} stabilizes the 
value of ri.count at each node i to  ihe count of the 
nodes in the subtree rooted at i .  

Proof: It is easy to verify that this phase is closed 
when the system reaches the state G,. This phase is 
up convergent and a proof for this is inductive with 
the leaves as the bases. 0 

Lemma 3.7 {Broadcast value of nodes} stabilizes 
the value of ri.nodes in each node to the count of 
nodes in the tree. 

Proof: We may construct a proof of this lemma along 
the lines of Lemma 3.3. The system is closed when it 
reaches the state G,. 0 

Lemma 3.8 { Convergecast the median} stabilizes 
the value of rl.median.up in the root t o  the indez of 
the median. 

Proof: Refer to Lemma A.5 in the Appendix for 
a proof that for at least one node Pm in the 
tree, the statement (Vj)  (rj.parent = m) ( 2  * 
maz(rj .count) < r,.nodes) will be true, this node 
being one of the medians of the tree. This exprek 
sion being part of the guards of R11 and R12, the 
node Pm sets r,.median.up to its node index. Using 

this node the basis, we may prove up convergence 
of this phase. The proof would be similar to that of 
Lemma 3.4. The system is closed when it reaches the 
state G,,. 0 

Lemma 3.9 {Broadcast ihe median} siabilizes the 
value of ri.median.down in each node to  ihe indez 
of the median. 

Proof: The proof for this lemma is again identical to 
that of Lemma 3.3. When the system reaches state 
G,a, it is closed since no rules are enabled. 0 

Theorem 3.3 The median protocol is  correct. 

Proof: Notice that the write sets of the phases consti- 
tuting the median protocol are disjoint. Since we have 
proved that each phase is individually stabilizing, the 
median protocol is correct. 0 

3.3 Complexity 
Lemma 3.10 The lime complezity of any phase i s  
proporlional i o  the length of the longest dependency 
chain of the partial order for the phase. 

Proof: The minimal elements of the partial order sta- 
bilize immediately. Each non-minimal element d e  
pen& directly or indirectly on thaw elements that 
precede it in the partial order. Thus the time taken for 
a phase to stabilize increases with increasing length of 
the longest dependency chain. 0 

4 Conclusion 
The protocols presented in this paper are self- 
stabilized algorithm for calculating the diameter and 
locating the centroids and medians of a distributed 
tree structured network. They provide fault-tolerant 
means of drawing topological information about a tree 
network. No assumptions are made about the fair- 
ness of the scheduler. A distributed scheduling model 
may also be assumed for the network and the prote  
col will still work correctly. The model assumed has 
very weak atomicity - it is read/write atomic. The 
ideas behind these algorithms could conceivably be 
extended to finding the diameter, centroids, and me- 
dians of a general graph network; this would be a 
challenging problem. 
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A Appendix 

A.l  Properties of Centroids 
Lemma A.l [Korach, Rofem,  and Sanioro [6]] The 
sfaiement ri.ht = [ri.dtpnl + 1 holds f o r  only one 
node of the iree T ,  that node being a centroid of the 
iree. 

Proof: It is simple to see that for at least one centroid 
P, of the tree, the statement r,ht = [rm.dtpnl + 1 
holds. 

We will prove Lemma A . l  by contradiction, by as- 
suming that there is another node Pel in the tree for 
which the statement r,l.ht = [rc’.d\downl + 1 holds. 

Since the nodes Pc and PCl are not identical, but 
have the same height, it cannot be that one is a pre- 
decessor of the other in the tree. Let P, be the ,node 
which is the closest ancestor of both P, and Pel. Then 
the path consisting of a longest path from P, to a leaf, 
plus the path from P. to P,, plus the path from P, 
to Pcl, plus a longest path form.Pcl to a leaf, is a 
simple path and has length greater than or equal to  
2 * [r*.dtfwnl + 2 > r,.di.down. Since this contra- 
dicts the definition of diameter of a tree, it cannot be 
that the statement ri.ht = [ri.dtfaunl + 1 holds for 
more than one node in 7’. U 

Lemma A.2 The siaiemeni ri.ht = [ri.dt$””nJ + 1 
holds for only one node of the iree, ihai node being a 
centroid of ihe iree. 

Proof: The proof is similar to  the proof of Lemma 
A.1. 0 

Stabilization In Distributed Systems,” Readings 
in Distributed Computing Systems, IEEE Com- 
puter Society Press, T.L. Casavant and M. Sing- 
ha1 eds., pp. 100-114, 1994. 

L~~~~ ~ , 3  [ D ~ ~  [lo]] Then are at 
froids in a fne .  

two ten- 

Proof: Refer to [lo] for the proof. 0 
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Lemma A.4 There may be more ihan one longesi 
path in a tree, but all of them coniain the ceniroid(s) 
in  the tree. 

Proof: Refer to (IO] for the proof. 

A.2 Properties of Medians 
Lemma A.5 A median of the tree, Pm, satisfies the 
condition, 2 d ( j )  > n where c i ( j )  is ihe mazimum 
couni of ihe children of P,,, as defined below and n 
is the number of nodes in  the tree. 

Proof: Before we can prove this lemma, we will need 
the following definitions and observations : 

Definition A.1 The count of a leaf is 1, and ihe 
couni of a non-leaf node is one plus the sum of the 
counts of its children. 

Definition A.2 The toial distance from node i t o  all 
the nodes in a tree i s  the sum of the lengths of the 
path from node i t o  each node in the tree. 

Observation A.l [Korach, Rotem and Santom [6]] 
If node i in  a free has total distance to  all nodes in 
T equal i o  dis ( i ) ,  then the corresponding value fo r  its 
child j is 

0 

d i s ( j )  = dis ( i )  + n - 2 d ( j ) ,  

where c i ( j )  is the count of j .  

This formula follows from the fact that the length of 
the path from a node i to a node L which is not j or a 
descendant of j is one less than the length of the path 
from node j to  node k; the length of the path from 
i to a node k which either is node j or a descendent 
of j is one more than the length of the path from j 
to node k; and the number of nodes in the subtree 
rooted at i is d(i) .  

Observation A.2 If node i in the tree T has 2 d ( i )  > 
n then fo r  a i  mosf one of its children j ,  2 4 j )  2 n.  
When such a child exists, d i s ( j )  5 dis(i) .  

This follows from the fact that n is the total number 
of nodes in the tree and d( i )  5 n. 
The proof of Lemma A.5 can now be stated. Assum- 
ing we know that all medians of the tree are in the 
subtree rooted at i and that 2d( i )  > n. Then by Ob- 
servation A.2, one of the following three cases applies: 
Case 1: There is one child j of i for which 2 d ( j )  > 
n. Then by Observation A.l ,  dis(i) < dis( j ) ,  and 
dis(L) > dis ( i )  for all the other children k of i. There- 
fore, all medians are in the subtree rooted at  j and 
2 d ( j )  > n. 

Case 2: There is only one child j of i for which 
2ct(j) = n. By Observation A.1,  dis(i) = dis(j) and 
dis(k) > dis(i) for all other children k of i .  Therefore 
j and i are the medians of the tree. 
Case 3: There is no child j for which 2ct( j )  2 n. 
By Observation A.1, there cannot be a median in the 
eubtreea rooted at any child of i. Therefore node i is 
the median of the tree. 0 

Lemma A A  [Korach, Roiem, and Sanioro [6]] 
There are a i  moat iwo medians in  a tree. 

Proof: Refer to [SI for the proof. 0 


