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Abstract. It is well known that every planar layout is four-layer wirable. If we decrease the 
number of layers, there are planar layouts that cannot be wired in three layers and the 
problem of determining whether a planar layout is three-layer wirable is NP-complete. A 
planar layout may be stretched vertically (horizontally) by introducing empty rows (columns). 
Clearly, stretching a planar layout increases its area; however, if it is stretched in appropriate 
locations it can be wired in fewer than four layers. It is well known that every planar layout 
W can be stretched and two-layer wired in an area not larger than twice the area of W. The 
bound on the wiring area is best possible, i.e. there are planar layouts that need to be 
stretched by this factor of two. Every planar layout W can be stretched and three-layer wired 
in an area not larger than (4/3)  times the area of W. The bound on the wiring area is best 
possible for wirings obtained by partitioning diagonal diagrams, i.e. there are planar layouts 
that need to be stretched by the factor 4 /3  when the wiring is obtained by partitioning 
diagonal diagrams. In this paper we investigate the problem of stretching and then wiring in 
three layers a planar layout. We show that for a class of planar layouts, the additional area is 
no more than 1 /4  of the planar layout area. We develop an algorithm to construct an optimal 
area layout for the case when each of the sublayouts must be wirable by one of a given set of 
algorithms. 

Keywords. Three-layer wirability, planar layout, knock-knee model, stretching. 

I. Introduction 

The rectangle routing problem (RRP) is a fundamental problem in VLSI design 
automation. As input we are given a rectangular grid R determined by the 
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horizontal lines with y-coordinate values i, 0 ~< i ~< m + 1 (called tracks or rows) 
and the vertical lines with x-coordinate values j ,  0 ~<j ~< n + 1 (called columns). 
The horizontal lines with y-coordinate values 0 and m + 1 and the vertical lines 
with x-coordinate values 0 and n + 1 form the boundary of R. Let N = 
(N1, N 2 . . . .  , Np }, where each N, is a subset of grid points on the boundary  of R 
(excluding the corners of R),  such that N, n Nj = ~ for all i 4:j. Each set N, is 
called a net and its grid points are called terminals. We assume that there are k 
conducting layers L 1, L z , . . . ,  L k, each is a copy of the channel grid, and L,+ 1 is 
considered to be laid upon L,, 1 ~< i ~< k - 1. Contacts  between two layers (vias) 
can be introduced only at grid points. Under  the knock-knee model a k-layer 
wiring (which is the final routing solution) is a three-dimensional structure which 
can be characterized by two mappings: wire layout and layer assignment. A wire 
layout for a R R P  is a mapping that associates each net N, to a subgraph IV,, of the 
grid R connecting all terminals in N i such that W, does not share an edge with Wj 
for all j 4= i. This wire layout is called a planar layout, a path disjoint layout, or 
simply a layout. We use W = ( W  1, W2, . . . ,  Wp } to denote the wire layout. The 
layer assignment of a planar layout is a mapping that associates each edge in W to 
a layer in {L1, L 2 . . . .  , L~} in such a way that for any i 4:j,  if edges (P l ,  P2) and 
(P2,  P3) in W/ are assigned to Ls and L t, respectively, and (P2, P4) E Wj is 
assigned to L, ,  then u > max{ s, t ) or u < min{ s, t ). A solution for an R R P  is a 
k-layer wiring formed by the composite  mapping of wire layout  and layer 
assignment. Obviously, in a wiring the segments of the same wire W, can be 
connected through a via without sharing a grid point  with a segment of another 
wire Wj in any layer. Physically speaking, in a wiring all terminals from the same 
net are made electrically common and no two distinct nets are connected. In 
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practice knock-knee wirings minimize crosstalk between wires since the area of 
the grid shared by two different nets is limited to grid points. A variation of the 
rectangle routing problem is the channel routing problem (CRP) in which all 
terminals appear on the top and bottom boundaries of the grid R and the 
objective is finding a k-layer wiring with the least number of tracks. 

The above characterization of the wiring provides an approach for constructing 
a wiring for a CRP by finding a planar layout with least number of tracks for the 
given CRP and then finding a layer assignment for the layout. This approach is 
used by the routing algorithm for the two-terminal net CRP (each net has exactly 
two terminals) by Preparata and Lipski [9]. The first phase of their algorithm 
finds a minimum-track planar layout that satisfies some special properties. In the 
second phase of their algorithm, the planar layout is transformed into a three-layer 
wiring by a powerful transformation (legal partition of the diagonal diagram 
induced by the planar layout). Their algorithm guarantees a three-layer optimal 
wiring. Several other routing algorithms for the CRP are also based on this 
approach (e.g. see the algorithms in [8,10,12]). 

Brady and Brown [1] showed that every planar layout can be transformed into 
a four-layer wiring with dimensions identical to those in the planar layout. The 
implication of this result is that one can reduce the rectangle routing problem to 
the problem of finding a planar layout, since for any planar layout a four-layer 
wiring is always possible in the layer assignment phase. One may consider this 
two-phase four-layer routing approach as 'standard'. For example, necessary and 
sufficient conditions for the existence of a planar layout for the two-terminal net 
RRP are given in [3]. If these conditions are met, a planar layout can be found by 
the algorithms in [3] and [7]. A four-layer wiring for this planar layout can be 
found by applying the layer assignment algorithm given in [1]. It is not known 
whether the layouts generated by the algorithms in [3] and [7] are three-layer 
wirable. 

By using the reduction given in Lemma 2.1 (refer to the next section) Lipski [6] 
gives a 19-row wire layout that is not three-layer wirable. He also shows that the 
problem of deciding whether a given planar layout is three-layer wirable is an 
NP-complete problem. However, as we show in Section 7, the problem of 
determining whether a k-row planar layout is three-layer wirable is polynomially 
solvable when k is bounded by some fixed constant. 

A planar layout may be stretched vertically (horizontally) by introducing 
between a pair of adjacent rows (columns) an empty row (column) (see Figs. 3.1 
and 3.5) without a horizontal (vertical) wire segment on it. Clearly, stretching a 
planar layout increases its area; however, if it is stretched in certain places it can 
be wired in less than four layers. Let us now investigate the trade-off between the 
routing area and the number of layers needed for wiring a planar layout. Let 
A ( W )  denote the area of planar layout W. The simple stretching algorithm 
described in [7] generates a two-layer wiring with area not larger than 2 * A(W), 
by vertically stretching it between every pair of adjacent rows. An algorithm that 
constructs a minimum area wiring by vertically stretching the planar layout is 
given in [2]. In [5] it is shown that there exist planar layouts with area A(W)  
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which cannot be stretched and wired in an area less than (2 - c) * A(W), for all 
> 0. The stretching algorithm described in [2] and [4] generates a three-layer 

wiring with area not larger than (4/3) * A(W), by vertically stretching it between 
every three adjacent rows. In [5] it is shown that there exist planar layouts with 
area A(W) which cannot be stretched and wired by partitioning diagonal 
diagrams in an area less than (4/3 - ~) * A(W), for all c > 0. Therefore, the area 
bound for arbitrary planar layouts is tight for diagonal diagram methods when 
one is only allowed to vertically or horizontally stretch the planar layout. 
Gonzalez and Zheng [5] also present lower bounds for the area of the three-layer 
wiring generated by an algorithm (the algorithm is not required to construct the 
wiring by partitioning the corresponding diagonal diagram) that is only allowed 
to vertically or horizontally stretch a planar layout. In this paper we show that a 
class of planar layouts can be stretched and three-layer wired in an area not 
larger than (5/4) * A(W). Our technique consists of vertically stretching a planar 
layout every four rows. We show that each of these four-row planar layouts is 
three-layer wirable. This area bound is close to its lower bound of 7 /6  given in [5] 
for algorithms that construct wirings by partitioning the corresponding diagonal 
diagram. We also develop an algorithm to construct an optimal area layout for 
the case when each of the sublayouts must be wired by one of a given set of 
algorithms. Other issues relating to three layer wirability of planar layouts are 
also addressed in this paper. 

In Section 2 we present some preliminary definitions and results developed by 
Preparata and Lipski [9] for three-layer wiring planar layouts. Our stretching-wir- 
ing algorithm is given in Section 3. For completeness, in Section 4 we present an 
algorithm to wire in three layers any two-row planar layout and in Section 5 we 
present an algorithm to wire in three layers any three-row planar layout. The 
algorithm presented in Section 5 is obviously more general than the one in 
Section 4; however, the algorithm in Section 4 tends to generate wirings with 
fewer vias. In some applications these wirings are more desirable. The algorithm 
in Section 5 is different from the one in [2]. In Section 6 we present an algorithm 
that generates three-layer wirings for a special class of four-row planar layouts. In 
Section 7 we present an algorithm to find a three-layer wiring for any k-row 
planar layout, whenever such a wiring exists. The time complexity for this 
algorithm is linear; however, the constant associated with this bound is exponen- 
tial on k. In Section 8 we discuss the implications of our results. 

2. Preliminaries 

In this section we review some definitions and results from [9]. Preparata and 
Lipski's algorithm for finding a wiring for a given planar layout W consists of the 
following steps: 
(i) construct the core diagonal diagram D that corresponds to the layout W; 
(ii) find a legal partition P of D that partitions D into two-colorable regions; 

and 
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(iii) find a layer assignment W'  of W from P. 
The diagonal diagram corresponding to the given layout is constructed as 

follows. At each grid point in R where W has a bend, a (v~-/2)-length diagonal 
(called half diagonal) emanating from the grid point  and internally bisecting the 
bend wire is introduced. Thus, in case there is a knock-knee at a grid point, a 
v~--length diagonal (called full diagonal), centered at the grid point, is formed. 
The resulting geometric structure from this transformation is called a diagonal 
diagram. The core diagonal diagram of a given layout is the diagonal diagram 
with the half-diagonals deleted (see Fig. 2.2). For the grid R, the partition grid 
G(R) is defined as follows. The gridpoints of G(R) are the points (x + 1/2 ,  y + 
1/2),  0 ~< x ~< n, 0 ~<y ~< m. The grid points with x = 0, x = n, y = 0 or y = m are 
called boundary points and the other grid points are called internal points. A 
vertical (horizontal) grid line in G(R)  is the line segment that includes all the grid 
points with the same y-coordinate (x-coordinate). The space between any two 
adjacent horizontal (vertical) grid lines is called a row (column) of G(R). Note 
that a row (column) in R is a horizontal (vertical) grid line in R, but a row 
(column) in G(R) is all the space between two adjacent horizontal (vertical) grid 
line in G(R). The edges of G(R) are the segments connecting each point with its 
immediate neighbors, vertically, horizontally, or at 45-degree angles. Let D 
denote the core diagonal diagram of layout W. It should be noted that a full 
diagonal in D lies on an edge of G(R), the end points of a full diagonal are grid 
points of G(R) and no two full diagonals in D cross. Each nonboundary grid 
point of G(R) is called a vertex. We say that the vertex located at grid points 
(s, t) is D has degree i, 0 ~< i ~< 4, if there are exactly i full diagonals with end 
points at (s, t). We say that D is of degree i, 0 ~< i ~< 4, if the maximum degree of 
any vertex in D is i. A legal partition P of D (see Fig. 2.2) is any collection of 
edges in G(R) satisfying the following conditions: 
(a) the number of edges in P incident to any vertex of G(R) is even; 
(b) the diagonals in P are exactly those in D; and 
(c) P does not contain any of the patterns shown in Fig. 2.1. 

The following lemma shows the significance of the notion of diagonal diagram 
D constructed from W and the legal partition P with respect to D. 

L -/" "J', F',, 
dashed diagonals must not be present 

Fig. 2.1. Forbidden patterns. 
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Fig. 2.2. Examples. 

Lemma 2.1. [9]. / f  there is a legal partition P of the core diagonal diagram D 
induced by the planar layout W, then there exists a three-layer assignment for W. 
Furthermore, a three-layer assignment for W can be easily constructed from P. 

We omit the description of the process for f inding a layer assignment  of W 
from a legal part i t ion P of D. Interested readers should refer to [9] for details. In 
Fig. 2.2. we give a layout W, its corresponding core diagonal diagram D, the legal 
part i t ion P of D and the three-layer wiring for W obtained f rom P. In the 
remaining por t ion of this paper  we use the term diagonal  diagram to refer to a 
core diagonal diagram. 

3. Finding stretching posi t ions  

As ment ioned in Section 1, it is always possible to find a three-layer wiring for 
a given planar layout by stretching it. Stretching a planar layout vertically is 
equivalent to inserting into the layout grid lines wi thout  any horizontal  wires on 
it. Let us now briefly describe our approach for three-layer wiring. First we divide 
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a planar layout horizontally into three-layer wirable sublayouts. Then we find a 
three-layer wiring for each of these sublayouts and insert an empty grid line 
between every pair of adjacent sublayouts. In the final step, the vertical wires in 
every two adjacent sublayouts are joined at the newly introduced grid line 
between them by vias whenever necessary. Since the problem of determining 
whether or not a planar layout is three-layer wirable is NP-complete [6], it is 
simple to show that the problem of finding a minimum area three-layer wiring of 
a given layout W by vertically or horizontally stretching it is NP-hard. Our 
problem consists of dividing vertically a planar layout into a small number of 
sublayouts such that each of these sublayouts is wirable by one of a given set of 
algorithms. 

The algorithms in [4] and [2] find a three-layer wiring for any three-row planar 
layout. Therefore any planar layout W that is vertically stretched every three 
rows can be wired in three layers. The resulting wiring has area not larger than 
(4/3) * A(W). For completeness, we present our algorithm 3ROW-ASSIGN in 
Section 5. Using a similar approach, but with algorithm 2ROW-ASSIGN (see 
Section 4), the area bound becomes (3/2) * A(W). Even though the area bound 
is larger, these wirings tend to have a smaller number of vias. In Section 6 we 
present algorithm 4ROW-ASSIGN that constructs a three-layer wiring for any 
four-row planar layout whose diagonal diagram is of degree 1. If the diagonal 
diagram of a given planar layout W is of degree 1, a three-layer wiring with area 
not larger than (5/4) * A(W) can be obtained by following our general strategy. 

Given a planar layout W whose diagonal diagram is of degree greater than 1, 
can we find a three-layer wiring with area smaller than (4/3) • A(W)? Consider 
the planar layout given in Fig. 3.1 whose diagonal diagram is shown in Fig. 3.2. 
This diagonal diagram is of degree 4. A legal partition is shown in Fig. 3.3. 
Finding this legal partition is difficult. If we divide the planar layout into 
sublayouts with no more than three rows each, then the minimum number of 
sublayouts is 7. On the other hand, if we divide it into sublayouts with diagonal 
diagram of degree 1, the minimum number of such sublayouts is also 7. However, 
if we divide it into the five subdiagrams delineated by the dashed lines in Fig. 3.2, 
we can find a legal partition by applying either procedure 3ROW-ASSIGN or 
4ROW-ASSIGN on each subdiagram. The partitions constructed by these proce- 
dures are shown in Fig. 3.4. The final wiring is given in Fig. 3.5. In this case 
A(W') ~ (23/19) * A(W). This example shows that when we divide a planar 
layout into three-layer wirable sublayouts we should be more interested in the 
local structure of adjacent rows in the layout instead of only considering the 
structure of the entire layout. 

To obtain good wirings, we need to consider the case when a sublayout W has 
a trivial layout structure surrounding it. In this case the diagonal diagram of the 
planar layout consists of three regions (from top to bottom): a region whose rows 
are empty, a region of adjacent rows which can be legally partitioned and another 
region of empty rows. When one constructs a legal partition for the middle 
region, it can be constructed in such a way that there are no horizontal 
partitioning lines on the top and bottom boundary of this region. Now, for each 
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Fig. 3.1. Planar layout. 

/ \ \ .  
....... v___~  _~_ 

\ \ \  / \ 
/ ",,,/ \ / \ / \  

Fig. 3.2. Diagonal diagram. 
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Fig. 3.3. Legal partition. 

vertex on the top (bottom) boundary of the middle region incident with an odd 
number of partitioning line segments and diagonals, we add a vertical partition- 
ing line segment emanating from it and finishing on the top (bottom) boundary 
of the top (bottom) region. It is easy to prove that the above procedure generates 
a legal partition of the diagonal diagram for the three regions from the legal 
partition of the diagonal diagram for the middle region. 

A layer assignment algorithm that constructs a wiring for a planar layout by 
partitioning the corresponding diagonal diagram is said to be consistent if the 
following two conditions are satisfied: 
(a) if the algorithm generates a three-layer wiring for a planar layout W, then the 

algorithm must also generate a three-layer wiring for a planar layout W', 
where the diagonal diagram for W' is the diagonal diagram for W sur- 
rounded by a trivial structure; and 

(b) if the algorithm generates a three-layer wiring for a planar layout IV, then the 
algorithm must also generate a three-layer wiring for W', where planar layout 
W' consists of contiguous rows in W. 

From the discussion in the previous paragraph it is simple to see that any layer 
assignment algorithm which constructs a wiring for a planar layout by partition- 
ing the corresponding diagonal diagram can be modified to satisfy condition (a). 
Modifying any layer assignment algorithm so that it satisfies property (b) is in 
general very difficult; however, in many cases it is simple. An example of a 
consistent layer assignment algorithm is a generalized version of algorithm 
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Fig. 3.4. Augmented legal partition. 

3ROW-ASSIGN (see Section 5) which first checks if the diagonal diagram 
consists of three or less rows surrounded by a trivial structure. If so, it constructs 
a three-layer wiring for it by incorporating the techniques for handling trivial 
structures mentioned before; otherwise it does not generate a wiring. Note that 
the algorithm 2ROW-ASSIGN given in the next section does not construct a 
wiring from a legal partition of the diagonal diagram. Suppose we have a set of 
consistent layer assignment algorithms A 1, A 2 , . . .  , A r that find three-layer wir- 
ings from a legal partition of a diagonal diagram. We say that D a, D 2 . . . .  , D' is a 
vertical division of a diagonal diagram D with respect to A1, A 2 , . . .  , A r if the 
concatenation of the DJs ( D  y above O J+l) is D, and O J, 1 ~ j  <~ t, is wirable by 
one of the algorithms A,. A vertical division D 1, D2 , . . . ,  D t of D with respect to 
/11, / 1 2 , " ' , / 1 r  is optimal if t is least possible among all vertical divisions of D. 
Note that optimality can also be defined with respect to horizontal divisions. 
Optimal divisions for this more general problem can be obtained by following a 
similar procedure. For simplicity, we did not define it this way. One can also 
define a more general stretching scheme by using algorithms that construct 
wirings of planar layouts rather than restricting the algorithms to constructing the 
wirings by partitioning diagonal diagrams. Since most of the known wiring 



T. Gonzalez, S-Q. Zheng /Stretching and 3-layer wiring planar layouts 121 

Fig. 3.5. Augmented three-layer wiring. 

algorithms construct a wiring by partition diagonal diagrams, we decided on our 
definition. 

Assuming that the bottom and top boundaries of G(R) have a y-coordinate 
value 0 and m, respectively, procedure DIV is defined as follows. 

procedure DIV 
begin 

t*-- 1; 
j*-- O; 
while j < m do 

for i = l t o  rdo  
Let k i be the largest integer such that the diagonal diagram between 
the grid lines with y-coordinate values j and k, is wirable by 
algorithm A,; 

endfor 
yt~--max(k, I1 ~i<~r}; 
J ~Yt; 
t ~ t + l ;  

endwhile 
end of procedure DIV 
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Procedure DIV finds t - 1  lines (with y-coordinates Yl, Y2 . . . . .  Yt-1) that  
divide the diagonal diagram D into t subdiagrams. For  each of these subdi- 
agrams a legal part i t ion can be found by one the algorithms Aa, A 2 , . . . ,  A r. Since 
the problem of determining whether or not  a planar layout is three-layer wirable 
is NP-complete  [6], it is simple to show that the problem of f inding a m i n i m u m  
area three-layer wiring of a given layout W by stretching it is NP-hard.  However,  
if one restricts the above problem so that  each of the subdiagrams must  be legally 
part i t ioned by one of the algorithms A 1, A 2 , . . .  , At, we have the following result. 

Theorem 3.1. With respect to the consistent layer assignment algorithms 
A1, A 2 . . . . .  Ar, procedure D I V  finds a minimum number of division lines for 
diagonal diagram D. 

Proof.  Suppose the diagonal diagram D can be divided into t '  < t subdiagrams 
t each wirable by one of the algorithms A,. Let y" <y ,+ l ,  1 ~< i < t '  - 1, be the 

y-coordinate values of the t '  - 1 division lines. Let Y0 = Yo denote  the y-coordi-  
nate value of the bo t tom boundary  of R and y, = y,', denote  the y-coordinate  
values of the top boundary  of R. Since t '  < t there exists an integer i such that 
y,' < y, and y,+ ~ > y,+ 1. Let i be the smallest integer that  satisfies this condit ion.  
Since the algorithms are consistent (i.e. satisfy properties (a) and (b)), it must  
have been that  procedure DIV would have selected the horizontal  line with 

f y-coordinate value y,+a instead of the one whose y-coordinate  value is Y,+1. 
Therefore, there is a contradiction.  Hence t is m i n i m u m  with respect to al- 
gorithms A,, 1 ~< i ~< r. [] 

Our complete  scheme for the layer assignment problem is given below. 
procedure STRETCHING-WIRING 

Construct  on grid G ( R )  the diagonal diagram D corresponding to the 
given layout W on R; 

Use procedure DIV to optimally divide D on G ( R )  into D 1, D 2 . . . . .  D t 
(accordingly the planar layout W on R is par t i t ioned into sublayouts 
W 1, W 2 . . . . .  Wt); 

For  each D', 1 ~< i < t, construct  a legal part i t ion P '  by one of the 
consistent algorithms A 1, A2 . . . .  , Ar; 

From the legal part i t ion P' of D', construct  a three-layer wiring A' for 
sublayout W'; 

Construct  grid R '  by inserting an empty  grid line in R between W' and 
W z+l, 1 ~< i < t, connect  A ~ and A '+~ at the newly inserted grid line 
and introduce vias at the grid points  on the new grid lines if necessary; 

end of procedure STRETCHING-WIRING 

4. A simple layer assignment algorithm for two-row planar layouts 

A three-layer wiring for a two-row layout can be easily constructed from a 
legal part i t ion of the diagonal diagram corresponding to the given layout. The 
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main disadvantage of this approach is that the wiring constructed from a legal 
partition of the diagonal diagram could require a large number of vias. The 
algorithm that we present in this section constructs a layer assignment without 
using the diagonal diagram and the wiring does not contain a via at any internal 
grid point. 

Let W be a two-row layout defined over the grid R determined by horizontal 
lines with y-coordinate values i, 0 ~< i ~< 3, and vertical lines with x-coordinate 
values j ,  0 ~<j ~< n + 1. Note that there is no horizontal wire with y-coordinate 
value 0 or 3. For simplicity, we assume that each net consists of two terminals, 
and each wire in W is a jogging path in R (possibly with loops, i.e. the wire 
crosses itself or it forms a knock-knee with itself). It is important to note that our 
result for this simplified case can be easily generalized to cover arbitrary two-row 
layouts, including multiterminal net layouts. In order to simplify our proofs we 
transform W into a full layout, i.e. every edge in R has a wire. After constructing 
a full layout, there might be useless wires (loop wires without terminal points), 
and useful wires (wires with terminal points). A trivial wire is a useful wire 
consisting of a single vertical line segment, i.e a vertical wire connecting two 
terminal points located on the same column. 

We denote the three different layers by T (top), M (middle) and B (bottom). 
Our procedure constructs a mapping L with domain the set of useful wires in W 
and range (T, M, B} such that for any two useful wires W, and Wj, i ~ j ,  if they 
share a grid point then L ( W , ) ~  L(Wj). Clearly, this mapping defines a valid 
wiring. Note that if the two-row planar layout contains trivial wires, one can 
remove the columns occupied by these wires and solve the remaining problem. 
The solution to the original problem can be obtained by assigning each trivial 
wire to a layer that is different from any layer assigned to the two tracks that the 
trivial wire intersects. A problem with useless wires can be broken into a set of 
disjoint problems (without useless wires) which can be solved almost indepen- 
dently. The only dependency is that one of the layers that is not used in the 
rightmost column of the first problem (i.e. the layer that will be assigned to the 
useless wire) should not be used in the first column of the second subproblem. 
Since this dependency can be easily handled, we may restrict our attention to the 
problem of three-layer wiring of two-terminal net planar layouts without trivial 
and useless wires. Let x(t)  denote the x-coordinate of terminal t. For any wire 
W,., let B(W,) and E(W,.), where x(B(W,)) <~ x(E(V~,)), denote the beginning and 
ending terminals of wire W,, respectively. Also, let left(W~) (right(W i)), denote 
the smallest (largest) x-coordinate of any point in wire W,. 

In what follows we show how to assign layers to each of the wires in a two-row 
planar layout. The grid R is determined by horizontal lines with y-coordinate 
values i, 0 ~< i ~< 3, and vertical lines with x-coordinate values j ,  0 ~<j ~< n + 1. 

procedure 2ROW-ASSIGN(W) 
Let W =  ( W 1, W2,...,Wp}; 
Let LAYER be defined as a first-in-first-out queue; 
Add T, M, and B (in any order) to LAYER; 
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for j = 0 to n + 1 do / *  j is column number * /  
case 

for each beginning terminal point in column j do 
/ * In case there are two beginning terminal points the one whose 

wire has the smaller left(W) value is considered first. In case of 
ties the order is immaterial * /  

Let W~ be the wire to which this terminal belongs; 
L(W~) ~ delete(LAYER); 

endfor 
for each ending terminal point in column j do 

/ *  In case there are two ending terminal points the one whose 
wire has the larger right(W) value is considered first. In case of 
ties the order is immaterial * /  

Let W~ be the wire to which this terminal belongs; 
Add L(W~) to LAYER; 

end for 
endcase 

endfor 
end of procedure 2ROW-ASSIGN 

Lemma 4.1. Procedure 2ROW-ASSIGN generates a three-layer assignment for any 
two-terminal two-row full planar layout without useless and trivial wires in O( n) 
time, where n is the number of columns. 

Proof. Since it is obvious that the procedure takes O(n) time, we only prove that 
the algorithm generates a three-layer assignment for any two-terminal two-row 
full planar layout without useless and trivial wires. The proof is by induction on 
j ,  the column number. We show that at the end of the j t h  iteration, all the wires 
with their beginning terminal located before the j + 1st column have been 
assigned a layer and the wiring is valid. This statement is obviously true for j = 0. 
Assume it holds for column j and consider column j + 1. There are three cases 
depending on the type of terminal points encountered at column j + 1. 

Case 1. Both terminal points are beginning terminal points (from wires Wa and 
Wb). Assume without loss of generality that the left(Wa) <~ left(Wb). Since both 
terminal points are beginning points it must be that the wire segments occupying 
the two tracks between column j and j + 1 belong to the same wire W c. If c 4= a 
(e.g. Fig. 4.1(a)), then wire ~ has its ending point in column j.  From our 
algorithm it is simple to verify that L(Wc) was the last element added to LAYER 
and that LAYER contains three elements at the beginning of the j t h  iteration. 
Therefore, the algorithm assigns layers to W a and W b that are different from 
L(Wc) and we have a valid wiring. Thus, the induction hypothesis holds at step 
j + 1. On the other hand if a = c (e.g. Figs. 4.1(b) and (c)), it must have been that 
column j contained two ending terminal points and LAYER had one element 
when processing column j.  Clearly, the algorithm selects such layer for W a and 
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W, ~ W, 

Wo Wb W~ 

(a) (b) (c) 
Fig. 4.1. Examples for case 1. 

one of the other two layers for W b. Therefore, we have a valid wiring and the 
induction hypothesis holds after the j + 1st iteration. This completes the proof 
for this case. 

Case 2. There is one beginning terminal point (from wire Wa) and one ending 
terminal point (from wire Wb). There are two subcases depending on whether 
a = b or not. 

Subcase 2.1: a =  b. Clearly, the wire segments occupying the two tracks 
between column j and j + 1 belong to the same wire W C (e.g. Figs. 4.2(a) and 
(b)). If c ~: a (e.g. Fig. 4.2(a)) then wire W e has its ending point in column j.  
From our algorithm it is simple to verify that L(W~) was the last element 
added to LAYER and that LAYER contains three elements at the beginning 
of the j + 1st iteration. Therefore, the algorithm assigns a layer to W~ that is 
different from L(Wc) and we have a valid wiring. Thus, the induction hypothe- 
sis holds at step j + 1. On the other hand, if c = a (e.g. Fig. 4.2.(b)), it must be 
that column j contains two ending terminal points and LAYER had one 
element at the beginning of the j t h  iteration. Clearly, the algorithm selects 
such layer for W~. Therefore, we have a valid wiring and the induction 
hypothesis holds after the j + 1st iteration. This completes the proof for this 
subcase. 

Subcase 2.2: a v~ b. For this case it is simple to verify that the two wire 
segments occupying the tracks between columns j and j +  1st belong to 
different wires and that one of these wires is W b (e.g. Fig. 4.3). The layer 
assigned to W a is different from any of the layers assigned to these wires since 

w, w~ 

[ / 

(a) Co) 
Fig. 4.2. Examples for subcase 2.1. 
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Wb Wb 

(a) (b) 
Fig. 4.3. Examples for subcase 2.2. 

the layer assigned to the two wires between columns j and j + 1 is not added 
to LAYER until after an element is deleted from LAYER and assigned to W a 
(note that the LAYER contains one element since there are only two active 
nets, i.e. nets for which we have processed the begin terminal but not  its end 
terminal). Therefore we have a valid wiring and the induction hypothesis holds 
at step j + 1st. This completes the proof of this subcase and case 2, 

Case 3: Both terminal points are ending. The proof for this case follows from the 
fact that the algorithm only adds elements to LAYER and a valid wiring up to 
column j + 1st already exists. 

This completes the proof for this lemma. [] 

A two-row planar layout and its layer assignment constructed by the above 
algorithm are given in Fig. 4.4. 

Theorem 4.1. Every two-row planar layout can be three-layer wired without internal 
vias in O(n) time, where n is the number of columns in R. 

Proof. For the case of two-terminal net layouts, the wiring is obtained by 
following the rules mentioned just before procedure 2ROW-ASSIGN. The al- 
gorithm for multiterminal-net layouts is similar. Since the proof that the al- 
gorithms generate a three-layer wiring is straight forward, it will be omitted. [] 

5. A layer assignment algorithm for three-row planar layouts 

Our layer assignment algorithm for a three-row planar layout W is based on 
finding a legal partition P of the diagonal diagram D. This legal partition is 
obtained from a legal connection C of the node diagram V induced by D. The 
node diagram V consists of the grid G ( R )  and the nodes are defined from D as 
follows: there is a node in V at grid point (s, t) if the vertex at grid point (s, t) in 
D is of odd degree. A legal connection C of V is a set of horizontal and vertical 
grid line segments of G ( R )  that satisfies the following conditions: 
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Planar Layout 

Three-Layer Wiring 

Fig. 4.4. Three-row planar layout. 

(i) the end point of any line segment must either lie on the boundary of G(R) 
or be incident to a node in V; 

(ii) for every node v in V there is exactly one horizontal or one vertical line 
segment incident to v; 

(iii) there are no two line segments l '  and l "  in C lying on two adjacent vertical 
(horizontal) grid lines of G(R) such that their projections to the y-axis 
(x-axis) share more than one point; 

(iv) no two orthogonal line segments in C intersect. 
From the definition of legal partition and legal connection, it is easy to prove 

the following lemma. 

Lemma 5.1. I f  C is a legal connection of node diagram V induced by the diagonal 
diagram D, then superimposing C on D yields a legal partition of D. [] 

By this lemma, the problem of finding a legal partition P of D is reduced to 
the problem of finding a legal connection C of V induced by D. We graphically 
represent all the grid points in V without nodes by circles and represent all the 
nodes by filled-in circles. There are two internal horizontal grid lines in G(R). If 
we partition the nodes in V into columns according to the vertical grid lines of 
G(R) where they are located, we have four different types of columns. The legal 
connection C of V is constructed column by column in a left-to-right scan of 11, 
When a column is being considered, we need to remember only the connection of 
the preceding column. Based on the configuration of this column and the type of 
the current column, the connection of the nodes in the current column is 
determined. The connection of the current column may modify the connection of 
the immediately preceding column; however, this modification guarantees that 
the resulting connection is legal. Without loss of generality we assume that the 
left and right boundary of G(R) are columns with no nodes. 
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procedure 3ROW-ASSIGN 
Construct the diagonal diagram D from W; 
Construct the node diagram V corresponding to the diagonal diagram D; 
Construct a legal connection C for V as follows: 

for c ~ 1 to n d o / *  left and right boundaries of G ( R )  are columns 0 
and n + 1, respectively * /  
begin 

Depending on the type of column c and the connection of column 
c -  1 make a legal connection by using the actions given by the 
finite automata depicted in Fig. 5.1 (which is explained in the 
following paragraph) for the nodes in columns c and c - 1. Note 
that this step may modify the connection of column c -  1 ob- 
tained in the previous iteration. 

end 
Find the legal partition P of D from the legal connection C of V and 
construct a three-layer wiring of W from P; 

end of procedure 3ROW-ASSIGN 

The actions in step (3) of the algorithm can be visualized by means of a finite 
state automata. The transition diagram for this automata is illustrated in Fig. 5.1. 
Each state corresponds to the connection in the previous column. The state 
composed of two x 's  means that those grid points can either have a node or not, 
and the dotted lines mean that those lines are absent. Associated with each 
transition in the automaton we define an inpu t -ou tpu t  pair. The first component  
of the pair, the input, specifies the type of the column being considered and the 
second component,  the output, shows the final configuration for both the 
previous and the current columns. By starting in the state corresponding to the 

Fig. 5.1. Fine automation describing the actions for 3ROW-ASSIGN. 
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Fig. 5.2. Construction of legal partition from diagonal diagram. 

left boundary of G(R), it is easy to prove by induction that a legal connection C 
of V is constructed. Therefore, we have the following theorem. 

Theorem 5.1. Algorithm 3ROW-ASSIGN generates a legal connection for any 
three-row planar layout in O( n ) time, where n is the number of  columns in R. 

Proof. The proof for the time complexity bound is straightforward. The cor- 
rectness of our algorithm can be established by induction on the length of the 
path followed when traversing the finite automaton, [] 

An example of a diagonal diagram D with node diagram V is given in Fig. 5.2. 
A legal connection C obtained by our algorithm and the legal partition P of D by 
superimposing C on D is also illustrated in Fig. 5.2. Gonzalez and Zheng [5] 
show that there exists a four-row planar layout whose diagonal diagram cannot 
be legally partitioned. Hence, it is impossible to construct a four-row layer 
assignment algorithm for arbitrary planar layouts by partitioning diagonal di- 
agrams. 

6. A layer assignment algorithm for a class of four-row planar layouts 

In this section we present an algorithm to construct a legal partition for any 
four-row diagonal diagram of degree 1. There are three internal grid lines in 
G(R).  Assign the y-coordinate one to the upper internal grid line, three to the 
middle internal grid line, and two to the lower internal grid line (this ordering 
facilitates the proof of correctness). Assign the x-coordinate zero to the left 
boundary of G(R), one to the vertical grid line (column) immediately to the right 
of the left boundary of G(R),  and so on. Each vertex in the diagonal diagram of 
degree 1 will also be referred to as a node and it will be represented by its 
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location on the grid. Sort the nodes of D into an ordered list ol = (xa, Yl), 
v2 = (x2, Y2) . . . . .  Vq = (Xq,  yq)  such that x,  <~ x,+ 1 and if x ,  = x,+ 1, y, >Y,+a. The 
nodes will be referred as top, midd le  or bo t tom,  depending on which internal grid 
line in G ( R )  they are located. Since the diagonal diagrams are of degree 1, in a 
legal partition every node has exactly one vertical or horizontal partitioning line 
incident to it. When a node has a vertical or horizontal partitioning line incident 
to it, we say that the node has been connected ,  otherwise we say that the node is 
not connected.  After adding a set of partitioning line segments to a diagonal 
diagram we say that it forms a par t ia l  legal par t i t ion  if there are no forbidden 
patterns (see Fig. 2.1) and no node has more than one partitioning line incident 
to it. Note that in a partial partition some nodes might not  be connected. Unlike 
procedure 3ROW-ASSIGN, connections cannot be made by only concentrating 
on the structure of the node diagram and totally ignoring the diagonals. When the 
number of rows in the layout is greater than three, it seems unlikely that one can 
construct a legal partition in a left-to-right column by column fashion. 

Our algorithm consists of three procedures; VERTICAL,  M O D I F Y  and 
HORIZONTAL.  These procedures are invoked as follows. At each step we have a 
partial partition and we find the smallest positive integer c such that node v c is 
not  connected. Then our procedure construct a partial partition in which nodes 
oa, v 2 . . . . .  v c and possibly other nodes are connected. The first step invokes 
procedure VERTICAL. If procedure VERTICAL fails to connect node re, 
procedure M O D I F Y  will introduce a set of partitioning line segments and all the 
nodes in column c will be connected. This operation is performed by modifying 
some previously introduced partitioning line segments. However, all the nodes 
that were connected before will remain connected. Whenever procedure MOD- 
IFY introduces a horizontal line segment to the right of the current column, Xc, 

procedure H O R I Z O N T A L  completes the connections of the nodes above and 
below this horizontal line segment. At this point we find the least value of c such 
that node G is not connected. This process continues until all nodes are 
connected by exactly one partitioning line and the entire configuration is a legal 
partition. In what follows we explain these procedures in more detail. 

When a node v¢ is considered (by procedure VERTICAL) we first check to see 
if it is possible to add a vertical line segment emanating from G and ending at the 
nearest neighbor node above v c, or at the top boundary  of G(R)  if such neighbor 
node does not exist. If the addition of this line segment does not  form a 
forbidden pattern (see Fig. 2.1) and no node has more than one partitioning line 
segment incident to it, we add it and node v c is connected. Otherwise we check to 
see if it is possible to add a vertical line segment emanating from v c and ending at 
the nearest neighbor node below v c or at the bot tom boundary  of G(R)  if such a 
node does not exist. If the addition of this line segment does not  form a 
forbidden pattern (see Fig. 2.1) and no node has more than one partitioning line 
segment incident to it, we add it. There are situations when this step also fails to 
connect G- In Lemmas 6.1-6.3 we characterize the situations when both of these 
steps fail to connect node G. In these lemmas we show that the connection of a 
node fails only when obstructive configurations 1-18 surround node v¢ (see Fig. 
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Fig. 6.1. Regions. 

6.3). We say that obstructive configuration i surrounds node v C in a partial 
partition P if node v~ is located on the right boundary of the obstructive 
configuration, and all the diagonals and partitioning line segments in the obstruc- 
tive configuration are present in P. In Fig. 6.3 we use a small circle to indicate 
the absence of a node, and a filled-in circle for a node. Note that there might be 
some other diagonals or partitioning line segments in P that are not explicitly 
shown in the obstructive configuration. Before proving Lemmas 6.1-6.3, we make 
a couple of definitions. In what follows we shall refer to the the unit squares 
between columns Xc_ 1 and x~ shown in Fig. 6.1 as regions a, fl, 7, and 8. Also, 
when the patterns shown in Fig. 6.2 are in any of these regions, we shall refer to 
them as a type A or type B region (solid line segments indicate diagonals and 
partitioning lines that must be present). In the following lemmas we show that 
while procedure VERTICAL is processing the nodes in column x~, a connection 
is always possible unless obstructive configurations 1-18 surround v~. At this 
point it is important to remember that the nodes in a column are consider in the 
order top, bottom and then middle. This ordering facilitates our proof of 
correctness. In what follows when we refer to the top, middle and bottom nodes, 
we mean the top, middle and bottom node in column x~. 

L e m m a  6.1. Given a partial legal partition and the smallest positive integer c such 
that node v C is not connected by a partitioning line segment and vc is a top node, 
procedure VERTICAL connects vc unless obstructive configurations 1-4 surround 

V c • 

P r o o f .  Suppose that procedure VERTICAL does not connect the top node (Vc). 
Since the top node (vc) is not connected to the top boundary, it must be that 

A B 
Fig. 6.2.Types A and B. 
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Fig. 6.3. Obstruct ive configurat ions.  

region a is of type A or B. If there is a middle node, then since the top node v~ 
cannot be connected to it, we know that region /3 is either of type A or type B. 
But this implies that either two diagonals will be  incident to the same node (in 
which case it is not a diagonal diagram of degree 1) or there is a point  of degree 
greater than two on the left boundary  of the region (in which case it contradicts 
the assumption that we start with a partial partition). Therefore, it must be  that 
there is no middle node. There are two cases depending on whether there is 
bo t tom node or not. 

Case 1: There is a bo t tom node. Region 7 cannot be of type B because there is no 
middle node. Therefore, the top node cannot be  connected to the bo t tom node 
only if 7 is of type A. These are obstructive configurations 1 and 2. 

Case 2: There is no bo t tom node. Region 3' cannot  be  of type A or B since there 
is no middle nor bo t tom node. Similarly since there is no bo t tom node, region 
cannot be of type B. Therefore, region 8 must be of type A. These cases 
correspond to obstructive configurations 3 and 4. 

Therefore, procedure VERTICAL connects the top node, unless obstructive 
configurations 1-4 surround v~. This completes the proof  of Lemma 6.1. [] 

Lemma 6.2. Given a partial legal partition and the smallest positive integer c such 
that node v c is not connected by a partitioning line segment and node vc is a bottom 
node, procedure V E R T I C A L  connects node v~ unless obstructive configurations 
5-10 surround re. 

Proof. Suppose the bo t tom node is not  connected by procedure VERTICAL.  
There are two cases depending on whether there is a top node or not. 

Case 1: There is no top node. Arguments similar to the ones used in Lemma 6.1 
can be used to show that region 6 is of type A or B, there is no middle node, and 
region 7 cannot be type A or B. Region/3  cannot be  of type A or B since there is 
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no middle nor top node. Similarly, since there is no top node, region a cannot be 
of type A. Therefore, region a must be of type B. These cases correspond to 
obstructive configurations 5 and 6. 

Case 2: There is a top node. There are two cases depending on whether there is a 
middle node or not. 

Subcase 2.1: There is no middle node. Clearly, the top node must be connected 
to the top boundary and region 8 must be of type A or B. These are 
obstructive configurations 7 and 8. 
Subcase 2.2: There is a middle node. There are two subcases depending on how 
the top node is connected. 

Subcase 2.2.1: The top node is not connected to the middle node. Since the 
bottom node is not connected, it must be that each of the regions 8 and ~, 
are of type A or B. However, in each of these cases either two diagonals will 
be incident to the same node (in which case it is not a diagonal diagram of 
degree 1) or there is a point of degree greater than two on the left boundary 
of the region (in which case it contradicts the fact that we start with a partial 
partition). 
Subcase 2.2.2: The top node is connected to the middle node. Clearly, region 
8 must be of type A or B. This corresponds to obstructive configurations 9 
and 10. 

Therefore, it is always possible to connect the top node, unless obstructive 
configurations 5-10 surround vc. This completes the proof of Lemma 6.2. [] 

Lemma 6.3. Given a partial legal partition and the smallest positive integer c such 
that node v c is not connected by a partitioning line segment and v c is a middle node, 
procedure VERTICAL connects v c unless obstructive configurations 11-18 surround 

Vc. 

Proof. Suppose procedure VERTICAL does not connect the middle node. There 
are four cases. 

Case 1: There is a top and bottom node. Clearly it must be that the top node is 
connected to the top boundary and the bottom node is connected to the bottom 
boundary. This is obstructive configuration 11. 

Case 2: There is a bottom node, but there is no top node. Clearly, the bottom 
node must be connected to the bottom boundary. Since there is no top node, the 
middle node cannot be connected to the top boundary only when region a is of 
type B, or region fl is of type A. These are obstructive configurations 12 and 13. 

Case 3: There is a top node, but there is no bottom node. This is similar to case 3, 
but the obstructive configurations are 14-15. 
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Case  4: There is no top nor bot tom node. Since there is no top nor bot tom node 
and procedure VERTICAL fails to connect the middle node to the top or bot tom 
boundary, it must be that region a is of type B or region fl is of type A, and 
region 3' is of type B or region 8 is of type A. Since one of these four possibilities 
implies a diagonal diagram of degree greater than one, we are left with obstruc- 
tive configurations 16-18. 

This completes the proof of the lemma. [] 

It is simple to verify that when a connection is performed by procedure 
VERTICAL, we obtain a partial partition in which all nodes v 1, v2, . . . ,  v~ are 
connected by either a vertical or horizontal line segment. In Fig. 6.4 we show how 
procedure M O D I F Y  performs the connections when obstructive configurations 
1-18 surround vc. In this figure, we use a dotted fine segment to indicate that 
such segment is not present, we use a small circle to indicate the absence of a 
node, and a filled-in circle for a node. The modifications are self-explanatory. 
Note that whenever we encounter a node v c that procedure VERTICAL fails to 
connect, the connection for the entire column x c is performed. In Lemma 6.4 we 
show that the connection performed by procedure M O D I F Y  is legal, i.e. we 
obtain a partial partition in which each node v 1, v2, . . . ,  v~ and every node in 
column xc is connected. One should note that in certain cases the proposed 
modification introduces a horizontal line segment to the right of the current 
column. Later on we show how to deal with this case when processing the 
columns to the right of the current column. 

Lemma 6.4. The  connect ions  in t roduced  by p r o c e d u r e  M O D I F Y  f o r  obstruct ive  

conf igurat ions  1-18 are legal, i .e .  we  obtain a par t ia l  par t i t ion  in which  each node  

vl ,  v2 . . . . .  vc a n d  every  node in co lumn x~ are  c o n n e c t e d  by a ver t ica l  or hor i zon ta l  

l ine segmen t .  

Proof. The proof of this lemma can be easily established by inspecting each of the 
modifications in Fig. 6.4 performed by procedure MODIFY.  [] 

In case there is a horizontal line segment, only on the middle grid line of G(R),  
that extends to the right of column x c and ends at the nearest right neighbor 
node v d of re, or the right boundary of G ( R ) ,  a call is made to procedure 
H O R I Z O N T A L  (see obstructive configurations 3, 5, 11, 13, 15 and 18 in Fig. 
6.4). Let v e be the middle node connected by this horizontal line. 

In procedure HORIZONTAL,  the nodes in the set C M P D  = ( v, I Xc < x ,  <<, x d } 
form two (possible empty) sublists of v I . . . .  , %. These fists are v,1, vi2 . . . .  , v,,, 

( X c < X , l < x , 2  . . . . .  < x ,  <~Xa, y, = 1  , l ~ k ~ < g )  and vj,, v j : , . . . , v j k  ( x ~ < x j  < 
x j : , . . . ,  < xjk <~ x a, yjk = 2, 1 <~ k ~ h) .  Any node v = (x, y)  whose x-coordinate 
is less than or equal to x a has either already been connected or it belongs to one 
of these sublists. Without loss of generality we assume that g, h >~ 1. In what 
follows we informally describe how these two set of nodes are connected by 
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Fig. 6.4. Modif icat ions  for obstructive configurations 1-18•  

16 

procedure HORIZONTAL.  First, nodes v,, and oj, are connected to the top and 
bottom boundary of G ( R )  by a vertical line segment, respectively. If g -  1 (or 
h - 1) is a positive even integer, then we connect each pair of nodes v,2,_ ' and 
v,2 k, 1 ~< k ~< (g  - 1 ) /2  (or o,2,_, and v,2,, 1 ~< k ~< (h - 1) /2) ,  by a horizontal line 
segment (see Fig. 6.5). Obviously such connections are legal. When g -  1 (h - 1) 
is a positive odd number, we have three cases. 

! 

Fig.  6.5. Case when  g - 1 is even. 
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Fig. 6.6. Case when g - 1 is odd. 

Case 1: There is a diagonal form v e to v,, (vj,) and x d - x,~ > l ( x  d - X], > 1). 
F rom Fig. 6.4 one can verify that the diagonal that  occupies the posi t ion of the 
dot ted line in Fig. 6.6(a) cannot  be part  of the diagonal  diagram. For  this case we 
introduce a vertical line segment connect ing v,, (vj,) to the top (bot tom) boundary  
of G ( R )  and for each pair of nodes v,2~ and v,2k+ ~ (vj~, and vj=~+,), 1 <~ k <~ g / 2  - 
1(1 <~ k <<, h / 2  - 1) if g - 1 >~ 3(h - 1 >/3). See Fig. 6.6(a). 

Case 2: There is a diagonal f rom v e to v,, (vj,) and x d - -  X t l  -~- 1 ( X  d - -  X j ,  = 1). In 
this case we replace the vertical line segment incident  to v,, (vj,) by a horizontal  
line segment joining v,, and v,, (vjl and vjk ). See Fig. 6.6(b). 

Case 3: Otherwise. Let v,0 (vj0) be the nearest left neighbor of v,, (vj,). We 
eliminate the vertical line segment starting at the top (bot tom) boundary  and 
ending at node v,o (Vjo) and connect  each pair of nodes v,~ and v,=~, (vj2 ~ and 
vj2~+ ,), 0 <~ k <~ g / 2  - 1 (0 <~ k <~ h / 2  - 1), by a horizontal  line segment.  See Fig. 
6.6(c). 

Lemma 6.5. The connections performed by procedure H O R I Z O N T A L  generate a 
partial legal partition, i.e. we obtain a partial partition in which all nodes that 
appear in columns 1, 2 , . . . ,  x d are connected by a vertical or horizontal line 
segments. 

Proof. Since the proof  is straightforward it will be omitted.  [] 

Our algorithm is defined below. 

procedure 4ROW-ASSIGN 
Let Vl . . . .  , Vq be the node  list in the sorted order defined above; 
let c <-- 1; 
while c ~< q do 
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Fig. 6.7. Legal partition by algorithm 4ROW-ASSIGN. 

begin 
invoke procedure VERTICAL to connect node v c if possible; 
if procedure VERTICAL fails to connect node vc 

then invoke procedure MODIFY to connect node v~ and all nodes 
in column x~; 

if node v a with x a > x C is connected by a horizontal line 
then invoke procedure HORIZONTAL to connect the nodes in 

the set CMPD = ( v, [ x~ < xi <~ Xd ) ; 
let c be the smallest integer such that v~ is not connected, if all 

nodes are connected let c ~ q + 1; 
end 

end of procedure 4ROW-ASSIGN 

Theorem 6.1. Algori thm 4ROW-ASSIGN generates a three-layer ass ignment  for  
any four-row planar  layout in O(  n ) t ime, where n is the number  o f  columns in R.  

Proof. The proof for the time complexity bound is straightforward and the proof 
that our algorithm generates a three-layer assignment for any four-row planar 
layout follows from the above discussion. [] 

A diagonal diagram D and a legal partition P of D constructed by algorithm 
4ROW-ASSIGN are shown in Fig. 6.7. 

7. A linear layer assignment algorithm for layouts with a fixed number of rows 

Even though the problem of determining whether a given layout is three-layer 
wirable is NP-complete, when the number  of rows in a layout is bounded by some 
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fixed constant, the layer assignment problem can be solved in linear time. In this 
section we give a linear time dynamic programming layer assignment algorithm 
that generates a wiring for the given layout if one exists. 

Consider an m-row layout W on R. If between two adjacent columns there are 
no horizontal wires, then the problem can be broken into a set of problem that 
can be solved independently of each other. Hereafter,  we assume that between 
every two adjacent columns in W there is at least one horizontal wire. We denote 
the layout W restricted to the rectangle determined by the horizontal lines with 
y-coordinate values 0 and m + 1 and the vertical lines with x-coordinate values 
i - (1/2)  and i + (1/2),  1 ~< i ~< n as W(i). We treat W(i) as a 'switching box'. 
The horizontal wires entering a 'switching box' W(i) from the left are called the 
input wires of W(i) and the horizontal wires leaving W(i) from the right of W(i) 
are called the output wires of W(i). Switching box W(i) has u ~< m input wires 
and v ~< m output wires. A feasible layer assignment for W(i) is a mapping of the 
edges in W(i) to the layers such that if two edges (Pl ,  P2) and (P2, P3) of the 
same wire Wj in W(i) are assigned to layers L s and L t, respectively, and the edge 
(P2, P4) of another wire Wk in W(i) is assigned to L w, then w > max(s ,  t} or 
w < rain( s, t}. Let X(i) represent all feasible wiring including columns 1, 2 . . . . .  i 
- 1 .  We define the set STATES (i)  as the set of all layer assignments for the 
input wires of W(i) defined by the set of feasible wirings in X(i). Clearly, since 
there are no more than m horizontal input wires just before W(i), the number  of 
elements in each set STATES(i)  is at most 3 m. Our algorithm computes the sets 
STATES(i)  for i = 0, 1 . . . .  , n. If for some 1 ~< i < n, STATES(i)  = ~ ,  then we 
know there is no solution. On the other hand, if each of these sets contains at 
least one element, then there is at least one feasible wiring. A feasible wiring can 
be obtained from the sets STATES(i).  Initially, STATES(0) consists of all 
possible layer assignments for the input wires for W(1). Clearly, there are no 
more than 3" of such layer assignments. From STATE(i)  we compute STATE(i 
+ 1) by testing for each element in STATE(i)  and each possible element in 
STATE(i + 1) whether or not  there is a layer assignment for each unit vertical 
wire segment in W(i) such that wires from different nets are not  electrically 
common. Note that there are most 3 m possible elements in STATES(i)  and 
STATES (i + 1), respectively. Since the number  of unit vertical wire segments in 
W(i) is at most m + 1, there are at most 3 "+1 layer assignments for the vertical 
wires. 

procedure mROW-ASSIGN 
let STATES(0)= (all possible layer assignments for the input wires to 
w(1)}; 
f o r i = l t o n  do 

begin 
Compute the set STATES(i)  from STATES(i - 1) and W(i);  
if STATES(i + 1) is empty then there is no three-layer wiring possi- 
ble for the layout W 

then stop, there is no wiring; 
end 
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Use STATES(0),. . . ,  STATES(n) to find and output the wiring solu- 
tion; 

end of procedure mROW-ASSIGN 

From the above discussion it is simple to see that each iteration takes no more 
than 0(3 2m * 3 re+a) time. Since m is bounded by a fixed constant, we know that 
the total time complexity is O(n). 

Theorem 7.1. For m a f ixed constant, procedure mROW-ASSIGN generates a 
feasible wiring for any m row planar layout in O( n ) time, where n is the number of  
columns in the planar layout. 

Proof. The proof follows from the above discussion. [] 

8. Discussion 

It should be pointed out that the procedure 2ROW-ASSIGN cannot be 
modified to wire a sublayout with a simple structure surrounding it by following 
the procedure described in Section 3. Similarly, procedure mROW-ASSIGN also 
has this restriction. However, one can design a similar dynamic programming 
algorithm for partitioning a diagonal diagram with a fixed number of rows in 
linear time. Although the time complexity of mROW-ASSIGN (and for the new 
version of mROW-ASSIGN) is linear, the constant is exponential on m. Many 
speed-up techniques may be considered. For example, at each iteration of the 
procedure, there may be some elements meaningless or having less chance to yield 
a feasible wiring in the later stages of the wiring process. One can design rules to 
restrict the size of the set STATE[i] at each iteration so that the total time 
required by the procedure is smaller. To obtain a wiring of smaller area, one may 
combine procedure mROW-ASSIGN with other procedures based on legal parti- 
tion of diagonal diagram. 

As we mentioned in Section 1, the idea of stretching a planar layout to make it 
wirable in less than four layers is not new. In [7] it is shown that by inserting an 
empty track between every two adjacent tracks of R any planar layout is 
two-layer wirable. In fact, this idea can be traced back to the paper [11] where the 
channel routing problem is considered. In contrast to the previous methods, 
Brady and Sarrafzadeh [2] present an algorithm to find the minimum number of 
stretching points for wiring in two layers a planar layout. For three layers, this 
minimization problem is known to be NP-hard. In our approach we try to reduce 
the additional wiring area as much as possible. To achieve this, we present a 
stretching scheme that given a planar layout and layer assignment algorithms, it 
explores the best possible stretchings that allow a three-layer wiring. Our scheme 
has the advantage that if a planar layout has only a few sublayouts with complex 
structures, it can be wired by taking this information into account. To take 
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advantage of our approach, it is necessary to develop a few layer assignment 
algorithms for layouts with different structures. 

Gonzalez and Zheng [5] propose a classification of planar layouts. They 
classify planar layouts into four classes depending on the properties of their 
diagonal diagram. It turns out that these classes form an interesting hierarchy. 
They show that these layout classes have different wirability properties. For 
example, they show that there exist four-row planar layouts in the general layout 
class and seven-row planar layouts in the simplest layout class that are not 
three-layer wirable by partitioning diagonal diagrams. By using their wirability 
results they give lower bounds for best possible approximation bounds for our 
stretching strategy. 

The stretching and wiring problem can be generalized to two dimensions, that 
is, one is allowed to stretch a layout horizontally and vertically. This is equivalent 
to inserting empty grid lines into R in both directions. In this case the stretching 
scheme will not be as simple as the one given in Section 3. If the number of grid 
lines (horizontal and vertical) is small, then the total wiring area after stretching it 
can be expected to be small. In [5], lower bounds for the approximation factor for 
different layout classes are given. The analysis of these lower bounds provides 
evidence that two-dimensional stretching could be much better than one-dimen- 
sional stretching. The major problem in finding good wirings with two-dimen- 
sional stretching is to devise layer assignment algorithms for layouts large in both 
dimensions. We believe that solving this problem is difficult. 

Our stretching scheme transforms a planar layout into another layout that is 
three-layer wirable. The wirings generated by our algorithm maintain the same 
topology as the original layout. Another approach one could take is to relax the 
requirement of preserving the topological structure. In practice, what we really 
care about is the connectivity of the nets. Given a planar layout, it may be 
possible to rearrange the wires so that the resulting layout has a simpler structure. 
Thus the layer assignment problem can be generalized to transforming a layout to 
a new layout which maintains the same connectivity as the original layout, but 
which is three-layer wirable in an area which is as small as possible. 
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