
nternational o rnal of omp tational eometr pplications

c orl cienti c P blishing ompan

A T D D A D R

APPR AT A R T

R PART T T D

T F F.

-

and

-

ecei e recei e o ember 2

e ise re ise arch 2 2

omm nicate b . ehlhorn

T T

et be a set of points locate insi e a bo rectangle if = 2 . e st

the problem of partitioning into bo es b intro cing a set of h perplane line if

= 2 segments of least total ol me length if = 2 . ach of the res lting

bo es in a ali partition cannot contain points from as interior points. ince

this problem is comp tationall intractable P har e en when = 2 we present

an e cient appro imation algorithm for its sol tion. The partition generate b o r

appro imation algorithm is g arantee to be within 2 times the optimal sol tion al e.

e also present a problem instance for each 2 for which the appro imation bo n

is tight for the algorithm. The time comple it for o r algorithm is .

ppro imation algorithms bo partitions minimi e ol me m lti

imensional comp tational geometr .

. ntroduction

We present e�cient approximation algorithms for the -P

2

problem and its

generalization to d-dimensional Euclidean space (

d

). The input to the -P

2

problem is a set of points, P , in

2

inside a rectangle . The problem consists of

introducing a set of (orthogonal) line segments with least total length to partition

con ense ersion of this paper appears in the Procee ings of the econ ana ian on

ference on omp tational eometr g st pp. 2 2 .

Present ress epartment of omp ter cience mir abir ni ersit of Technolog

Tehran ran.

1

into rectangles without elements from P as interior points. The -P

2

problem

is an NP-hard problem.

1

Several approximation algorithms for the -P

2

problem

have been developed.

2

Table 1 summarizes the currently best approximation

algorithms for the -P

2

problem.

Table . rrentl best appro imation algorithms for partitioning a rectangle

Approximation Bound Time Complexity Bound ethod

3 +
3

O(n log n) divide and conquer

2

3 O(n) transformation

1:75 O(n) dynamic programming

A more general version of the problem is when has holes instead of points.

This problem arises in LSI design where it models the problem of partitioning

a routing region into channels. Approximation algorithms for this more general

problem exist.

1 11

Levcopoulos algorithms

11

are the ones with the smallest

approximation bound. His fastest algorithm invokes as a sub-procedure the pro-

cedure for the -P

2

problem given in Ref. 2. One may improve Levcopoulos

algorithm by applying instead the algorithm presented in this paper.

Let P be a set of points located inside a d-box . The -P

d

problem, which is

a generalization of the -P

2

problem to d dimensions, consists of partitioning

into d-boxes by introducing a set of hyperplane segments of least total (d-1)-volume.

Each of the resulting d-boxes in a valid partition cannot contain points from P

as interior points. A dynamic programming approximation algorithm based on

guillotine partitions has been analyzed. The algorithm takes O(dn

2d 1

) time and

generates solutions within 2d�4+

d

times the optimal solution value. An application

for the -P is discussed in Ref. 6.

We use (I) to represent the total (d-1)-volume of the hyperplane segments

in the solution for problem instance I generated by our algorithm, and op (I) to

represent the corresponding one in an optimal solution. In this paper we present

a divide-and-conquer approximation algorithm for the -P

d

problem that takes

O(dn log n) time and generates solutions within 2d times the optimal solution

value, i.e. for every I, (I) � 2d op (I). For d = 2, the solutions generated by our

algorithm are similar to the ones generated by previous algorithms.

2

. The main

di erence between the result in the paper and the one in Ref. 2 is that the new

approximation bound is smaller (4 instead of 3 +
3
for d = 2), the new algorithm

is simpler (we only introduce one cut at each step), the proof is much simpler than

the previous one (there are fewer cases and the proof for each case is simpler), and

the new algorithm is more general in the sense that it generates solutions within

2d for all d � 2, rather than restricting to problems in 2-dimensional space. With

2

respect to the results in Ref. 6, the algorithm in this paper is faster (O(dn log n)

instead of O(dn

2d 1

)), but the algorithm in Ref.6 always generates solutions which

are not farther from optimal than the ones generated by our algorithm.

. The Algorithm nd its An l sis

An -P

d

problem instance is given by I = (o;X; P), where o and X de�ne a

d-box boundary (o = (o

1

; o

2

; : : : ; o

d

) is the \lower-left" corner of the boundary

(origin of I), and X = (X

1

; X

2

; : : : ; X

d

) are the dimensions of the boundary) in

d-dimensional Euclidean space (

d

), and P = fp

1

; p

2

; : : : ; p g is a nonempty set of

points inside d-box . We de�ne

i

(I), the (d-1)-volume of a facet of orthogonal

to the i-axis, as

j=i

X

j

, and we de�ne X

i j

as

i k j

X

k

. We shall refer to the

d dimensions (or axes) of

d

by the integers 1; 2; : : : ; d (in 2-space we have the �rst

dimension (x-dimension, x-axis, or 1-axis) and the second dimension (y-dimension,

y-axis, or 2-axis)).

Assume without loss of generality that there is at least one point in P . Procedure

PARTITION, formally de�ned below, introduces a mid-cu or an end-cu . A mid-

cu is a hyperplane segment orthogonal to the 1-axis that intersects the center of

the d-box (i.e., it includes point (o

1

+

X

2

; o

2

+

X

2

2

; : : : ; o

d

+

X

2

)) and an end-cu

is a hyperplane segment orthogonal to the 1-axis that contains either one of the

\leftmost" or the \rightmost" points in P . By \leftmost" (\rightmost") we mean

a point with smallest (largest) �rst coordinate value. A mid-cu is introduced

when the two resulting subproblems have at least one point each. Otherwise, an

end-cu is introduced. The end-cu contains the leftmost point if such a point is

not located to the left of the center of the d-box, otherwise the end-cu contains

the rightmost point. The procedure is then applied recursively to the nonempty

resulting subproblems.

Fig. . binstances generate b proce re P T T for = .

3

PR D R PART T o P ;

egin

Relabel the dimensions so that X

1

� X

2

� � � � � X

d

;

Extreme care must be taken after this step since the axes have been

relabeled. For clarity we do not include all the details needed because

of the relabeling. As we shall see later on, relabeling is not required,

we only need the largest X

i

. The relabeling step was introduced to

simplify the correctness proof.

P

1

fp

k

j p

k

2 P and q

1

< o

1

+

X

2

; where p

k

= (q

1

; q

2

; : : : ; q

d

)g;

P

2

fp

k

j p

k

2 P and q

1

> o

1

+

X

2

; where p

k

= (q

1

; q

2

; : : : ; q

d

)g;

c se

:P

1

= and P

2

= : introduce a mid-cu

Introduce the hyperplane segment orthogonal to the 1-axis that partitions

through its center;

PARTITION(o; (

X

2

; X

2

; : : : ; X

d

); P

1

);

PARTITION((o

1

+

X

2

; o

2

; : : : ; o

d

) , (

X

2

; X

2

; : : : ; X

d

); P

2

);

:else: introduce an end-cu

Let c be the coordinate value along the 1-axis of a point in P with

smallest j c� (o

1

+

X

2

) j;

Introduce the hyperplane segment orthogonal to the 1-axis that partitions

through the points with 1-coordinate value equal to c;

Delete from P

1

and P

2

all the points located along the end-cu ;

if P

1

= then PARTITION((o

1

; o

2

; : : : ; o

d

); (c� o

1

; X

2

; : : : ; X

d

); P

1

);

if P

2

= then PARTITION((c; o

2

; : : : ; o

d

); (X

1

�(c�o

1

); X

2

; : : : ; X

d

); P

2

);

endc se

end

It is easy to verify that Figure 1 represents all the possible outcomes of one

step in the recursive process of our algorithm for d = 3. A region labeled E PT

represents a subinstance without interior points. We use X

0

1

andX

00

1

to represent the

length along the 1-axis of the two resulting subinstances (I

1

and I

2

), respectively.

Our lower bound function, L (I), is de�ned by taking a \portion" of the

(d-1)-volume at each step of our recursive algorithm. We de�ne recursively the

function L (I) as follows:

L (I) =

1

(I) (a) An end�cut is introduced;

P

1

= and P

2

=

L (I

1

) + L (I

2

) (b) A mid�cut is introduced;

P

1

= and P

2

=

L (I

1

) +minf

1

(I); X

00

1

X

d

g (c) An end�cut is introduced;

P

1

= and P

2

=

L (I

2

) +minf

1

(I); X

0

1

X

d

g (d) An end�cut is introduced;

P

1

= and P

2

=

4

emm or an problem instance I, L (I) � op (I).

Proof. To prove our lower bound we construct a d-box partition by following

a procedure similar to procedure PARTITION, which we call OD-PARTITION.

The two di erences between these procedures are: when an end-cu is introduced

by PARTITION and P

1

= P

2

= , OD-PARTITION returns without intro-

ducing a cut; and when PARTITION introduces an end-cu and P

1

P

2

= ,

OD-PARTITION associates the points in the end-cu with the empty d-box gen-

erated at this step. As a result of this modi�cation, OD-PARTITION constructs

a d-box partition in which each d-box either contains a set of points inside it, all

of which are located on a hyperplane orthogonal to one of the axes; or the d-box

contains no interior points, but there is at least one point on its boundary associ-

ated with the d-box. In the former case it is simple to see that any d-box partition

must have a hyperplane segment inside that d-box including the interior points

with (d-1)-volume at least equal to the lower bound given in case (a) of the def-

inition of L ; and in the latter case any d-box partition must have a hyperplane

segment inside or on the facets of the d-box that includes the point associated with

it with (d-1)-volume at least equal to the lower bound given in case (c) or (d) in

the de�nition of L . Therefore, for any problem instance I any d-box partition has

(d-1)-volume at least equal to L (I). This completes the proof of the lemma. 2

We de�ne (I) to be the (d-1)-volume of the hyperplane segments introduced

during the �rst call to procedure PARTITION(I). I.e., if P = then (I) = 0;

otherwise, (I) = (I) � (I

1

) � (I

2

). Let I

1

; I

2

; : : : ; I

m

be the problem

instances encountered at all levels of the recursive process (including instance I)

when invoking PARTITION(I). Clearly, (I) =

m

j=1

(I

j

).

Assume X

1

� X

2

� � � � � X

d

> 0 (or equivalently,

1

(I) �

2

(I) � � � � �

d

(I)).

For convenience we de�ne X = X

1

and X

d 1

=

X

. Note that X

1

� 2X

1

and

X

d

> 2X

d 1

for all I. A problem instance I = (o;X; P) is said to be of t pe i

(0 � i < d) if 2X

i 1

� X

1

> 2X

i 2

(or equivalently,

f (I)

2

�

1

(I) <

f

2

(I)

2

). By

the de�nition of type, it is simple to show that each problem instance is of exactly

one type. We de�ne the carr function for a problem instance I of type i as:

(I) = (d� i)

i 1

(I) +

i

j=1

j

(I):

One may visualize the analysis of our algorithm as follows. Whenever a hy-

perplane segment is introduced by the algorithm (mid-cu or end-cu) it is colored

red, and when a lower bound from L (I) is \identi�ed" a hyperplane segment

with such (d-1)-volume is marked blue. Our approach is to bound the sum of the

(d-1)-volume of all the red segments by 2d times the sum of the (d-1)-volume of the

blue segments. The carry function corresponds to the (d-1)-volume of some red

segments introduced at previous steps which have not yet been accounted for by

blue segments. To establish our approximation bound we prove that for all problem

instances I, (I) + (I) � 2d � L (I). Clearly, this statement is stronger than

what we need to prove. Let us establish some preliminary bounds before proving

our algorithm s approximation bound.

5

emm or an problem instance I

(i) If X

k

� 2X

j

, then

k

(I) �

f

j

(I)

2

and

(ii) (I) � (2d� 1)

1

(I).

Proof. The proofs follow directly from our de�nitions. 2

emm 3 or an problem instance I, (I) + (I) � 2d � L (I).

Proof. The proof is by induction on the number of points in P (remember

that I = (o;X; P)).

asis: Set P contains exactly one point.

Clearly, in this case the procedure introduces a hyperplane segment that intersects

the single point in P (this corresponds to the introduction of an end-cu with

P

1

= P

2

=). By this observation, Lemma 2(ii), and the de�nition of L (I), we

know that (I) = (I) =

1

(I), (I) � (2d � 1)

1

(I); and L (I) =

1

(I).

Hence, (I) + (I) � 2d L (I).

Induction h pothesis: Assume the lemma holds when the number of points in P is

less than m.

Induction step: Prove the lemma holds when the number of points in P is m > 1.

There are three cases depending on the type of cut introduced by the algorithm.

Let i be the type of I.

ase : The algorithm introduces a mid-cu , and both I

1

and I

2

contain at least

one point (Figure 1(b)).

We know that (I) = (I

1

) + (I

2

) + (I), L (I) = L (I

1

) + L (I

2

), and

(I) =

1

(I). Applying the induction hypothesis (note that both I

1

and I

2

have

less than m points each) the proof is reduced to showing that

1

(I) + (I) � (I

1

) + (I

2

):

Since I is of type i, we only need to show that

1

(I) +

i

j=1

j

(I) + (d� i)

i 1

(I) � (I

1

) + (I

2

):

The dimensions of I

1

are (X

0

1

=

X

2

; X

2

; X ; : : : ; X

d

), before the relabeling step.

Since X

1

� 2X

i 1

and X

0

1

=

X

2

, we know that X

0

1

� X

i 1

; and since X

1

> 2X

i 2

and X

0

1

=

X

2

, we know that X

0

1

> X

i 2

. Therefore, I

1

has ordered dimensions

X

2

� X � � � � � X

i

� X

i 1

� X

0

1

> X

i 2

� � � � � X

d

. Since X

00

1

= X

0

1

=

X

2

, a

similar relation holds for X

00

1

. Since X

2

� X

1

and X

0

1

= X

00

1

=

X

2

, we know that

X

2

� 2X

0

1

= 2X

00

1

. Therefore, I

1

and I

2

are both of type k, for some k � i. It is

simple to verify that:

6

i 1

(I

1

) =

1

(I); (1)

j

(I

1

) =

f

j

(I)

2

; for j < i + 1; (2)

j

(I

1

) =

f

j

(I)

2

; for j > i + 1: (3)

We now show that

1

(I) +

i

j=1

j

(I) + (d� i)

i 1

(I) � (I

1

) + (I

2

). There are

two cases depending on the relative values of i and k.

ubcase . : k = i.

Since X

1

� 2X

i 1

, we know by Lemma 2(i) that

1

(I) �

f (I)

2

. Therefore,

1

(I) +

i

j=1

j

(I) + (d� i)

i 1

(I) �

1

(I) +

i

j=1

j

(I) +

i 1

(I) + 2(d� i� 1)

1

(I)

=

i

j=1

j 1

(I) + 2(d� i)

1

(I):

By (1) and (2), this is equivalent to 2

i

j=1

j

(I

1

)+2(d� i)

i 1

(I

1

), which is equal

to (I

1

) + (I

2

), since both I

1

and I

2

are of type k = i. Hence,

1

(I) +

i

j=1

j

(I) + (d� i)

i 1

(I) � (I

1

) + (I

2

):

This completes the proof of this case.

ubcase . : k > i.

Since k > i and

j

(I) �

k

(I) for j � k,

1

(I)+

i

j=1

j

(I)+(d� i)

i 1

(I) �

1

(I)+

i

j=1

j

(I)+

k

j=i 1

j

(I)+(d�k)

k 1

(I):

This is equal to

i

j=1

j 1

(I)+2

1

(I)+

k

j=i 2

j

(I)+(d�k)

k 1

(I). By (1)-(3),

the above bound becomes

2

i

j=1

j

(I

1

) + 2

i 1

(I

1

) + 2

k

j=i 2

j

(I

1

) + 2(d� k)

k 1

(I

1

);

which by de�nition is equal to (I

1

) + (I

2

). Hence,

1

(I) +

i

j=1

j

(I) + (d� i)

i 1

(I) � (I

1

) + (I

2

):

This completes the proof of this case.

7

ase : The algorithm introduces an end-cu , and exactly one of the two resulting

subproblems has no interior points (Figure 1 (c) and (d)).

Assume without loss of generality that I

2

has no interior points. From the lower

bound function and the algorithm we know that

L (I) = L (I

1

) +minf

1

(I); X

00

1

X

d

g and (I) = (I

1

) + (I):

By the induction hypothesis (note that j P

1

j < m) the proof is reduced to showing

that (I) + (I) � (I

1

) + 2d minf

1

(I); X

00

1

X

d

g. Clearly, (I) =

1

(I),

(I) � (2d � 1)

1

(I) (Lemma 2(ii)) and (I

1

) > 0. Therefore, the above relation

holds when

1

(I) � X

00

1

X

d

. To complete the proof we show that

(I) + (I) � (I

1

) + 2dX

00

1

X

d

;

when X

00

1

X

d

�

1

(I). Since X

00

1

X

d

�

1

(I), we know that X

00

1

� X

2

. Clearly,

instance I

2

has dimensions X

00

1

� X

2

� � � � � X

d

, and X

00

1

X

d

=

2

(I

2

). So we

need to show that

1

(I)+ (I) � (I

1

)+2d

2

(I

2

). From the algorithm it is simple

to verify that X

0

1

�

X

2

; X

00

1

�

X

2

and (I) =

1

(I).

Since

X

2

� X

00

1

and X

00

1

� X

2

, it must be that X

1

� 2X

2

. So i, the type of

I, must be greater than zero. Since (I) = (d� i)

i 1

(I) +

i

j=1

j

(I), our proof

reduces to showing that

1

(I) + (d� i)

i 1

(I) +

i

j=1

j

(I) � (I

1

) + 2d

2

(I

2

):

Since X

1

� 2X

i 1

and X

0

1

�

X

2

, we know that X

0

1

� X

i 1

. Therefore, the ordering

for the dimensions of I

1

is

X

2

� X � � � � � X � X

0

1

> X

1

� � � � � X

d

;

for some i+1 � l � d. Since X

2

� X

1

and X

1

� 2X

i 1

, we know that X

2

� 2X

i 1

and I

1

is type k, for some k � i� 1 � 0.

Let I

0

1

be the instance with dimensions (X

0

1

; X

2

; : : : ; X

d

). Note that the dif-

ference between I

0

1

and I

1

is that the dimensions are not sorted in I

0

1

. Since

1

(I) �

2

(I) �

2

(I

0

1

) +

2

(I

2

) �

i 1

(I

0

1

) +

2

(I

2

);

j

(I) =

j

(I

0

1

) +

j

(I

2

) for

j = 1 as X

0

1

+X

00

1

= X

1

; and

1

(I) �

2

(I) � 2

2

(I

2

) because X

00

1

�

X

2

, we know

that

1

(I) + (d� i)

i 1

(I) +

i

j=1

j

(I)

�

i 1

(I

0

1

) +

2

(I

2

) + (d� i)(

i 1

(I

0

1

) +

i 1

(I

2

)) + 2

2

(I

2

) +

i

j=2

(

j

(I

0

1

) +

j

(I

2

))

=

i 1

(I

0

1

) + (d� i)

i 1

(I

0

1

) +

i

j=2

j

(I

0

1

) + 3

2

(I

2

) + (d� i)

i 1

(I

2

) +

i

j=2

j

(I

2

):

8

SinceX

2

� 2X

j

, for 3 � j � i�1, then by Lemma2(i), we know that

2

(I

2

) �

f

j

(I

2

)

2

.

Therefore, the sum of the terms involving I

2

is less than or equal to 2d

2

(I

2

). The

sum of the remaining terms is equal to

i�1

j=1

j

(I

1

) +

i

(I

1

) + (d� i)

i

(I

1

).

Since k � i � 1, and

i

(I

1

) �

j

(I

1

), for j > i, the summation is at most equal to

(I

1

). Hence, (I) +

1

(I) � (I

1

) + 2d

2

(I

2

). This completes the proof for case

2.

ase : The algorithm introduces an end-cu , and I

1

and I

2

contain no points (case

(a) in Figure 1).

The proof for this case is omitted since it is similar to the proof for the basis case.

This completes the proof of the lemma. 2

Let us now establish our main result (Theorem 1), show that the approximation

bound is tight (Theorem 2), and explain implementation details needed to establish

our time complexity bound (Theorem 3).

Theorem or an instance of the -P

d

problem, algorithm PARTITION gen-

erates a solution such that (I) � 2d op (I).

Proof. The proof follows from the de�nition of the carry function, and Lemmas

1 and 3. 2

Theorem or an � > 0, there e ists an -P

d

problem instance I such that

(I) = (2d� �) op (I).

Proof. Let k = log(

d

�

) . The origin of the d-box is at point (0; 0; : : : ; 0),

and each side has length 2

k

. Partition d-box into 2

dk

identical interior d-boxes.

In each interior d-box there are 2

d�1

points. These points are located at

(i

1

+ q

1

; i

2

+ q

2

; : : : ; i

d�1

+ q

d�1

; i

d

+

1

2

)

for integer r, 0 � r � 2

d�1

� 1; where q

j

is de�ned as

1

if the leftmost j bit in

the d-bit binary representation of r is 0, and

2

otherwise, for 1 � j � d � 1; and

(i

1

; i

2

; : : : ; i

d

) is the \lower left" corner of the interior d-box. Therefore, the total

number of points is n = 2

d�1

� 2

dk

.

A problem instance for k = 2 and d = 2 is given in Figure 2a. The solution

generated by procedure PARTITION is given in Figure 2b and an optimal solution

is given in Figure 2c. For any k � 0 and d � 2, our algorithm introduces hyper-

plane segments for each grid segment, and in each interior d-box one hyperplane

orthogonal to each axis is introduced. Therefore,

(I) = d � (2

k

� 1) � 2

(d�1)k

+ d � 2

k

� 2

(d�1)k

:

It is simple to show that a partition with 2

k

hyperplane segments orthogonal to

the d-axis covers all points. Therefore, op (I) = 2

k

�2

(d�1)k

. Hence,

(I)

o (I)

= 2d�

d

2

k

.

The proof of the theorem now follows from the fact that k = log(

d

�

) . 2

Note that algorithm PARTITION can be trivially modi�ed so that when a prob-

lem instance has all points along the same hyperplane and the (d-1)-volume of

such hyperplane segment is not too large compared to

1

(I), then such segment

is introduced. On the above example such modi�ed algorithm will outperform the

previous algorithm and the approximation bound will be smaller. However, there

are examples for which the above modi�ed algorithm will achieve the same worst

case approximation bound as PARTITION. Let us consider the case when d = 2.

Instead of all points having y-coordinate value

1

2

, they have i

2

+ � if i

2

is odd and

i

2

+ 1 � � if i

2

is even. In this case the ratio between the approximation solution

generated by the modi�ed algorithm and the optimal solution value is similar to

the one in the previous case. Examples achieving a bound of 2d � � for all d � 3

can be constructed by following a similar strategy.

Fig. 2. Problem instance in proof of Theorem 2 when k = 2.

A straight forward implementation of algorithm PARTITION requires O(dn

2

)

time, where n is the number of points in P . Let us show that procedure PARTITION

can be implemented to take O(dn log n) time. In what follows a point p in

d

is

represented by p = (x

1

(p); x

2

(p); : : : ; x

d

(p)). In Ref. 7, two implementations that

take O(n log n) time for the rectangular partition algorithm given in Ref. 2 are

presented. These techniques can be easily extended to procedure PARTITION so

that it takes O(dn log n) time. Let us briey describe the generalization of one

of the methods given in Ref. 7. To avoid trivial details, we assume as in Ref. 7

that x

k

(p) = x

k

(q), 1 � k � d, for any two distinct points p and q in P . In the

preprocessing step, a multi-linked data structure L for P is constructed. Each node

in L is a point record, which represents a point p in P and consists of 4d �elds:

10

x

k

(p); i

k

(p), llink

k

(p), rlink

k

(p), 1 � k � d. The k-th coordinate value of p is

x

k

(p), and i

k

(p) = j if x

k

(p) is the j-th smallest value in the set fx

k

(q) j q 2 Pg.

The pointers llink

k

and rlink

k

are used to implement an ordered doubly linked list

L

k

for all x

k

(p). The point records are linked in increasing (decreasing) order on

x

k

by the rlink

k

(llink

k

) �elds. Clearly, such a data structure can be constructed

in O(dn log n) time.

Let us consider the operations performed at each step in algorithmPARTITION.

The purpose behind the relabeling ofX

i

, 1 � i � d, is to simplify the presentation of

the algorithm and the analysis of approximation bound. The real concern is �nding

X

k

= minfX

j

j 1 � j � dg. This can be easily determined in O(d) time. Then, the

major operation is to partition the points in P into two subsets P

1

and P

2

, where

P

1

contains points p such that x

k

(p) < o

k

+

X

k

2

, and P

2

contains points p such that

x

k

(p) > o

k

+

X

k

2

. This can be done in O(minf j P

1

j ; j P

2

j g) time by scanning

L

k

from its left end and right end toward the middle of L

k

in such a way that a one

step advance from the left to the right is accompanied by one step advance from

the right to the left. Assume that n � j P j = m � j P

1

j = m�u � j P

2

j = u,

and u � m=2. From the above stated scanning procedure it is simple to show that

P can be partitioned into P

1

and P

2

in O(u) time. Since the point records for P

are doubly-linked in each L

i

, the point records corresponding to points in P

2

can

be removed from L in O(du) time, so the remaining records form the multi-linked

structure L

1

for P

1

. What remains to be constructed is the multi-linked structure

L

2

for points in P

2

. By the radix sort algorithm given in Ref. 12, u integers in the

range [1; n] can be sorted in O(u log log

u

n) time. Hence, constructing L

2

can be

done in O(du log log

u

n) time by sorting on i

k

, 1 � k � d. Let T (n; n) be the total

time required by algorithm PARTITION. From the above observations we know

that

T (m;n) =

cd; m = 1

maxfcdu log log

u

n+ T (u; n) + T (m � u; n) j 1 � u �

m

2

g; m > 1;

where c is a constant. Using analysis similar to that in Ref. 7, T (n) = O(dn log n).

Therefore, we have the following result.

Theorem 3 The above implementation of algorithm PARTITION (including pre-

processing) takes O(dn log n) time.

Proof. By the above discussion. 2

3. Discussion

In practical situations one could execute several variations of the algorithm

presented in this paper (e.g., the one in Ref. 2) and then select a solution with

least (d-1)-volume. We conjecture that an approximation algorithm based on this

approach generates solutions that are very close to optimal. However, proving a

smaller bound for this approach seems to be di�cult. A postprocessing procedure

that transforms the solution generated by PARTITION into a feasible solution in

which each hyperplane segment includes at least one point can be easily constructed.

11

In general it will not generate better solutions, but in many cases the solution

generated by our algorithm will be improved.

Acknowledgements

The authors which to thank an anonymous referee for �ne-tuning our carry

function so as to simplify the proof of Lemma 3. This research was supported in

part by the National Science Foundation under Grant DCR-8503163

References

1. A. Lingas, R. Y. Pinter, R. L. Rivest, and A. Shamir, \Minimum Edge Length

Partitioning of Rectilinear Polygons," Proc. 20th Annual Allerton Conference on

Communication, Control, and Computing, Monticello, Illinois, Oct. 1982.

2. T. F. Gonzalez, and S. Q. Zheng, \Bounds for Partitioning Rectilinear Polygons",

Proc. Symp. Computational Geometry, June 1985, pp. 281{287, (also appears as

Technical Report #85{22, CS Department, UCSB, Dec. 1985).

3. T. F. Gonzalez, and S. Q. Zheng, \Approximation Algorithms for Partitioning Rec-

tilinear Polygons with Interior Points," Algorithmica, 5, January 1990, 11{42.

4. T. F. Gonzalez, and S. Q. Zheng, \Improved Bounds for Rectangular and Guillotine

Partitions," Journal of Symbolic Computation, 7, 1989, pp 591{610.

5. D. Z. Du, L. Q. Pan and M. T. Shing, \Minimum Edge Length Guillotine Rectan-

gular Partition," Technical Report, MSRI 02418{86, Jan. 1986.

6. T. F. Gonzalez, M. Razzazi, M. Shing and S. Q. Zheng, \On Optimal d-Guillotine

Partitions Approximating Hyperrectangular Partitions," Technical Report TR{89{

25, CS Department, UCSB, October 1989.

7. C. Levcopoulos, \Fast Heuristics for Minimum Length Rectangular Partitions of

Polygons," Proceedings of the 2nd Computational Geometry Conference, June 1986.

8. R. L. Rivest, \The \PI" (Placement and Interconnect) System," Proc. 19th Design

Automation Conference, June 1982.

9. A. Lingas, \Heuristics For Minimum Edge Length Rectangular Partitions of Recti-

linear Figures," 6th GI{Conference, Dortmund, 1983, Lecture Notes in Computer

Science 195 (Springer{Verlag).

10. D. Z. Du and Chen Y. M., \On Fast Heuristics for Minimum Edge Length Rect-

angular Partition," Technical Report, MSRI 03618{86, Feb. 1986.

11. C. Levcopoulos, \Minimum Length and Thickest{First Rectangular Partitions of

Polygons," Proceedings of the 23rd Allerton Conference on Communication, Control

and Computing, Monticello, Illinois, Oct. 1985.

12. Kirkpatrick, D. G., \An Upper Bound for Sorting Integers in Restricted Ranges",

Proc. 18th Allerton Conference on Communication, Control and Computing, Mon-

ticello, Illinois, Oct. 1980.

12

EMPTYEMPTY

EMPTYEMPTY

(d)(c)

(b)(a)

Fig. 1. Subinstances generated by procedure PARTITION for d = 3.

(c) Optimal solution.(b) Solution generated by PARTITION.

(a) Problem instance with k = 2.

Fig. 2. Problem instance in proof of Theorem ?? when k = 2.

2

	DCJr.pdf
	DCJrF

