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I. Introduction 

Let R be a rectangle uniformly partitioned by w-1 vertical line 
segments and h -1 horizontal line segments. The set of lines (which include 
the rectangle boundary sides) is called the grid and the lines are called grid 
lines. The intersection of two grid lines is referred to as a grid point. A 
subset of grid points on the boundary of R without including the comers of 
R are referred to as terminal points. A terminal t is denoted by a pair (x ( I ) ,  
y ( t ) )  of the x and y coordinate values of I .  The vertical (horizontal) grid 
lines are called columns (rows). The columns (rows) are labeled from left to 
right (bottom to top) with the integers 0 to w (0 to h). The set of terminal 
points is partitioned into m sets, N I ,  Nz,  .... N,. Each set Ni is called a net, 
and the set of nets is denoted by N .  The problem of routing though a 
rectangle, which we call the RRP problem (which is also referred to as the 
witch-box routing problem), is denoted by I = (R , N ) ,  and consists of 
finding a layout under the knock-knee wiring model for the set N of nets 
inside R .  A layout under the knock-knee model for the set N of m nets 
consists of m edge-disjoint connected subgraphs W1, Wz. ..., W,,, ofR such 
that each Wi connects all terminals in Ni . It is well known that any knock- 
knee layout is wirable in four layers by using the algorithm in [ 11. An RRP 
pmblem in which every net has at most k terminals is called an RRP of 
degree k or a k-terminal-net RRP problem. We define a vertical cut of R as 
the region between a pair of adjacent columns (c, c+ l ) .  Note that the two 
columns are not included in the cut. The capacity of a vertical C U I  is h+l ,  
the total number of rows in R .  The density of a vertical cut (c. c+l) ,  
denoted by d!'(N), is the number of nets with at least one terminal to the left 
of the cut and at least one terminal to the right of the cut. A vertical cut (c , 
c + l )  is not saturated if its capacity exceeds its density. These notions are 
similarly defined for horizontal cuts. We define dV(N) = max {dJ (N)  I 0 I 
c < w )  and d h ( N )  = max {d,h(N) IO 4 c < h ]  as the vertical density and 
horizontal densify of I ,  respectively. The two-terminal-net RRP has been 
extensively studied. The fundamental theorem for routability of a two- 
terminal-net RRP was established by Frank ([2]), and Mehlhom and 
Repanta U ] ) .  

Theorem 1.1: A two-terminal-net RRP is routable iff the revised row and 
column criteria hold ([2]). Furthermore, if these conditions are satisfied a 
layout can be constructed in O(n  log n )  time, where n is the number of 
terminals [5]. 

The concept of revised row and column criteria is required in 
theorem 1.1. However, since this concept is not relevant to our discussion 
we do not elaborate on i t  Interested readers can find additional details in 
121 and [51. The following corollary of theorem 1.1 allows us to simplify 
the presentation of OUT results. 

Corollary 1.1: For a two-terminal-net RRP , I = (R , N ) ,  if every vertical 
cut and horizontal cut of R is not saturated, then I has a layout in R [2]. 
Furthermore, such a layout can be generated in 0 (n log n )  time, where n is 
the number of nets [5]. 

The problem of determining whether or not an RRP instance of 
arbitrary degree is routable is an NP-complete problem [9], and thus it is 
unlikely that an efficient algorithm for its solution exists. However, any 
RRP problem instance is routable if enough rows and columns are 
introduced. In [5], an algorithm for routing any instance of the RRP 
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problem by introducing additional rows and columns is presented. This 
algorithm is based on theorem 1.1. For any rectangle R we use A ( R )  to 
represent the area of R . We say that rectangle R' is a stretched version of 
rectangle R if R' is obtained from R by adding zero or more rows and 
columns. We say that OPT is an optimul area layout for I = (R , N )  if R , 
the smallest rectangle that includes OPT, is a stretched version of rectangle 
R , and A (R ) I A (R') for any rectangle R ' that is a stretched version of R 
and (R', N )  is a rourable RRP problem instance. Note that our delinition of 
optimality is with respect to all layouts with a number of rows and columns 
that is at least as large as the number of rows and columns of R ,  
respectively. Let R" be the rectangle obtained from R by adding d"(N) -  
(h+l) (dh(N)-(w+l)) columns (rows) between two adjacent columns 
(rows) if d'(N) > h + l  ( d h ( N )  > w+l  ). Clearly, A ( R " )  is a lower bound 
for the area of an optimal layout for R . Hereafter, we assume that for any 
givenRRP, I = ( R ,  N ) ,  d'(N) < h+l  anddk(N) < w+ 1; and we u s e A ( R )  
as a lower bound for A(R' ) ,  where R' is the smallest rectangle enclosing 
OPT. For a rectangle R with height h and width w ,  the aspect ratio o f R ,  
denoted as r ( R ) ,  is defined as max(h,w)/min(h,w]. We assume without 
loss of generality that w I h .  

In [5] it is shown that for any RRP problem I = (R , N )  a layout can 
be constructed inside R f  , a stretched version of rectangle R , such that 
asymptotically A ( R f ) / A ( R )  I 4. The idea behind this algorithm is to 
stretch R into R f  and introduce a set of wires so that I = ( R ,  N )  is 
transformed into a routable two-terminal-net RRP problem instance I' = 
(R', N'). Since I' is routable, its layout can be constructed by the algorithm 
for the two-terminal-net RRP given in [5]. The area bound of four for this 
transformation method results from the indiscriminating rule of introducing 
new grid lines. In this paper, we present a set of transformations w e r e n t  
from the ones given in [5] that provide smaller approximation bounds for 
the unrestricted RRP and the three-terminal-net RRP problems. In section 
11, we show that if every net in a routable RRP contains no more than three 
terminals, then a layout can be constructed in a rectangle R f  such that 
asymptotically A ( R f ) / A ( R )  < 24/13. The three-terminal-net RRP is very 
important because in practice nets have degrees are bounded by a small 
constant [8]. For the unrestricted RRP problem, we present in section III an 
algorithm that generates a layout in a rectangle R f  such that asymptotically 
A ( R f ) / A  ( R )  < 3.5. Due to the limitation of the space, we omit all proofs of 
our approximation bounds. It is imporrant to point out the difference 
between theorem 1.1 and corollary 1.1. Corollary 1.1 guarantees a layout 
solution for two-terminal-net RRP instances I = (R , N )  such that d'(N) < 
h+l  and dh(N) < w+l ,  whereas theorem 1.1 guarantees a layout for some 
two-terminal-net RRP instances with terminals located at comers of R , and 
even when d ' (N)  = h+l  and/or d h ( N )  = w+l.  Our algorithms can be 
easily modified when we choose to use theorem 1.1 by introducing a very 
small constant number of additional grid lines. 

II. Three-Terminal-Net RRP Approximation Algorithm 

In this section we present an approximation algorithm for the three- 
terminal-net RRP problem. Given a three-terminal-net RRP problem I = 
(R ,N), we define a total ordering on terminal points as follows: we say that 
terminals I' < I" iff x(r ' )  < x ( t " ) ,  or x(t ' )  = x ( t " )  and y(t ' )  < y( t " ) .  We 
define a net N, with p terminals as a sequence ( I , , ~ ,  I , ~ ,  ..., I , * )  such that t, 
< I, J + l .  I I j < p .  With respect to this ordering we say that is the middle 
t e m h d  of the three-terminal net N,. Note that with respect to the y 
ordering another terminal from net N, might be the middle terminal. When 
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we refer to the middle terminal we mean with respect to x .  Let N 3  denote 
the set of three-terminal nets in N. The set N 3  is the same as set N in the 
problem instance given in figure 2.1. We partition N 3  into two subsets TB = 
(Ni  I Ni E N 3  and at least two of its terminals are located on the horizontal 
boundariesoftherectangleR ) andLR = N 3 - T B .  Letib =ITBlandlr = 

I .  Assume that tb and Ir are even numbers. When fb  (Ir) is odd, an 
additional column (row) is required. For the problem instance given in 
Egure2.1,TB = [ N ~ , N ~ , N 5 , N 7 ) ,  LR = { N 3 , N 4 . N 6 , N 8 ) , t b  =4andIr  = 
4. Our algorithm, ROUTE3, is given below. 

Algorithm ROUTE3 
(1) Let I,, I , ,  .... I, be such that the middle terminals of the nets in TB ap- 

(2) Insen a row between rows h -1 and h . 
(3) Let net NLa-, and NlS form a pair pi for i = 1,2 , ..., f b n .  
(4) Transform each pair pi of nets into two-terminal nets by following the 

rules given in Appendix I. 
(5 )  Apply steps (1)-(4) to the nets in LR after rotating the rectangle 90 de- 

w s .  
(6) Add enough rows and columns so that the resulting two-terminal net 

problem If = (Rf  , Nf ) is routable after deleting the row introduced by 
step (2) and the column introduced by step (5). 

(7) Introduce the wire segment generated by the rules given in Appendix I 
(case 3); project all terminal points one grid unit inside rectangle R f  ; 
and let I' = (R',") be the resulting two-terminal-net routable RRP 
problem. 

(8) Apply the routing algorithm given in 151 to the two-terminal-net rout- 
ableRRP problem I' = (R',"). 

(9) Use the layout generated by the previous steps to construct a layout 
for" insideRf. 

pear in sorted order, i.e., f,,> < flZ2 < ... c fr. 

end of ROUTE3 
1 5 8 7 5 4  

6 

2 6 1 3 7 2  

Figure 2.1 

I S  8 7  5 4  

3 8 
6 5 

2 4 
6 8 
7 I 

4 3 

2 6  1 3  1 2  

Figure 2.4 

I '  5 8' 1' 4' 

2 6- 1 -  3' I 

Figure 2.7 

3" 
6 
d' 
2' 
6 
1- 
6' 
4 

l. s5"4'. 

8' 
5' 
8' 
4' 
8' 
1" 
3' 
3" 

2' 6 2- 1' 3' 1 7 -  2' 3' 6' 2" 1' 3' 1' 7' 2' 

Figure 2.2 Figure 2.3 
1 5 8 7 5 4  

fJ 4 

2 6 1 i i ?  
Figure 2.5 Figure 2.6 

1 5 8 1 5 4  

3' 8' 3 8 
6' 5 6  5 
4' 8' 
2 4' 2 4 
6- 8' 6 8 
6' 7" 
1" 1' 7 1 
1' 3' 

4" 3' 4 3 

2 6 1 3 1 2  

Figure 2.8 Figure 2.9 

Algorithm ROUTE3 transforms the problem instance given in figure 
2.1 into the one given in figure 2.2. Ihe pairs formed by step (3) are p1 = 
(N2. NI) and p z  = (N7. N5). In step (5) the pairs formed by the algorithm 
are. p I = (N8, N4) and pz = (Ns, N3) .  Since the rules given in appendix I do 
not introduce in this case Exed wire segments, our figures do not include the 

additional row and column introduced by steps (2) and (5). Note that no 
additional grid lines are introduced in step (6). Figure 2.3 shows a layout 
for I' . The layout was not constructed by the algorithm given in [5 ] .  The 
reason is that for small problem instances a simple Ad-hoc layout can be 
easily constructed. All of our figures are drawn this way. Figure 2.4 shows 
the final layout. For ROUTE 3, we have 

Theorem 2.1: For any three-terminal-net RRP problem I = (R , N )  such 
that d"(N) < h + 1 and dh(N) < w + 1, algorithm ROUTE3 constructs a 
layout in R f  such that asymptotically A ( R f ) / A ( R )  < 2. Furthermore, 
algorithm ROUTE3 takes O(n log n )  time, where n is the number of 
terminals. 

Based on algorithm ROUTE3, we can obtain a new algorithm 
ROUTEj-ALT which guarantees a smaller area bound. 

Algorithm ROUTE3-ALT 
(1) If h I 13w/8, then apply algorithm ROUTE 3 and stop; 
(2) Let RI be acopy of R and letNI b e N .  Let a, (ab) be the number of 

nets with at least two terminals located on the top (bottom) side of R . 
We inaoduce a, (ab) rows between the topmost (bottommost) row and 
the top (bottom) side of R I. The topmost (bottommost) rows are used 
to route the nets with two or more terminals located on the top (bottom) 
side of RI. The layout for these nets is constructed by the algorithm 
given in [4]. For each net with exactly one terminal on the top (bot- 
tom) side of RI,  we project this terminal to the topmost (bottommost) 
empty row and for each net with exactly two terminals on the top (bot- 
tom) side of RI,  we project one of these two terminals to the topmost 
(bottommost) empty row. 

(3) Let R be the empty portion (without wires) of R '. At this point there 
are two- and three-terminal nets. All the middle terminals (with 
respect to y )  of the three-terminal nets are located on the left or right 
side of R2.  This routing problem is referred to as I' = (R2. N3. The 
remaining three-terminal nets are split into two-terminal nets and rows 
are introduced using the transformation rules given in step (5) of algo- 
rithm ROUTE3. If the rules in appendix I introduce fixed wire seg- 
ments, add a column between columns 0 and 1. When this additional 
column is introduced, project each terminal point located on the left 
side of the rectangle one unit towards the inside of the rectangle. Add 
enough columns so that the resulting problem, which we call l 3  = (R3,  
N ~ )  is routable. 

(4) Let I' = (R', N') be the resulting problem; 
(5) Construct a layout for the two-terminal-net RRP problem I' using the 

algorithm given in [51; 
(6) Construct from the layout for N' in R' and the partial layouts con- 

structed in previous steps the final layout. Let Rf be the smallest rec- 
tangle enclosing the final layout. 

end of ROUTE3-ALT 

Since the problem instance given in figure 2.1 does not satisfy the 
condition h > 13w/8, let us apply steps (2)-(6) to the problem instance given 
in figure 2.1. Step (2) introduces the wire segments shown in figure 2.5 and 
the new problem instance given in figure 2.6. The resulting problem after 
step (3) of algorithm ROUTE3-ALT is given in figure 2.7 below. Figure 2.8 
shows a layout for problem I' constructed by an Ad-hoc method rather than 
by the algorithm given in [5] for step (4) in algorithm ROUTE3-MT. 
Figure 2.9 shows the final layout. For ROUTE3-ALT, we have 

Theorem 2.2: For any three-terminal-net RRP problem I = (R , N )  such 
that d ' (N)  < h+l and d * ( N )  < w+l, algorithm ROUTE3-ALT constructs a 
layout in R f  such that asymptotically A ( R f ) / A ( R )  < 24/13 < 1.85 in O(n 
log n )  time, where n is the number of terminals. 

III. Approximations for the RRP Problem &Arbitrary Degree 

In this section we present an approximation algorithm for the 
unrestricted RRP problem. We call net Ni a k-side net if its terminals are 
located on exactly k sides of R .  We refer to the leftmost (rightmost) 
terminal of net Ni located on the top side R as the Ieji representative (right 
representalive) of N, on the top side of R .  Similarly, we define left 
representative and right representative for the terminals located on the 
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bottom side of R .  A net with at least two terminals located on the top 
(bottom) side of R will be referred to as a t (b)  net. Let dl ( d b )  be the 
vertical density of all t (b) nets when considering only their terminals 
located on the top (bottom) side of R . We apply two transformations that 
introduce new rows and a set of wires on these new rows to transform the 
given multiterminal-net RRP problem into a routable two-terminal-net RRP 
problem. Let us consider the first transformation. Let R o  be a copy of R 
and let each terminal point in R' be in exactly the same position as in R . 
Between rows h (0) and h-1 (1) in R' add d, (db) rows. The bottommost 
(topmost) of these rows will be called the top (bottom)free row. In case dt 
(db) is zero the top (bottom) boundary is called the top (bottom) free row. 

Algorithm FIRST-TRAh'S 
Let R' be a copy of R and let each terminal point in R' be in exactly the 

same position in R . Introduce dt (db)  rows between row h (0) and row 
h-1 (1)inR'; 

( b )  
nets are connected by wires which are routed in the topmost (bottom- 
most) d, (db) rows in Ro. This partial layout is constructed by the algo- 
rithm given in [4]. The rectangle, which we call R', is defined by the 
left and right boundary together with the top and bottom free rows of 
Ro. We shall refer to these rows as row h and row 0 of R . 

For each net Ni E N with at least one terminal located on the top (bot- 
tom) side of R o  perform the following projection operation: 

(i) If the net does not have terminals located on the left and right 
side of R o  and Ni is a 2-side ntt, project the left representative of 
Ni to the top (bottom) side of R . 

(U) If the topmost (bottommost) terminal located on the left or right 
side of R' is located on the left side of Ro, project the left 
representative of Ni to the top (bottom) side of R' and skip (iii). 

(iii) If the topmost (bottommost) terminal located on the left or right 
side of R' is located on the right side of Ro,,project the right 
representative of Ni to the top (bottom) side of R , 

After these projection operations, we transform each net Ni into another 
net N/  which is identical to the original one if Ni does not have two or 
more terminals on the top or bottom sides of Ro. On the other hand, if 
Ni has at least two terminals located on the top or bottom sides of R', 
then Ni' is Ni without all the terminal points located on the top and bot- 
tom side of R ' except the projected one. 
Let N'be the set of all netsNi'. 

The terminals located on the top (bottom) side of R' from all the 

end FIRST-TRANS 
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Figure 3.1 shows the partial layout constructed by the procedure, and 
figure 3.2 shows the resulting subproblem I' = (R', N'). In the second 
wansformation we convg each net Ni' into a set of two-terminal nets. The 
transformation procedure SECOND-TRANS is given below. 

procedure SECOND-TRANS 
Let R ' be R ' with all the terminal pints from the nets Ni'; 
Add a column between columns 0 (w -1) and 1 (w ); 
for j = 1 toh-1 do 

if there is a terminal at any of the boundary grid points in row j of R' 
then begin 

insert a new row between row j and row j-1 of R'; 
if left boundary point in row j of R ' is a terminal t from net N;' 
then make a copy of I at the left boundary point of the newly i n i n  
duced row; 
if right boundary point in row j of R' is a terminal t from net Ni' 
then make a copy of r at the left boundary point of the newly in- 
duced row; 

end 
endfor 
Add U wires to connect adjacent terminal l?om the same net and project 
each terminal one unit to the inside of the rectangle; 
Let R" be the rectangle after deleting the left and right boundary of R' 
and let R '' contain all the teminal points in R '; 
for each Ni' with terminals on the left or right side of R' do 

let U be a terminal of N; on the left or right side of R ' with the smallest 
y coordinate value; 
if Ni' does not have a terminal on the bottom side of R ' 
then assign label i' to U and j t- 1; 
else begin 

assign label i' to the copy of U and the terminal in N;' located on the 
bottom side of R'; 
if there is another terminal v of Ni' such that y ( v )  Z y (U) 
then assign label iz to U else j t 2; 

end 
while there is an unlabeled terminal of Ni' located on the left or right 
side of R " do 

j t j  +l; 
let U be the unlabeled terminal of Ni' with the smallest y-coordinate 
value; 
assign label ii and iJ-' to U and the copy of U ,  respectively; 

endwhile 
if N;' has a termin? located on the top side of R' 
then assign label iJ to the terminal of Ni' located on the top side of R '; 
else j t j - 1; 

endfor 
end of procedure SECOND-TRANS 

Figure 3.3 and 3.4 show the resulting subproblem aftex applying 
procedure SECOND-TRANS to the problem instance. I' shown in figure 3.2. 
Each net N;' may be split into several two-terminal nets by procedure 
SECOND-TRANS. The k" of such nets is defined by the label i'. We use 
R" to denote the rectangle extended from R' by SECOND-TRANS, and use 
N" to denote all two-terminal nets defined on the boundary of R". Our 
algorithm for the unrestricted RRP problem is given below. 

Algorithm ROUT-MULTINET 
Apply p e d u r e  FIRST-TRANS to obtain a routing instance defined in R' 
for net set N' ; 
Apply procedure SECOND-TRANS to obtain a routing instance defined in 
R" fornetset"'; 
Add enough rows and columns so that I" is a routable two-terminal-net 
RRP problem instance; 
Use the algorithm in [5] to router ;  
Construct a layout for Nf in R f  from the layout in N" in R" and the 
partial layouts constructed in previous steps. 

end ROUT-MULTINET 

Theorem 3.1: For any multiterminal RRP defined in a rectangle R such that 
h 2 w and dh < w +1, a l g o r i h  ROUT-MULTINET constructs a layout in a 
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rectangle Rf extended from R such that asymptotically A ( R f ) / A ( R )  < 
2+(3/2)/r(R) S 3.5, where r ( R )  is the aspect ratio of R .  Furthermore, such 
a layout can be constructed in 0 (n log n )  time. 

Figure 3.5 shows the layout constructed for (R" ,  N") by an Ad-hoc 
method rather than by the algorithm given in [5]. Figure 3.6 shows the final 
layout. Careful readers may notice that even if we are given an RRP 
instance I = (R, N )  which is not routable, i.e. d " ( N )  > h + 1, algorithm 
ROIIT_MULTINET can still guarantee a layout solution in R f  such that 
asymptotically A (Rf )/A ( R )  e 2 + (3/2)/r (R). 

IV. Concluding Remarks 

Our area bounds are not small. This is mainly because the 
combinatorial properties of RRP are still not well understood. This is 
reflected in the lower bound for the layout area we used and the approach of 
splitting multiterminal nets into two-terminal nets that we adopted. One 
way to improve our results is to develop better lower bounds for the area of 
an optimal solution. This does not seem to be a simple problem. One of the 
main problems with the layouts for the unstricted RRP problem generated 
by our algorithms and the algorithm given in 151 is that the wires connecting 
the nets may be long. Our algorithm will suffer from this problem even if 
we use Frank's ([2]) algorithm instead of the one in [5]. At this time there is 
no way around this problem. The problem of minimizing wire length and 
area Seems very interesting and deserves careful study. 
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APPENDIX I: TRANSFORMATION RULES. 

In this appendix we present the rules for splitting a pair pi of three 
terminal nets into four two-terminal nets. The two three-terminal nets will 
be referred to as net A and net B .  Assume that the middle terminals (With 
respect to x )  of A and B are located on the top or bottom side of rectangle 
R . The terminals in net A (B) are labeled and ordered as follows: ab < a,,, 
< a, (bb < b,,, < b.). The ordering is with respect to their x coordinate 
values (see section 11). Exactly two new terminal points, which are 
in@cated by a dashed line in our figures, are introduced to split nets A and 
E .  These two terminal points are labeled a and b .  Each of the two two- 
terminal nets generated from net A ( E ) is defined by two terminals in 
(abpmp,p) ( (bb,bm,b,,b] ) pined by a thick line. The number of 
columns after the transformation increases by one. Without loss of 

generality, we assume that a,,, S b i .  The connectivity of two new two- 
terminal nets representing an original three-terminal net is enforced as 
follows. The terminals of these two nets may be connected by a fixed wire, 
which is represented by a zig-zag solid line in the figure. If the zig-zag line 
is not present, the two two-terminal nets generated from a three-terminal net 
have the property that wires connecting the two new nets in any layout 
always intersect. At the point they intersect the wires will be made 
electrically common. There are three cases that need to be considered. 

Case I : a,,, and b, are located on the same side of R . 
Assume without loss of generality that a,,, and b,,, are located on the top side 
of R .  If x(b,,,) S x(u,)  then let i = 1, otherwise let i = 3; and if x(bm) S 
* ( b e )  then let j = 5, otherwise let j = 7. Our procedure applies the 
transformation given in Ti to net A and the one in Ti to net E .  If the 
horizontal density of the four new nets is 4, then the transformation applied 
to net A is Ti+1 and the one for B is Ti+,. 

Case 2:  a,,, and b,,, are located on opposite sides of R and x(a,,,) # x(b,,,). 
The transformation for this case is omitted since it is similar to the one in 
case 1. 

Case 3: a,,, and b,,, are located on opposite sides of R and x(a,) = x(bm). 
Depending on the locations of terminals of A and B, one of the 
transformations T ,  and T is applied. First, T ,  is applied. If the horizontal 
density of these four new nets is 4, then T ,  is replaced by T,o. Note that a 
fixed wire (zip-zag line) is i n d u c e d  in Tl,,. 
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