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Abstract 

We present a simple three-layer assignment algorithm for planar layouts generated by a class of layout algorithms. 
This class of algorithms includes simple variations of the following algorithms developed by Mehlhorn et al. (1986): 

(i) The algorithm that generates planar layouts for the two-terminal net CRP with dmax tracks. 
(ii) The algorithm that generates planar layouts for the two- and three-terminal net CRP with at most L3dmax/2 J tracks. 
(iii) The algorithm that generates planar layouts for the multiterminal net CRP with at most 2dmax - 1 tracks. 

The planar layouts generated by these algorithms are three-layer wirable by the layer assignment algorithm given in 
Preparata and Lipski (1984). Our approach is different. We make slight modifications to these layout algorithms and 
incorporate a simple layer assignment strategy to generate three-layer wirings. Our algorithms are faster and concep- 
tually simpler because there is no need to construct diagonal diagrams and legal partitions. The channel width of the 
wiring generated by our algorithm is identical to that of the corresponding planar layout generated by algorithms (i)-(iii). 
Our layer assignment methodology can also be used to develop other single-phase three-layer algorithms, as demon- 
strated by Wieners-Lummer (1991). 
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1. Introduction 

The channel routing problem (CRP) has been recognized as a fundamental problem in com- 
puter-aided VLSI layout design. The CRP is defined over the rectangular grid formed by lines 
{ x = i l i ~ Z } a n d { y = j l 0 ~ < j ~ < h +  l a n d j ~ Z } . T h e h o r i z o n t a l g r i d l i n e s y = 0 a n d y = h +  1 
are called the boundaries of the channel, and the horizontal grid lines y = j, 1 ~< j ~< h, are called 
tracks of the channel. All the vertical grid lines are called columns of the channel. A channel routing 
problem consists of a collection of pairwise disjoint sets of grid points, N = {N1, Nz,. . . ,  Nm}, 
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located on the channel boundaries. Each Ni in N is called a net and each point  in Ni is called 
a terminal of net Ni. Terminals in each net need to be connected by wires running along the grid 
lines. It should be noted that  the terms "layout" and "wiring" are frequently interchangeable. In 
this paper we follow Preparata  and Lipski's [1] convention and give these two terms a different 
connotat ion.  A planar layout (or simply a layout) of a channel routing problem is a collection of 
edge disjoint connected subgraphs W = { W1, W2,..., Win} of the channel grid, such that  each 
Wi connects all the terminals in net N~. This definition implies that  at each grid point  of the channel 
there can be at most  two wires; furthermore, for i ~ j, Wi and Wj do not share any grid line 
segment. There are several different wiring models for the channel routing problem. In this paper, 
we consider the C R P  under the knock-knee model. In this model, when two wires share a grid point  
they either cross or form a knock-knee. The two types of knock-knees are given in Fig. 1. The 
horizontal (vertical) port ions of a knock-knee are called the horizontal (vertical) arms of the 
knock-knee. 

Assume that  there are k ~> 2 conduct ing layers LI,  L2 . . . . .  Lk available, and Li+ 1 is stacked on 
top of L~, for 1 ~< i < k. A wirin9 for layout W = { W1, I4/2 . . . . .  Wm} is a mapping  that  associates 
each edge of W~, 1 ~< i ~< n, to a layer in such a way that  for every i4:j if edges (Pl,P2) and (Pz,P3) in 
W~ are assigned to L~ and Lt, respectively, and edge (P2, P,) in Wj is assigned to Lu, then either 
u > max{s, t} or u < min{s, t}. Contact  cuts (called vias) can be established only at grid points. 
Vias allow a wire to change from one layer to the another.  The premier objective of the channel 
routing problem consists of finding an optimal wiring, i.e., a wiring on a grid with least number  of 
horizontal  grid lines. We also refer to this criteria as minimum channel width or min imum number  of 
tracks. Other  optimization objectives include minimize the area of the smallest rectangle enclosing 
the wiring, minimize the number  of layers, and minimize the total number  of vias. We call the open 
interval (c, c + 1) a vertical cut, where c and c + 1 are two adjacent columns of the channel. We 
define the channel density dmax for a CRP  as dmax = max{d(c)}, where d(c), the local density of the 
vertical cut (c, c + 1), is the number  of nets in N whose leftmost terminal and r ightmost  terminal are 
located to the left and right of vertical cut (c, c + 1), respectively. Since every net that contributes to 
dmax must  have a horizontal  wire along the same vertical cut, we know that dmax is a lower bound 
for the channel width of an optimal wiring. 

Construct ing a multilayer wiring with the least number  of layers for any given layout W is 
a fundamental  problem in CAD of VLSI. Whether  or not a given planar layout is one-layer or 
two-layer wirable can be easily determined. To construct  a three-layer wiring for a planar layout, 
a powerful transformation,  legal part i t ion of the diagonal diagram induced by the layout, was 

upper vertical arm upper vertical arm 

lower  vertical m-m lower vertical arm 

Type- 1 Type-2 

Fig. 1. Knock-knees.  
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introduced in [1, 2]. Based on this transformation, Lipski [3] showed that there are planar layouts 
that are not three-layer wirable. Gonzalez and Zheng [4] showed that there even exist six-row 
planar layouts which are not three-layer wirable. In general, the problem of determining whether 
a given planar layout is three-layer wirable is NP-complete [3]. Brady and Brown [5] showed that 
every planar layout is four-layer wirable by finding a legal partition (that satisfies some additional 
properties) of the diagonal diagram induced by the layout. An alternative layer assignment 
algorithm is proposed in [6]. This algorithm attempts to construct a three-layer wiring first, and if 
it fails, a four-layer wiring is generated. There is no known characterization of the class of planar 
layouts for which this algorithm generates three-layer wirings. 

The general multilayer wiring theory suggests a two-phase approach to the CRP problem. In the 
first phase, a planar layout is generated; then, in the second phase, a multilayer wiring of the layout 
is constructed using the layer assignment methods of [2, 5, 6]. Indeed, most existing knock-knee 
mode CRP algorithms follow this approach. These two-phase CRP algorithms include the ones in 
[1,7-11]. The two-terminal net CRP algorithm given in [1,9] generates optimal three-layer 
wirings. However, the one in [9] is simpler. Recently, Kuchem et al. developed a two-phase 
three-layer algorithm for the two-terminal net CRP. Their algorithm guarantees a wiring solution 
with minimum channel width and near-optimal area [ 11]. For the case when each net consists of at 
most three terminals, the algorithms in [9, 10] generate three-layer wirings with no more than 
[_3dmax/2_] tracks. For multiterminal net channel routing problems, the algorithms in [12,9, 8], 
generate three-layer wirings with at most 2dmax- 1 tracks. Gao and Kaufmann [7] 
showed that a planar layout with at most 3dmax/2 + O(x/dmax log dm,x) tracks for any multiterminal 
net CRP can be constructed efficiently. These layouts are in general not three-layer wirable 
[13]. Recently, Wieners-Lummer [13] designed a single-phase three-layer routing algorithm 
for the multiterminal net CRP. The approach, based on the algorithm of [7], is to decompose 
a CRP into three subproblems, and solve each by an algorithm similar to the conservative 
layout algorithms discussed in Section 2. The layer assignment rules are based on our rules, which 
were reported in a preliminary version of this paper [ 14]. Wieners-Lummer's algorithm guarantees 
three-layer wirings with channel width no more than 3dmax/2 + O(x/dma~ log dma~). 

In this paper we present a simple three-layer assignment algorithm for planar layouts generated 
by a class of layout algorithms. This class includes the following algorithms developed by 
Mehlhorn et al. [9]. 

(i) The algorithm that generates planar layouts for the two-terminal net CRP with dm~ tracks. 
(ii) The algorithm that generates planar layouts for the two- and three-terminal net CRP with at 

most [_3dm,x/2J tracks. 
(iii) The algorithm that generates planar layouts for the multiterminal net CRP with at most 

2dm,~ - 1 tracks. 
The planar layouts generated by these algorithms are three-layer wirable by the layer assignment 

algorithm given in [1]. Our approach is different. We make slight modifications to these layout 
algorithms and incorporate a simple layer assignment strategy to generate three-layer wirings. Our 
algorithms are faster and conceptually simpler because there is no need to construct diagonal 
diagrams and legal partitions. The channel width of the wiring generated by our algorithm is 
identical to that of the corresponding planar layout generated by algorithms (i)-(iii). Our layer 
assignment methodology can also be used to develop other single-phase three-layer algorithms, as  
demonstrated in [13]. 
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2. Three-layer wiring algorithms 

Let A be a layout algori thm that  generates a layout by a single left-to-right column-by-column 
sweeping (scanning) of terminals. For  column c, we define the strip area S(c) around column c as the 
area delimited by the two vertical lines c - 1/2 and c + 1/2, and the top and bo t tom channel 
boundaries. When algori thm A considers column c, it generates the layout W(c) for the strip area 
S(c). The horizontal  wires leaving W(c) from the right of S(c) are called the output wires of  W(c). 
Assume that  the leftmost terminal of CRP  is in column 1. For  c > 1, the input wires of W(c) are the 
output  wires of W(c - 1), and there are no input  wires for W(1). A horizontal  wire that  is both an 
input  wire and an output  wire on the same track in W(c) is called a continuing wire. A horizontal 
wire that  is only an output  wire on some track in W(c) is called a beginning wire. We say that a wire 
IV,- is a k-stranded input (output)wire in W(c) if the vertical line x = c - 1/2 (x = c + 1/2) intersects 
k times wire Wi in layout W(c). We say that  vector V = (vl, v2 . . . .  , vm) is an input (output)strand 
vector of  W(c)if wire Wi is a vi-stranded input  (output) wire in W(c), for 1 ~< i ~< m. We use isv(W(c)) 
(osv(W(c)) to denote the input  (output) strand vector of W(c). 

The planar layout algori thms which can be modified by our strategy to generate three-layer 
wirings are called conservative planar layout algorithms. An algori thm A is said to be a conservative 
layout algori thm if and only if it satisfies the following three properties. 
(1) Algori thm A generates a layout by a single left-to-right column-by-column sweep (scan). When 

column c is being considered the algori thm generates its layout W(c), and once W(c) is 
generated, the layouts W(1), W(2), . . . ,  W(c) will not be modified. 

(2) For  column c > 1 every layout W'(c - 1) such that  osv(W'(c - 1)) = osv( W(c - 1)) (remember 
that  W(c) is the layout generated by algori thm A for column c), algori thm A generates a layout 
W'(c) with osv(W'(c)) = osv(W(c)). 

(3) For  any layout W'(c - 1) with osv(W'(c - 1)) = osv( W(c - 1)) algori thm A generates a layout 
W'(c) with no more than two knock-knees.  If there are two knock-knees, the knock-knees are of 
different types, and the type-1 knock-knee is below the type-2 knock-knee. A type-1 (type-2) 
knock-knee has its lower (upper) vertical arm intersect the bo t tom (top) boundary.  

Without  loss of generality, assume that  every conservative algori thm is initially assigned h empty 
tracks and th roughout  the execution of the algori thm the value h is never increased nor  decreased. 
An algori thm A that  does not  satisfy this restriction can be easily simulated by executing A once to 
obtain the value of h. Once this value is computed,  algori thm A can be easily modified to satisfy the 
addit ional property.  Not  all of the algorithms (i)-(iii) in [9] satisfy properties (1)-(3). However, by 
making slight modifications these algorithms can be transformed into conservative layout algo- 
rithms without  sacrificing performance. 

Let A be any algori thm that satisfies properties (1)-(3). In what  follows, we define our algorithm, 
A*, that  constructs a layout (similar to the one constructed by A) and finds its layer assignment 
simultaneously. Algori thm A* constructs the layout as algori thm A in a single left-to-right scan of 
the columns. When column c is being considered, we first take W*(c - 1), the layout generated by 
algori thm A* at the (c - 1)th iteration (if c = 1, W*(0) = 0) and mimic algori thm A on this input. 
Let W'(c) be the layout obtained by this process. Note  that  the input  wires in W'(c) are identical to 
the output  wires in W*(c - 1). Depending on the knock-knees in W'(c) and the layer assignment 
for W*(c - 1), W*(c) is defined as either W'(c) or a slightly modified version of W'(c). In either case 
the output  strand vector for W*(c) and W'(c) are identical. Let W(1), 141(2) . . . .  (resp. W*(1), 
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I4/*(2),... ) be the layout constructed by algorithm A (resp. A*) for some CRP problem instance N. 
From this brief description and the assumption that algorithm A satisfies property (2) one can 
easily prove that at each step, the output strand vector for W(c) is identical to the output strand 
vector for W*(c). When algorithm A* is processing column c, the layer assignment for each wire 
segment in W*(c) is determined. The layer assignment rules are quite simple: horizontal wires are 
always assigned to either the top layer or the bottom layer, whereas the vertical wires are assigned 
to the middle layer in "normal" regions and to either the top or bottom layer in other regions. Vias 
are introduced whenever necessary. For column c, we use [k~, k2], where k~ ~< k2, to represent the 
vertical grid segments from track kx to track k2. Note that it is a closed interval. For open intervals 
we use parentheses instead of square brackets. Remember that the bottom (top) boundary is track 
0 (h + 1). We define the strip area S(c,I) (S(c) restricted to I) as the set of all points in S(c) with 
y-coordinate value y eI ,  where I = [kx,k2] for some kl < k2. Similarly, the layout W*(c,I) 
(W'(c,I)) is defined as W*(c) (W'(c)) restricted to the strip area S(c,I). Depending on the 
knock-knees in W'(c), each of the vertical grid segments in column c is labeled, R1,RN, or R2. 
A region RN is a normal region, and the other two regions, Ri, contain exactly one type-i 
knock-knee. The labeling procedure is given below. 

procedure LABELING 

case: 
:there is no knock-knee in W'(c)/* Fig. 2(a) */: 

the interval [-0, h + 1-1 is labeled RN; 
:there is exactly one knock-knee in W'(c) and it is type-1/* Fig. 2(b) */: 

let k be the track where the knock-knee is located; 
the interval [0, k - 1) is labeled RN, [k - 1, k] is labeled R1, and (k, h + 1] is labeled RN. 

:there is exactly one knock-knee in W'(c) and it is type-2/* Fig. 2(c) */: 
let k be the track where the knock-knee is located; 
the interval [0, k) is labeled RN, [k, k + 1] is labeled R2, and (k + 1, h + 1] is labeled RN. 

:there are two knock-knees in W'(c)/* Figure 2(d) */: 
/* By property (3) we know that the knock-knees are of different types and that the 

type-1 knock-knee is below the type-2 knock-knee */ 
let kl(k2) be the track where the type-1 (type-2) knock-knee is located; 
/* By property (3) we know that kl < k2*/ 
the interval [0, k~ - 1) is labeled RN, [k~ - 1, k~] is labeled Rx, (kl, k2) is labeled RN, 

[k2,k2 + 1] is labeled R2, and (k2 + 1, h + 1] is labeled RN. 
endcase 

end of procedure LABELING 

In the following figures the region enclosed by wiggled lines is a three-layer wiring, and the 
region not enclosed by wiggled lines is a planar layout. In a three-layer wiring we use solid lines to 
represent wires assigned to the top layer, dashed lines for wires assigned to the bottom layer and 
dotted lines for the wires assigned to the middle layer. Let us now explain how the layout W* (c) 
and a layer assignment for it is generated by algorithm A*. Algorithm A* generates W*(c) by 
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Fig. 2. Labeling examples. 

constructing sublayouts W*(c, I) for each uniformly labeled interval I in W'(c). For the uniformly 
labeled interval I, we set initially the input wires in W*(c, I) to be the same as the output wires in 
W*(c - 1, I) which are identical to the set of input wires in W'(c, I). The layer assignment for the 
input wires in W*(c,I) is identical to the layer assignment for the output wires in W*(c - 1, I). 
Depending on the label assigned to an interval I, the remaining part of the layout, W*(c, I), and its 
layer assignment is constructed as follows. 

procedure LAYOUT_AND_LAYER_ASSIGNMENT 

Case 1." Interval I is labeled RN. Algorithm A* generates the layout W*(c , I )=  W'(c, I). The 
layer assignment is defined as follows. Remember that the input wires in W*(c, I) are assigned to 
the same layers as the output wires in W*(c - 1,I). All vertical wires are assigned to the middle 
layer, all the continuing wires remain in the layer assigned to their input portion, and the beginning 
wires are assigned to the top layer (note that they could have also been assigned to the bottom 
layer) (see Fig. 3). 

Case 2: Interval I is labeled Rx. Clearly, the interval is of the form I = I-k - 1, k] for some track 
k, there is exactly one type-1 knock-knee in W'(c, I) and it is located at grid point (c, k). There are 
two cases. 

Subcase 2.1: There is no input wire in W'(c, I) assigned to track k -  1, or the input wire in 
W'(c,I) assigned to track k -  1 is electrically common with the lower vertical arm of the 
knock-knee. 
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f- 
w'(c-l,t) w'(¢j) W'(c-ld) W'(cd) 

Fig. 3. Example for case 1. 

W'(c-1,/) ~/(cJ) W'(c-l,l) W=(c J), 

Fig. 4. Example for case 2.1. 

Algori thm A* generates the layout W*(c , I )= W'(c,I). The layer assignment is defined as 
follows. If the input  wire in track k of W*(c, I) is in the top (bottom) layer, then the only vertical 
wire and all the ou tput  wires in W*(c, I) are assigned to the bo t tom (top) layer (see Fig. 4). 

Subcase 2.2: The input  wire in W'(c, I) assigned to track k - 1 is not  electrically c o m m o n  with 
the lower arm of the knock-knee.  

There are two cases depending on whether  the output  wires in W*(c - 1, I) assigned to tracks 
k - 1 and k are in the same layer or not. 

Subcase 2.2.1: The output  wires in W*(c - 1, I) assigned to tracks k - 1 and k are in the same 
layer. 

Algori thm A* generates the layout W*(c , I )= W'(c,I). The layer assignment is defined as 
follows. If the ou tput  wires in tracks k - 1 and k of W*(c - 1, I) are in the top (bottom) layer, then 
the only vertical wire and the beginning horizontal  wires in W*(c,I) are assigned to the bo t tom 
(top) layer, and the cont inuing wire in W*(c, I) remains in the same layer as its input  port ion (see 
Fig. 5). 
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Subcase 2.2.2: The output  wires assigned to tracks k - 1 and k in W*(c - 1, I) are in different 
layers. 

In this case the layout W*(c,I)  v~ W'(c,I). Layout  W*(c,I)  is W'(c,I)  after performing the 
t ransformation shown in Fig. 6. 

The layer assignment is defined as follows. If the ou tput  wire in track k of W*(c - 1, I) is in the 
top (bottom) layer, then the only vertical wire and the output  wire in track k of W*(c, l )  are 
assigned to the bo t tom (top) layer. The output  wire in track k - 1 of W*(c, I) is assigned to the top 
(bottom) layer (see Fig. 7). 

Case 3: Interval 1 is labeled R2. We omit  this case since it is symmetric to case 2. 

end of procedure L A Y O U T _ A N D _ L A Y E R _ A S S I G N M E N T  

In Fig. 8 we give a planar layout constructed by algori thm (i) in [9]. The corresponding layout 
constructed by our procedure is given in Fig. 9. 

w'(c-ld) W'(cj) W'(c-ld) W'(c,l) 

Fig. 5. Example for case 2.2.1. 

W'(c-k~) W'(c,l) W'(c-l,I) W'(cd) 

Fig. 6. Layout transformation for case 2.2.2. 

W'(c-ld) w'(cJ) W*(c-td) W'(cd) 

Fig. 7. Example for case 2.2.2. 
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Fig.  8. L a y o u t  cons truc ted  by  a lgor i thm (i) in [9] .  
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Fig. 9. Layout constructed by our procedure. 

Theorem 2.1. Let A and A* be defined as above. For a set N of nets, algorithm A* constructs a planar 
layout and wires it in three layers. Furthermore, the number of tracks in the three-layer wiring 
constructed by A* and the number of tracks in the planar layout constructed by A are identical. 

Proof: Since algorithm A satisfies property (1) we know that it constructs the planar layout in 
a single left-to-right scan of the columns. This implies that once the layout for W(c) is constructed, 
the layouts for W(1), W(2) . . . .  , W(c) are not changed. Algorithm A* mimics this process. If 
isv(W*(c)) = isv(W'(c)), then we know by property (2) and our construction rules that the 
osv(W*(c)) = osv(W'(c)). Therefore, it follows inductively (after a trivial proof for the base) that 
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W* (c) and W(c) have identical output strand vectors in each column c. One can easily verify that 
W* is a planar layout for N, and that the three-layer wiring generated by our procedure is valid. 
Therefore, algorithm A* constructs for N a planar layout and wires it in three layers; furthermore, 
the number of tracks in the three-layer wiring constructed by A* and the number of tracks in the 
planar layout constructed by A are identical. This completes the proof of the theorem. [] 

3. Discussion 

There are two major approaches for solving three-layer routing problems: the two-phase 
approach and the single-phase approach. In the two-phase approach, a planar layout is construc- 
ted in the first phase. In the second phase a three-layer wiring for the planar layout obtained in the 
first phase is constructed through a transformation, e.g., legal partition of the diagonal diagram 
induced by the layout. In the single-phase approach, layout construction and the three-layer 
assignment of the layout are performed simultaneously. 

In this paper we presented a simple method to convert two-phase three-layer conservative 
routing algorithms into single-phase three-layer routing algorithms. This class of algorithms 
includes simple variations of well-known algorithms for the channel routing problem. Our 
approach makes simple modifications to conservative layout algorithms and incorporates a simple 
layer assignment strategy. We believe that if the structure of the planar layouts generated by 
a layout algorithm are simple, a three-wiring for the layout may be found by using diagonal 
diagrams. On the other hand, if a layout algorithm generates planar layouts with simple structures, 
it is not unlikely that this layout algorithm can be transformed into a single-phase routing 
algorithm. There is a broader class of algorithms for which transformations similar to ours can 
generate three-layer wirings in a single phase. Property (2) defined in this paper is too restrictive. 
We defined conservative algorithms this way in order to simplify our proof. One may relax 
property (2) and only require that the number of extended nets, paired nets, etc., have identical 
counts at the end of each step. Equivalence proofs can also be obtained for these cases. For brevity 
we did not include the broader class of layout algorithms. 

In general, wirings generated through legal partitions of the diagonal diagrams tend to have 
a large number of vias. For the layouts whose diagonal diagrams satisfy certain properties, some 
techniques can be used to reduce the number of vias. For example, the layouts generated by the 
three algorithms given in I-9] can be wired in three layers by using the layer assignment algorithm 
given in [1]. This layer assignment algorithm finds a legal partition of the diagonal diagram 
corresponding to the layout. Special techniques are used to minimize the number of vias in the 
three layer wiring. It is easy to show that our layer assignment algorithm has similar performance 
with respect to the number of vias. 

Recently, Wieners-Lummer 1-13] designed a single-phase three-layer routing algorithm for the 
multiterminal net CRP. The approach, based on the algorithm of [-7], is to decompose a CRP into 
three subproblems, and solve each by an algorithm similar to the conservative layout algorithms 
discussed in Section 2. The layer assignment rules are based on our rules, which were reported in 
a preliminary version of this paper I-4]. Wieners-Lummer's algorithm guarantees three-layer 
wirings with channel width no more than 3dmax/2 + O(x/dmax log dmax). 
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