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The problem of clustering a set of n points into k groups under various
objective functions is studied. It is shown that under some objective functions
clustering problems are NP-hard even when the points to be grouped are restricted
to lie in the two dimensional euclidean space. Our results can be extended to
show that their corresponding approximation problems are also NP-hard. It is
shown that some restricted graph partition problems are also NP-hard. Keywords:
NP-complete problems, approximation algorithms, clustering problems.

I. INTRODUCTION

The problem of clustering a set of objects arises in many disciplines. Because
of the wide range of applications, there are many variations of this problem. The
main difference between these clustering problems is in the objective function.
Research in different fields of study during the past thirty years has produced a
long list of clustering algorithms. However, very little is known about the merits
of these algorithms. Even simple questions regarding to the computational complexity
of most clustering problems have not yet been answered. In this paper, we study
the computational complexity of typical clustering problems.

In what follows, we define some of the typical clustering problems we .are inter-
ested in studying. Let G=(V,E,W) be a weighted undirected graph with vertex set V,
edge set E and a disimilarity or weight function W:E + R + (the set of non-negative

0
reals). A k-split of the set of vertices V 1is a set of nonempty vertex subsets

Bl,BZ,...,Bk such that uBi=V. The sets Bi in a k-split are called clusters. The

clusters are said to be nonoverlapping when ZIBi| = |V|. In what follows, we shall

concentrate only on nonoverlapping clustering problems. An objective function, f:

Bl,Bz,...,Bk+Rg, is defined for each k-split. For k-split Bl’BZ""’Bk’ we define
SQ as the sum of the weights assigned to the edges adjacent to any pair of nodes in
set Bl,i.e., Sy = T owdi,ih. M, denotes the maximum weight assigned to an

i,jeBE
{i,j}eE
edge whose endpoints are vertices in cluster Bl’ i.e., MZ = max {W({1,3})}. Some
i,5¢B,
{1,3}€E

typical objective functions are shown in Table 1.
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Table 1. Objective Functions

A clustering problem has one of the following forms:
(P1) Given a graph G, an objective function f and an integer k, find a k-
split with least objective function value, 1.e., find a k-split (Bi,B;,...,
* % Bk %) = a k-
Bf) such that £(BY,B},...,Bf) = min {f(Bl,BZ,...,Bk)I(Bl,B B)isak
split for G}. :

grtees

(P2) Given a graph G, an objective function f and a real w, find for the
least value of k a k-split with objective function value less than or equal
to w, i.e., find a k-split (Bl*’B*""’Bi) such that f(Bi,B*,...,Bﬁ) S w and
f(Bl’BZ""’Bk') > w for all k'-splits with k' < k.,

(P3) Given a graph G, an objective function f, an integer k' and a real w.
Is there a k-split (Bl’BZ""’Bk) with objective function value < w for some
k s k"?

It can be easily shown that the decision problem P3 is computationally not harder
than Pl and P2, i.e., any algorithm which solves P1 or P2 can be used to solve P3.
This relation implies that if problem P3 is NP-complete then both Pl and P2 are NP-
hard. In what follows when we refer to optimization clustering problems, it is
implied that we refer to problems of the form Pl. Whenever we wish to consider
problems in the form P2, we shall state it explicitly.

An m-dimensional clustering problem is one in which the vertices of G are

points in the m-dimensional euclidean space, the set of edges is complete and the

weight of each edge is given by the euclidean distance between the two points it
‘ 2

joins, i.e., W(xi,xj) = Hxi - lel where |[xk|] = zZ ((xk)l) .
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We shall refer to a clustering problem as an a - By problem, where o ¢ {2,3,.__,

k} is the number of clusters; 8 means that it is either a f-dimensional clustering

problem (B € {1,2,...,m}) or that the problem has been defined over an arbitrarily
weighted graph (B=g); and Y ¢ {rz,s1/|+|Z,MZ,IM,MM,D} is the objective function (see
Table 1). For example, k-2LL indicates that the number of clusters k 1s an input

to the problems; it is a 2-dimensional euclidean problems; and the objective functien
is II (see Table 1). Note that any algorithm which solves the k-2LL problem will
also solve the 2-2IL problem, but the converse is not true. In the 2-2II problem,
the set of vertices in G 1s always partitioned into two clusters whereas in the
k-2L% problem the set of vertices in G will be partitioned into k clusters,
where k could be any integer greater than 1.

Let us now define the k-maxcut problem. This problem is gimilar to the k-gIl
problem, but instead of finding a nonoverlapping k~split minimizing the sum of the
weights of the edges inside a cluster, the objective is to find a nonoverlapping k-
split maximizing the sum of the weights of the edges between clusters [SG,K and GJS].

A reader not familiar with NP-complete problems and approximate solutions is
referred to [HS,GJ2 and K]. Our notation is that of [HS].

It is simple to prove that for any k, the k-gII problem is computationally iden-
tical to the k-maxcut problem, i.e., any algorithm solving one of these problems will
also solve the other problem. The k-maxcut problem for k = 2 was shown to be NP-
hard in [K]; in [SG] it was shown to be NP-hard for k > 2; and in [GJS] it was shown
to be NP-hard for k = 2 even when the weight of every edge is zero or one. Hence, E
k-gLL is NP-hard. Sahni and Gonzalez [SG] showed that there is an efficient (1/k)-
approximation algorithm for the k-maxcut problem, whereas the k-gII €-approximation

problem is NP-hard. Using the same approach as the one in [SG], ome can show that

k-gIM, k-gMZ, k-gMM, k—ng/"IZ and their corresponding €-approximation problems are
also NP-hard.

. Fisher [F] showed that the k-1D problem can be solved in polynomial time. This

o g e RS

was shown by first proving that in every problem instance there exists an optimal
solution with the property that the convex hulls of every pair of distinct clusters
are disjoint. This reduces the problem to one that can be solved by dynamic program-
ming procedures. Bodin [Bd] extended this approach to solve other clustering problems. v
A similar approach was used by Brucker [Br] to show that the k-1ZM, k-1MM and k-1I1/ '
'IZ can be solved in polynomial time. The k-1IM problem can also be solved by re- '

{ ducing it to the problem of finding the largest k gaps [Br], which can be solved

| in O(n log n) time. When k is some fixed constant, finding the largest k gaps

‘ can be solved in linear time [G1l]. Bock [Bk] showed that the 2-le/l-|Z problem can
be solved in polynomial time. This was shown by first proving that every instance ’
of the k-mEl/ -|Z problem has an optimal solution with the property that the convex
hulls of every pair of distinct clusters are disjoint. The 2-gMM problem can be

solved efficiently by reducing the problem to that of testing whether a graph 1s

b
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pipartite or not [Br]. Gonzalez [G2] showed that the k~2(*) problem can be solved
efficiently when k 1is some fixed constant and (*) represents objective functions
with some given properties.

For general graphs, most clustering problems are NP-hard. Om the other hand,
1-dimensional clustering problem can be solved efficiently. The complexity of most
7-dimensional clustering problems is not known. In this paper, we study the compu-
tational complexity of exact and approximate solutions to these problems.

For optimization problems of the form P2, one can show that the k-gil €-approx-
imation problem is computationally identical to the k-maxcut €-approximation problem.
For k-gIl, k-maxcut, k-gZl/ 'IZ, k-gML, k-gIM and k-gMM the l-approximation problem
is NP-hard. The proof follows the same approach as the one in [SG] but uses the

result in [GJ1], which states that the l-approximation problem for graph coloratiom

is NP-hard.

Algorithms for other clustering problems appear in [aM], [JL], (S1], [s2], [FV],
(pH], [M], [Sh] and [R].

In section II, we show that the k-2MM problem is NP-hard. The same reduction
is then used in section III to show that the following problems are also NP-hard:
K-2ML, k-2MM 1.36-approximation and k-2MIL 1.l6-approximation.

1I. The Complexity of the k-2MM Decision Problem

In this section it is shown that the k~2MM decision problem is NP-complete. This
result is obtained by reducing a restricted version of the exact cover by three sets
problem to it.

The exact cover by three sets (XC3) problem was shown to be NP-complete in [GJ3]
and is defined as follows:

Exact Cover by Three Sets(XC3): Given a finite set of elements X={xl,x2,...

. X, } and a collection of 3-element subsets of X, 'C=((xi Ky K )|1 <2< m},
e oy R T T

3q
in which no element in X appears in more than three subsets. The problem
consists of determining whether C has an exact cover for X, i.e., a
subcollection C' S; C such that every element in X occurs in exactly one
member of c'.
The restricted version of this problem, to be used in our reduction, is denoted RXC3.
This problem is exactly like the XC3 problem, except that each element in X appears
in exactly three subsets of C. RXC3 is shown to be NP-complete in [G2].
In order to simplify the presentation of our result, we begin by showing that
the k~gMM decision problem is NP-complete (lemma 1). The construction used in this
lemma is then modified to show thet the k-gMM decision problem is NP-complete even
when the input graph, after deleting all edges with weight different than one, is
planar and no node is of degree greater than six (lemma 2). We then show how this
result can be used to prove that the k-2MM decision problem is NP-complete (theorem
1). The reduction RXC3 a k-gMM is identical to the onme in [GJ2], which was used to

show that partition of a graph into triangles is NP-complete.
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Lemma 1: The decision problem k-gMM is NP-complete.

Proof: It is simple to show that the decision problem k-gMM can be solved in nondetey.
ministic polynomial time. We now show that RXC3 a k-gMM.

Given an instance, (X,C), of the restricted exact cover by 3-sets problem, we
construct an instance of the k-gMM decision problem which we denote KG. KG=(G=(V,E,
W),k,d) is defined as follows:

Vertex set: There is a vertex (Vi) for each element of set X and nine
vertices, (az,l’bl,l’cl,l""’31,3’b1,3’cl,3)’ are introduced for each
3-element subset of X in C.

Edge set: The set of edges is complete,i.e., for every pair of vetices i#j
edge {1i,j} 1is in E.

Weights: For each 3-element subset of X in C, eighteen edges will get a

weight of one. The edges introduced for (x » X »X, ) C are
i i 1
2,1 L,2 7,3
shown in figure 1. All other edges are given the weight of two.

figure 1.

The maximum number of clusters, k, is 3mtq. The maximum weight for an edge
inside a cluster, d, is one.

In order to complete the proof of the lemma it is only required to show that KG

has a k-split with objective function value < d {1iff (X,C)’has an exact cover,

' since the construction of KG can be carried out in polynomial time. t

; Claim: XG has a k-split with objective function value < d iff (X,C) has an exact i
cover.

Proof: First of all it is shown that if (X,C) has an exact cover, then KG has a ;

'

k~split (Bl’BZ""’Bk) with objective function value <d=1. Let C' be any exact

cover for (X,C). Assume without loss of generality that (xi Xy s¥y ) I ;
1,1 1,2 1,3 .
(xi Xy Xy ) are the elements in C which form an exact cover C'., Let
q’l q,2 q)3 4
Bl,j={bl,j’cl,j’vil j} for 1< j <3 and 1< & <q; let Bl,4={32,1’81,2’31,3} for
3

1< £ <q; and let B, ,={a, .,b, .,c, .} for 1< j <3 and q+1< ¢ <m. It is simple to
= - 2,372, 10P0, 500, 5 =35 st °

show that (Bl,l""’Bq,4’3q+l,l""’Bm,3) is a k-split with objective function .

value equal to d for KG.

In order to complete the proof of the claim it is only required to show that if
KG has a k-split with objective function <£d=1, then (X,C) has an exact cover. Let
Bl’BZ""’Bk be a k-split with objective function value €4 for KG. Since no four
nodes are completly connected by edges with a weight of one and since the number of

nodes in KG is 3*k, we have that each Bi must have exactly three nodes. Let ’
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for z=1,...,3q, 1f vertex vy is in the same cluster with bl . and ¢

z s ] E’)j.

1t can be easily shown that: 1) If yz=(£,j) for some z, then a, j is not in the
>

Yz=(£’j) s

same cluster with b, ., and c .
2,3 2,3
and 1ii) If for all =z yz#(z,j) then a

are in the same cluster.

.»b, . and

2,37°2,3 2,1

We now show that 1if for some z, y_=(2,j) then there exists =z, , 1< i <3, such
z i - T =

that yzi=(m,i). Let jl and j2 be such that {jl,jz,j} ={1,2,3} . The construction

rules together with the fact that each cluster has exactly three nodes implies that

be i luster only with either b and ¢ or a, . d .« Si
3 3 can be in a clus y 2, 2,3 2’31 an 31’32 nce

) holds true for y =(&,j), it must then be that a ,a and a are in the
i z 2,1°%2,2 2,3
game cluster. This fact together with i) and ii) imply that there exists zy

1< i <3, such that Y, =(2,1).
- - i

Now, let A=f2|yz=(l,j)}. Clearly |A|=q. Also, it is simple to see that

c'={(x »X »X )|%eA} is an exact cover for C. This completes the proof of
i i i

2,1 2,2 2,3
the claim and the lemma. [:]

Before proving our next result, we outline the construction to be used in it.
First of all, the construction in lemma 1 (figure 1) is replaced by the one given

in figure 2.

figure 2

The subgraph induced by the set of nodes a

z’j;z’blaj’z’cl,j,z’vil j 0_<_ 2 ih is
’

called s-graph(%,j). For z=0,1,...,h, nodes al,j,z’bz,j,z and cl,j,z are said to

be in level z. The weight assigned to all edges introduced by the rule implied in




Proof: The construction is as outlined above and the proof is similar to the proof '

by figure 2 is one.

It is simple to show that not all the graphs constructed by using the above Tule,
starting with an instance of RXC3, are planar. In order to guarantee planarity,
shall modify our construction rule. h 1is selected in such a way that at each leve1
z (z>1) only two adjacent s-graphs cross and after level h all the s-graphs that
include node vj are adjacent to each other. The crossing of the two s-graphs at

level 2z 1is handled by applying the transformation shown in figure 3.

U

new nodes 3

figure 3

Lemma 2: The decision problem k-gMM 1is NP-complete even when the input graph,
after deleting all the edges with a weight different than one, is planar and no

node is of degree greater than six.

of lemma 1. E]

The subgraphs, in figure 2, consisting of two triangles placed side by side are

called diamonds. The ends are the two nodes of degree two in it. It should be clear !

that two diamonds connected in series can replace any diamond and the resulting

construction can also be used in lemma 2. This transformation can be carried out

any number of times, as long as the total transformation takes polynomial time.
In the final transformation we replace the constructions implied in figures

1,2 and 3 by the one in figure 4.

®— figure 4a
> . @ de 3/2,
@ ©dx
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e Lo e z : .-

s are at a distance ¢
h
where ° ¢ are at a distance 2*d

figure 4b.

After taking care of some simple details, one can show that two points are at ;
a distance < d+e iff these two points had an edge between them with a weight of

one in the construction used in lemma 2 (after adding several diamonds as shown in

figure 4).

Theorem 1: The k-2MM problem is NP-complete.
Proof: The construction used in this proof follows the rules shown in figure 4 and

the proof follows the same lines as the proof of lemma 2.[]

III. The Complexity of Related Problems.

After a careful examination of the construction rules shown in figure 4, one
can show that the closest three points not at a distance < d + ¢ of each other,
are at least l/Ji-units apart. Using this fact together with the techniques used
in [SG], one can prove the following theorem.

Theorem 2: The k-2MM (1/\f2)-approximation problem is NP-hard. [:]

The proofs and comstructions of the next two theorems are similar to the ones
in theorems 1 and 2. For brevity they will not be included.
Theorem 3: The k-2MI decision problem is NP-complete. [:]
Theorem 4: The k-2M: (1.16)-approximation problem is NP-hard. []
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The construction used in section II can be easily adapted to show that Partition
of a graph into triangles is NF-complete even when the graphs to be partitioned are

planar and no node is of degree > 6.

(The formal proofs of our theorems will appear in a subsequent paper.)
References

{AM]  Augustson, J. G. and J. Minker, "An Analysis of Some Graph Theoretical Cluste,
Techniques," J.ACM, 17,571-588, (October 1970).

[Bk] Bock, H. H., "Automatische Klasgifikation," Vandenhoek und Ruprecht, Gottinge,
1974, !

[Bd] Bodin, L. D., "A Graph Theoretic Approach to the Grouping of Ordering Data,’
Networks, 2, 307-310, (1972).

[Br] Brucker, P. "On the Complexity of Clustering Problems,'" in R. Henn, B. Korte
and W. Oletti (eds), Optimiening and Operations Research, Lecture Notes ip
Economics and Mathematical Systems, Springer, Berlin (1977).

[DH] Duda, R. and P. Hart, "Pattern Classification and Scene Analysis,” John
Wiley and Sons, New York, 1973.

[FV] Fisher, L. and J. Van Ness, "Admissible Clustering Procedures," Biometrica,
58:91-104, 1971.

[F] Fisher, W. D., "On Grouping for Maximum Homogeneity, "JASA, 53:789-798,1958,

[G1] Gonzalez, T., "Algorithms on Sets and Related Problems,” Technical Report
75-15, The University of Oklahoma, 1975.

[G2] Gonzalez, T.,Manuscript in preparation.

[GJ1] Garey, M. R. and D. S. Johnson, "The Complexity of Near-Optimal Graph Coloring"
JACM, 23, 1, 43-69, (Jan 1976).

[6J2] Garey, M. R. and D. S. Johnson, 'Computers and Intractability: A Guide to the
Theory of NP-Completeness," W. H. Freeman and Company, San Francisco, 1980.

[6GJ3] Garey, M. R. and D. S. Johnson, Unpublished results referenced in [GJ2].

[HS] Horowitz, E. and S. Sahni, "Fundamentals of Computer Algorithms," Computer
Science Press, Inc., 1978.

[JL] Johnson, D. B. and J. M. Lafuente, "Controlled Single Pass Classification
Algorithm with applications to Multilevel Clustering," Scientific Report \
#ISR-18, Information Science and Retreival, Cornell University, Oct 1970.

[R] Rohlf, F. J. "Single Link Clustering Algorithms," RC 8569 (#37332) Research
Report, IBM, T. J. Watson Research Center, Nov. 1980.

{K] Karp, R. M., "Reducibility Among Combinatorial Problems," In Complexity of
Computer Computations, R. E. Miller and J. W. Thatcher, Eds, Plenum !
Press, N. Y. 1972, p.p. 85-104.

[M] Meisel, W. S., "Computer-Oriented Approaches to Pattern Recognition," Academic R
Press, New York, 1972.

[SG] Sahni, S. and T. Gonzalez, "P-Complete Approximation Problems," JACM, 23,
555-565, 1976.

[s1] Salton, G. "The Smart Retreival System, Experiments in Automatic Document
Processing,”" Prentice-Hall, New Jersey (1971).

; [82] Salton, G., "Dynamic Information and Library Processing," Prentice-Hall,

i New Jersey (1975).

[Sh] Shamos, M.I., "Geometry and Statistics: Problems at the Interface,” in J. F.
Traub (ed), Algorithms and Complexity: New Directions and Recent Results,
Academic Press, New York, 251-280, 1976.

}
i




