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ABSTRACT

It is well known that every planar layout is four-layer wirable.
If we decrease the number of layers, there are planar layouts that
cannot be wired on three layers.
whether a planar layout is three-layer wirable is an NP-complete
problem. A planar layout may be stretched vertically (horizontally)
by introducing empty rows (columns). Clearly, stretching a planar
layout increases its area; however, if it is stretched in certain
locations it can be wired in fewer than four layers. It is well known
that’every planar layout W can be stretched and two-layer wired in
an area not larger than twice the area of W. The bound on the
wiring area has been shown to be best possible, i.e., there are planar
layouts that need to be stretched by this factor of two. In this
paper, we investigate the problem of stretching and then wiring in
three layers a planar layout. We show that the additional area
required is no more than 1/3 of the planar layout area. We also
show that for a class of planar layouts, the additional area is not
more than 1/4 of the the planar layout area.

I. INTRODUCTION

The rectangle routing problem (RRP) is a fundamental problem
in VLSI design automation. As input we are given a rectangular grid
R determined by the horizontal lines with y-coordinate values i, 0 <
i < n 4 1(called tracks or rows ) and the vertical lines with x-
coordinate values j, 0 < j < m + 1 ( called columns ). The
horizontal lines with y-coordinate values 0 and n + 1 and the
vertical lines with x-coordinate values 0 and m + 1 form the
boundary of R. Let N = {N, Ny, ..., N}, where each IV, is a subset
of grid points on the boundary of R ( excluding the corners of R ),
such that N; N N; = (¥ for all i # j. Each set NN, is called a net and
its grid points are called terminals. We assume that there are k
conducting layers Ly, L,, ..., Ly, each is a copy of the channel grid,
and Ly, is considered to be laid upon L;, 1 <1< k- 1. Contacts
between two layers ( vias ) can be introduced only at grid points.
Under the knock-knee model a k-layer wiring (which is the final
routing solution) is a three dimensional structure which can be
characterized by two mappings: wire layout and layer assignment.
A wire layout for a RRP is a mapping that associates each net N, to
a connected subgraph W, of the grid R such that W' does not share
an edge with W, for all j # i. This wire layout is called a planar
layout or a path disjoint layout or simply a layout. We use W =
{W,, Wy, .., Wp} to denote the wire layout. The layer assignment
of a planar layout is 2 mapping that associates each edge in W to a
layer in {L,, Ly, ..., Ly} in such a way that for any W; and W, i#
j, if edges (p;, Po), (py ps) in W, are assigned to L, and L,
respectively, and (p,, p,) € W, is assigned to L,, then u > max {s,
t} or u < min {s, t}. A solution for an RRP is a k-layer wiring
formed by the composite mapping of wire layout and layer
assignment. Obviously, in a wiring the segments of the same wire
W, can be connected through a via without sharing a grid point
with a segment of another wire W, in any layer. Physically
speaking, in a wiring all terminals from the same net are made
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electrically common and no two distinct nets are connected. In
practice knock-knee wirings minimize crosstalk since the area of the
grid shared by two different nets is limited to grid points. A
variation of the rectangle routing problem is the channel routing
problem (CRP) in which all terminals appear on the top and bottom
sides of the grid R and the objective is finding a k-layer wiring with
the least number of tracks.

The above characterization of the wiring provides an approach
for constructing a wiring for a CRP by finding a planar layout with
ieast number of tracks for the given CRP and then finding a layer
assignment for the layout. This approach is used by the routing
algorithm for the two-terminal net CRP ( each net is of size 2 ) by
Preparata and Lipski ( [PL] ). The first phase of their algorithm
finds a minimum-track planar layout that satisfies some special
properties. In the second phase of their algorithm, the planar
layout is transformed into a three-layer wiring by a powerful
transformation ( legal partition of the diagonal diagram induced by
the planar layout ). Their algorithm guarantees a three-layer
optimal solution. Several other routing algorithms for the CRP are
also based on this approach ( e.g., see [PS], and [SP] ).

Brady and Brown ( [BB] ) showed that any planar layout can
be transformed into a four-layer wiring with dimensions identical to
the dimensions of the planar layout. The implication of this result is
that one can reduce the rectangle routing problem to the problem of
finding a planar layout, since for any planar layout a four-layer
wiring is always possible in the layer assignment phase. One may
consider this two-phase four-layer routing approach as "standard".
For example, necessary and sufficient conditions for the existence of
a planar layout for the two-terminal net RRP are given in {F|. If
these conditions are met, a planar layout can be found by the
algorithms in [F] and [MP]. A four-layer wiring for this planar
layout can be found by applying the layer assignment algorithm
given in {BB]. It is not-known whether the layouts generated by the
algorithms in [F] and [MP] are three-layer wirable.

By using the reduction given in lemma 2.1 (refer to the next
section) Lipski ( [Li] ) gives a 19-row wire layout that is not three-
layer wirable. He also shows that the problem of deciding whether
a given planar layout is three-layer wirable is an NP-complete
problem.

A planar layout may be stretched vertically ( horizontally ) by
introducing between a pair of adjacent rows ( columns ) an empty
row ( column ) without a horizontal ( vertical ) wire. Clearly,
stretching a planar layout increases its area; however, if it is
stretched in certain places it can be wired in fewer than four layers.
Let us now investigate the trade-off between the routing area and
the number of layers needed for wiring a planar layout. Let A( W)
denote the area of planar layout W. The simple stretching
algorithm described in [MP] generates a two-layer wiring with area
not larger than 2 * A( W ), by vertically stretching it between every
pair of adjacent rows. In [GZ] it is shown that there exist planar
layouts with area A(W) which cannot be stretched and wired in an
area less than (2 - €) * A(W), for all € > 0. Therefore, the area
bound for arbitrary planar layouts is tight, if we are only allowed to




vertically or horizontally stretch the planar layout. For any given
planar layout W, one can find a four-layer wiring with area A(W)
[BB]. What is the area trade-off for three layers? In this paper we
show that any planar layout W can be stretched and three-layer
wired on an area not larger than (4/3) * A(W). Our technique
consists of vertically stretching a planar layout every three rows.
We show that each of these 3-row planar layouts is three-layer
wirable. Gonzalez and Zheng [GZ] show that there are planar
layouts with the property that any four adjacent rows or columns in
it are not three-layer wirable. Therefore, our 4/3 bound is best
possible for arbitrary layouts if we are only allowed to vertically or
horizontally stretch the planar layouts. Gonzalez and Zheng {GZ)
classify planar layouts according to their structure. For each layout
class they give a constant c such that there is a c-row planar layout
that is not three-layer wirable. In this paper we also show that
every planar layout in the simplest class of planar layouts defined in
[GZ] ( this class includes all planar layouts with diagonal diagrams
of degree one [ refer to next section | ) can be stretched and three-
layer wired on an area not larger than 1.25 * A(W). This constant
is close to the lower bound of 7/6 given in [GZ] for this class of
planar layouts.

In section II we present some preliminary definitions and results
introduced by Preparata and Lipski [PL] to study three-layer
wirings. Our stretching-wiring algorithm is given in section III. In
section IV we show that every three-row planar layout is three-layer
wirable. In section V we present an algorithm that generates three-
layer wirings for a special class of four-row planar layouts. In
section VI we discuss the implications of our results,

II. PRELIMINARIES
In this section we review some definitions and results from [PL].
Their algorithm for finding a wiring for a given planar layout W
consist of the following steps:

(i) construct the diagonal diagram D that corresponds
to the layout W;

(ii) find a legal partition P of D that partitions D into
two-colorable regions; and

(ii1) find a layer assignment W’ of W from P.

The diagonal diagram corresponding to the given layout is
constructed as follows. At each grid point in R where W has a bend,
a (VE/Z)-length diagonal ( called half diagonal ) emanating from the
grid point and internally bisecting the bend wire is introduced.
Thus, in case there is a knock-knee at the grid point, a V.é—length
diagonal ( called full diagonal ), centered at the grid point, is
formed. The resulting geometric structure from this transfotmation
is called a diagonal diagram. The core diagonal diagram of a given
layout is the diagonal diagram with the half-diagonals deleted ( see
figure 2.2 ). For the grid R, the partition grid G(R) is defined as
follows. The grid points of G(R) are the points (x + 1/2,y + 1/2),0
<x<n,0<y<m Thegrid points withx =0, x=n,y=0o0ry
= m are called boundary points and the other points are called
internal points. A vertical ( horizontal ) grid line in G(R) is the
smallest line segment that includes all the grid points with the same
y-coordinate ( x-coordinate ). The space between any two adjacent
horizontal ( vertical ) grid lines is called a row ( column ) of G(R).
Note that a row ( column ) in R is a horizontal ( vertical ) grid line
in R, but a row ( column ) in G(R) is all the space between two
adjacent horizontal ( vertical ) grid lines in G(R). The edges of
G(R) are the segments connecting each point with its immediate
neighbors, vertically, horizontally, or at 45-degree angles. It should
be noted that a full diagonal in D is an edge of G(R), the end
points of a full diagonal are grid points of G(R) and no two full
diagonals in D cross. Let D denote the core diagonal diagram of
layout W. The end points of the diagonals of D lying on
nonboundary grid points of G(R) are called vertices of D. We say
that D has degree i, 1 < i < 4, at vertex (s, t) if there are i full
diagonals with end points at (s, t). We say that D is of degreei, 1
< 1< 4, if the maximum degree of any vertex in D is i; otherwise
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the degree of D is zero. A legal partition P of D ( see figure 2.2 ) is
any collection of edges in G(R) satisfying the following conditions:

(a) Every internal point of G(R) is incident with an even
number of edges in P;
(b) The diagonals in P are exactly the diagonals in D; and
(¢) P does not contain any of the patterns shown in figure 2.1.
( dashed lines mean that the diagonal must not be
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Forbidden patterns.
figure 2.1

present ).

The following lemma shows the significance of the notion of

diagonal diagram D constructed from W and the legal partition P
with respect to D,

Lemma 2.1. ( [PL] ): If there is a legal partition P of the core
diagonal diagram D induced by the planar layout W, then there
exists a three-layer assignment for W. Furthermore, a three-layer
assignment for W can be easily constructed from P.
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figure 2.2: Examples.

We omit the description of the process for finding a layer
assignment of W from a legal partition P of D. Interested readers
should refer to [PL] for details. In figure 2.2 we give a layout W, its
corresponding core diagonal diagram D, the legal partition P of D
and the three-layer wiring for W obtained from P. In the remaining
portion of this paper we use the term diagonal diagram’to refer to a
core diagonal diagram.

1II. FINDING STRETCHING POSITIONS

As mentioned in section I, one can always find a wiring for a
given planar layout by stretching it. Stretching a planar layout
vertically is equivalent to inserting into the layout a grid line
without any horizontal wires on it. Let us now briefly describe our
three-layer wiring approach. First we divide a planar layout
horizontally into three-layer wirable sublayouts. Then we find a
three-layer wiring for each of these sublayouts and insert an empty




grid line between every pair of adjacent sublayouts. In the final
step, the vertical wires in every two adjacent sublayouts are joined
at the newly introduced grid line between them by vias whenever
necessary. Since the problem of determining whether or not a
planar layout is three-layer wirable is NP-complete [Li], it is simple
to show that the problem of finding a minimum area 3-layer wiring
of a given layout W by stretching it is NP-hard. Our problem
consists of dividing vertically a planar layout into a small number
of sublayouts such that each of these sublayouts can be wired by
some given algorithm.

In section IV we present algorithm B3ROW-ASSIGN that
constructs a three-layer wiring for any 3-row planar layout. Given
any planar layout, it can be vertically stretched every three rows.
Each of these three-row sublayout is three-layer wirable by
algorithm 3ROW-ASSIGN. Therefore for an arbitrary planar
layout W one can stretch and three-layer wire it on an area not
larger than (4/3) * A(W). In section V we present algorithm
4ROW-ASSIGN that constructs a three-layer wiring for any four-
row planar layout whose diagonal diagram is of degree 1. Similarly
if the diagonal diagram of a given planar layout W is of degree 1,
algorithm 4ROW-ASSIGN can be used to obtain a three-layer
wiring with area not larger than (5/4) * A(W).

Given a planar layout W whose diagonal diagram is of degree
greater than 1, can we find a three-layer wiring with area smaller
than (4/3) * A{W)? The answer to this question is affirmative. An
algorithm to accomplish this uses the algorithm mentioned above on
different parts of the layout. For more details see [GZ1].

IV. A LAYER ASSIGNMENT ALGORITHM
FOR THREE-ROW PLANAR LAYOUTS.

Our layer assignment algorithm for a three-row planar layout
W is based on finding a legal partition P of the diagonal diagram D.
This legal partition is obtained from a legal connection C of the
vertex diagram V induced by D. The wvertex diagram V is
constructed from D as follows: if D has odd degree at nonboundary
grid point (s, t) of G(R), we assign a vertex to point (s, t); otherwise
there is no vertex at grid point (s, t). A legal connection C of Vis a
set. of horizontal and vertical grid line segments of G(R) that
satisfies the following conditions:

(i) The end point of any line segment must either lie on the
boundary of G(R) or be incident to a vertex of V;

(ii) For every vertex v in V there is exactly one horizontal or
vertical line segment incident to v;

(iii) There are no two line segments I’ and 1" in C lying on two
adjacent vertical ( horizontal ) grid lines of G(R) such that
their projections to the y axis ( x axis ) share more than
one point;

(iv) No two orthogonal line segments in C intersect.

From the definition of legal partition and legal connection, it is
easy to prove the following lemma.

Lemma 4.1: If C is a legal connection of vertex diagram V induced
by the diagonal diagram D, then superimposing C on D yields a
legal partition of D.

m]

By this lemma, the problem of finding a legal partition P of D
is reduced to the problem of finding a legal connection C of V
induced by D. We graphically represent all vertices in V by solid
dots and all internal grid points of G(R) which are not vertices of '
by circles. There are two internal horizontal grid lines in G(R). If
we partition the vertices in V into columns according to the vertical
grid lines of G{R) where they are located, we have four different
types of columns. The legal connection C of V is constructed
column by column in a left-to-right scan of V. When a column is
being considered, we need to remember the connection of the
preceding column. Based on the configuration of this column and
the type of the current column, the connection of the current
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column is determined. The connection of the current column may
modify the connection of the immediately preceding column;
however this modification guarantees that the resulting connection
is legal. Without loss of generality we assume that the left and right
boundary of G(R) are columns with no vertices.

procedure 3-ROW-ASSIGN
(1) Construct the diagonal diagram D from W;
(2) Construct the vertex diagram V corresponding to the
diagonal diagram D;
(3) Construct a legal connection C for V as follows:
for ¢ + 1 to n do /* left and right sides of G(R) are
columns 0 and n+1, respectively */
begin
Depending on the type of column ¢ and the
connection of column ¢ - 1 make a legal
connection by using the actions given by the
finite automata depicted in figure 4.1 { which is
explained in the following paragraph ) for the
vertices in columns ¢ and ¢ - 1. Note that this
step might modify the connection of column ¢ - 1
obtained in the previous iteration.
end
(4) Construct the legal partition P of D from the legal
connection C of V obtained in step (3) and build a three-
layer wiring of W from P.
end of 3-ROW- ASSIGN

The actions in step (3) of the algorithm can be visualized by
means of a finite state automata. The transition diagram for this
automata is illustrated in figure 4.1. Each state corresponds to the
connection in the previous column. The state composed of two x’s
means that those grid points could have a vertex or not, and the
dotted lines mean that those lines are not present. Associated with
each transition in the automaton we define an input-output pair.
The first component of the pair, the input, specifies the type of the
column being considered and the second component, the output,
shows the final configuration for both the previous and the current
columns. By starting in the state corresponding to the left
boundary of G(R), it is easy to prove by induction that a legal
connection C of V is constructed. Therefore, we have the following
theorem.

Theorem 4.1 Algorithm 3-ROW-ASSIGN generates a legal
connection for any three-row planar layout in O(n) time, where n is
the number of columns in R.

Proof: For brevity the proof is omitted.

]
An example of a diagonal diagram D with vertex diagram V is

given in figure 4.2, A legal connection C obtained by our algorithm
and the legal partition P of D by superimposing C on D is also

;
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Figure 4.1




illustrated in figure 4.2. It should be noted that, as shown in [GZ],
there exists four-row planar layout instances that are mot three-
layer wirable. Hence, it is impossible to construct a four-row layer
assignment algorithm for arbitrary planar layouts.

Vertex Diagram

Di agonal Di agram
A

Legal Partition
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Vertex Partition
figure 4.2

V. A LAYER ASSIGNMENT ALGORITHM
FOR A CLASS OF FOUR-ROW PLANAR LAYOUTS.

In this section we present an algorithm to construct a legal
partition for any four-row diagonal diagram of degree 1. There are
three internal grid lines in G(R). Assign the y-coordinate one to the
upper internal grid line, three to the middle internal grid line, and
two to the lower internal grid line ( this ordering facilitates the
proof of correctness). Assign the x-coordinate zero to the left
boundary of G(R), one to the vertical grid line ( column }
immediate to the right of the left boundary of G(R), and so on.
Each vertex in the diagonal diagram of degree one will be
represented by its location on the grid. Sort the vertices of D into
an ordered list v, = (z;, 9,), vg = (7g, ¥g) - ¥, = (2, 9,) such
that @; < w4, and if &, = 24, ¥ > Y- The vertices will be
referred as top, middle or bottom, depending on which internal grid
line in G(R) they are located. Since the diagonal diagrams are of
degree 1, any legal partition is a collection of vertex disjoint
alternating paths and cycles composed of lines and diagonals. In the
final legal partition every vertex has exactly one vertical or
horizontal partitioning line incident to it. After adding a set of
partitioning line segments to a diagonal diagram we say that it
forms a partial legal partition if there are no forbidden patterns and
every vertex has either one diagonal, or a diagonal and a vertical or
horizontal line segment incident to it. Unlike procedure
3ROW_ASSIGN, connections cannot be made by only concentrating
on the structure of vertex diagram and totally ignoring the
diagonals. When the number of rows in the layout is greater than
three, it seems unlikely that one can construct a legal partition in a
left-to-right column by column fashion.

QOur algorithm, 4ROW-ASSIGN, consists of three procedures:
VERTICAL, MODIFY and HORIZONTAL. These procedures are
invoked as follows. At each step we have a partial partition and we
find the smallest positive integer ¢ such that vertex v, not connected
by a partioning line segment. Then our procedures construct a
partial partition such that vertices v, vy, ..., v, and possibly other
vertices have a partitioning line segment incident to it. The first
step invokes procedure VERTICAL. If procedure VERTICAL fails
to make a vertical connection for wv,, procedure MODIFY will
perform the connection by modifying some previously made
connections as well as performing all connections for the vertices in
the current column z,. Whenever procedure MODIFY introduces a
horizontal line segment to the right of the current column, =,
procedure HORIZONTAL completes the connections of the vertices
above and below this horizontal line segment. At this point we
select another vertex v, with the above properties. This process
continues until all vertices are connected by exactly one partitioning
line and the entire configuration is a legal partition. For brevity we
will not discuss these procedures in more detail. Interested readers
can find these procedures in [GZ1].
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Theorem 5.1: Algorithm 4ROW-ASSIGN generates a three-layer
assignment for any four-row planar layout in O(n) time, where n is
the number of columns in R.

Proof: For brevity the proof is omitted.

VI. DISCUSSION.

As we mentioned in section I, the idea of stretching a planar
layout to make it wirable in less than four layers is not new. In
[MP] it is shown that by inserting an empty track between every
two adjacent tracks of R any planar layout is two-layer wirable. In
fact, this idea can be traced back to the paper |[RBM] where the
channel routing problem is considered. In contrast to the previous
methods, the approach in {GZ1] tries to reduce the additional wiring
area as much as possible. To achieve this, they give a stretching
scheme that given certain planar layout structures and algorithms,
it explores the best possible stretchings that allow a three-layer
wiring. This scheme has the advantage that if a planar layout has
only a few sublayouts with complex structures, it can be wired by
taking this information into account. To take advantage of this

approach, it is necessary to classify layouts according to their
structure.

Gonzalez and Zheng [GZ] propose a classification of planar
layouts. They classify planar layouts into four classes depending on
the properties of their diagonal diagram. It turns out that these
classes form an interesting hierarchy. They show that these layout
classes have different wirability properties. For example, they show
that there exist four-row planar layouts in the general layout class
and seven-row planar layouts in the simplest layout class that are
not three-layer wirable. By using their wirability results they give
lower bounds for best possible approximation bounds for our
stretching strategy.
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