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We discuss multicasting for the n-cube network and its close variants, the Chord and
the Binomial Graph (BNG) Network. We present simple transformations and proofs that
establish that the sp-multicast (shortest path) and Steiner tree problems for the n-cube,
Chord and the BNG network are NP-Complete, even when every destination vertex is at a
distance two from the source vertex.
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1. Introduction

Multicasting is a communication primitive that allows
a (source) vertex in a network to send a message to mul-
tiple destination vertices. In this paper we consider reg-
ular networks without edge weights (or costs). The com-
munication steps are modeled by a tree. A tree connects
(directly or indirectly) the source vertex to all the des-
tination vertices, and may include other vertices in the
network. There are many different multicast trees and ob-
jective functions. The first type of tree has the minimum
number of edges (links). The problem of generating this
type of tree is known as the minimum Steiner tree (MST)
problem.1 The second type of tree has the minimum num-
ber of edges (links) provided that every path from the
source vertex to a destination vertex is a shortest path in
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the original network. We refer to this problem as the short-
est path multicast(sp-multicast) problem.

The decision version of these problems are formally
defined below. The Steiner tree (ST) decision problem is:
given an undirected graph G = (V , E), a subset of vertices,
K = {u0, u1, . . . , uk} ⊆ V , and a positive integer r, is there
a sub-tree T = (V T , ET ) of G (V T ⊆ V and ET ⊆ E) such
that (a) K ⊆ V T , and (b) the number of edges in ET is at
most r?

The sp-multicast tree decision problem is the Steiner
tree decision problem with the added constraint
dT (u0, ui) = dG(u0, ui) for 1 � i � k, where dT (a,b) and
dG(a,b) is the number of edges in a shortest path from a
to b in T and G , respectively.

We study these problems in the context of the n-cube.
An n-cube (hypercube) consists of 2n vertices or proces-
sors. Every vertex in the n-cube is represented by an
n-bit string and there is an edge between two vertices if
their bit representations disagree in exactly one bit. For
the n-cube graph, we refer to the above problems as the
n-cube Steiner tree problem and the n-cube sp-multicast
tree problem. An instance of the n-cube Steiner tree or
n-cube sp-multicast decision consists of k + 1 vertices and
an integer r. Since the structure of the n-cube is uniform,
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one does not need to provide the vertices and edges of the
n-cube as part of the input. Each of the destination ver-
tices is specified by an n-bit string and r is an (n + log n)-
bit binary number. Note that even when the input size is
bounded above by a polynomial on n, the number of ver-
tices and edges of the n-cube is exponential on n.

Graham and Foulds [1] studied the MST problem for
the n-cube in order to determine the possibility of com-
puting specific biological sciences problems in reasonable
time. Their work resulted in a complex proof for the NP-
Completeness of the decision version of the n-cube Steiner
tree problem. Later on, a complex transformation and proof
was used to establish that the n-cube sp-multicast prob-
lem is NP-Complete [2]. In this paper we present one
simple transformation and proofs that establish the NP-
Completeness of these two problems. We establish that
these problems are NP-Complete even when every desti-
nation vertex is at a distance two from the source vertex.

A generalization of the n-cube is the binomial graph
network and the n-Chord. The binomial graph network
provides desirable topological properties in terms of scal-
ability and fault-tolerance [3] and the n-Chord has been
used for structured peer-to-peer (P2P) networks [3]. For-
mally, a BiNomial Graph (or n-BNG) network consists of
n vertices. The vertices are denoted {0,1, . . . ,n − 1}. Let
k be the largest integer such that 2k � n − 1. Every ver-
tex i in the n-BNG network has (clockwise) edges to ver-
tices {(i + 20) mod n, (i + 21) mod n, . . . , (i + 2k) mod n}
and (counterclockwise) edges to vertices {(i − 20) mod n,

(i − 21) mod n, . . . , (i − 2k) mod n}. The n-BNG network
is referred to as the k-Chord (or simply the Chord) when
n = 2k for some integer k � 1.

It is simple to show that deleting some edges from an
n-Chord results in an n-cube. Therefore, message commu-
nication in the n-Chord can be performed more efficiently
than in the n-cube, but the number of edges (links) in the
n-Chord is twice the number of edges in the n-cube and
therefore more expensive to deploy. The BNG network has
properties similar to the Chord.

There is a trivial algorithm to implement optimum uni-
casting (multicasting to one destination) in the n-cube. Op-
timal polynomial time algorithms for unicasting have been
developed for both the Chord and the binomial graph net-
work [4,3]; however, there has not been a lot of work on
multicasting in these topologies. It was conjectured that
optimum sp-multicast trees for the binomial graph net-
work can be constructed by simply using the unicast al-
gorithm from the source to all destinations while choos-
ing intermediate vertices that decrease network traffic [3].
While this explanation does describe a procedure to con-
struct minimum sp-multicast trees, there is no known
polynomial time algorithm that can implement it because
there is no known efficient algorithm to choose interme-
diate vertices that decrease network traffic. We prove that
no such polynomial time implementation exists if P �= N P .
In this paper we present proofs of NP-Completeness for
the MST and sp-multicast tree for the Chord and the BNG
by simple modifications to NP-Completeness proofs for the
corresponding problems defined over the n-cube. We es-
tablish that these problems are NP-Complete even when
every destination vertex is at a distance two from the
source vertex.

2. NP-Completeness results

To establish our NP-Completeness results we use the
vertex cover problem. The Vertex Cover (VC) decision prob-
lem is: given an undirected graph G = (V = {1,2, . . . ,n}, E)

and an integer c, is there a vertex cover V ′ with cardinal-
ity at most c, i.e., a set of vertices V ′ such that V ′ ⊆ V
and every edge e ∈ E is incident upon at least one vertex
in V ′?

Theorem 2.1. The n-cube sp-multicast tree decision problem is
NP-Complete even when every vertex in K/{u0} is at a distance
two from the source vertex u0 .

Proof. Our polynomial time transformation from the VC
decision problem is defined as follows. Let G = (V , E),
an undirected graph, and c, a positive integer, be any in-
stance of the VC decision problem. Let n = |V | and m = |E|.
We construct the instance (K = {u0, u1, . . . , uk}, r) of the
n-cube sp-multicast tree decision problem as follows. The
vertex u0 is the vertex in the n-cube represented by the
string of n 0-bits. For every edge el = {i, j} in G we define
the vertex ul in the n-cube represented by the string of n
0-bits except for two bits that are 1-bits at positions i and
j. Clearly, k = m and let r = c + k.

We now prove our transformation is correct. Let inte-
gers i1, i2, . . . , ic represent the vertices in a vertex cover
with cardinality c for G . Now lets define the set of vertices
{ j1, j2, . . . , jc}. Vertex jl (in the n-cube) is represented
by the string of n 0-bits except for a 1-bit at position
il . Since every edge el is incident to at least one vertex
in {i1, i2, . . . , ic}, then vertex ul is a neighbor of at least
one vertex in { j1, j2, . . . , jc} in the n-cube. Define the sp-
multicast tree MT by the set of vertices K ∪{ j1, j2, . . . , jc}
and the set of edges of the form {u0, ji} plus one edge
from each vertex ul to a vertex in { j1, j2, . . . , jc}. These
edges exist as {i1, i2, . . . , ic} is a vertex cover for G . The
number of edges in the tree is r = k + c. Therefore, (K , r)
has an sp-multicast tree with at most r edges.

Conversely, let T be an sp-multicast tree with at most r
edges for the instance (K , r). Clearly we may assume that
all the edges join a vertex with exactly one 1-bit to ei-
ther a vertex with zero 1-bits (vertex u0), or a vertex with
exactly two 1-bits (ul vertex). Therefore every vertex in
{u1, u2, . . . , uk} has an edge to a vertex in the n-cube with
exactly one 1-bit for a total of k edges. Let { j1, j2, . . . , j f }
be the vertices with exactly one 1-bit in T . All of these ver-
tices are neighbors of u0 in the n-cube, so the f edges to
join them to u0 must be in T . In order for the tree to have
at most r edges, it must be that f � c. For 1 � l � f de-
fine il = b, where jl has its 1-bit at position b. Clearly, the
set of vertices {i1, i2, . . . , i f } is a vertex cover for G with
cardinality at most c. �

Before we establish that the n-cube Steiner tree deci-
sion problem is NP-Complete, we establish the following
two technical lemmas.
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Fig. 1. An sp-multicast tree for u0 and six vertices each with two 1-bits in two of four possible positions.
Lemma 2.1. Let y be a vertex of the n-cube with exactly three
1-bits and let Γ be a non-empty subset of vertices each with
exactly two 1-bits that are neighbors of y. Let γ be the number
of vertices in Γ . Then, 1 � γ � 3, and there is an sp-multicast
tree rooted at u0 = 00 . . . 0 with at most �4γ /3	+ 1 edges that
includes all the vertices in Γ .

Proof. The proof is left as an exercise to the reader. �
Lemma 2.2. Let x be a vertex of the n-cube with exactly four
1-bits and let Γ be a non-empty subset of vertices each with
exactly two 1-bits which are in common with the 1-bits in x. Let
γ be the number of vertices in Γ . Then, 1 � γ � 6 and there is
an sp-multicast tree rooted at u0 that includes all the vertices in
Γ with at most γ + 3 edges.

Proof. Assume without loss of generality that n = 4. Fig. 1
shows an sp-multicast tree for the case when γ equals to
6 with γ + 3 edges. When γ is less than six just delete
from Fig. 1 the destination vertices that are not in Γ as
well as superfluous vertices and edges, and the resulting
multicast tree has at most γ + 3 edges. �
Theorem 2.2. The n-cube Steiner tree decision problem is NP-
Complete even when every vertex in K/{u0} is at a distance two
from the source vertex u0 .

Proof. Our polynomial time transformation is the same
one as the one used in Theorem 2.1. To establish that this
is a valid transformation we use the proof of Theorem 2.1
and prove that if there is a Steiner tree with at most r
edges, then there is also an sp-multicast tree with at most
r edges.

Let f (I) be any problem instance generated by the
polynomial transformation. Let ST be a Steiner tree with
at most r edges that is not an sp-multicast tree. Assume
without loss of generality that when viewing the tree ST
as a tree rooted at u0, all of its leaves are elements of
the set {u1, u2, . . . , uk}. The standard parent-child relation-
ship is defined between neighbor vertices when viewing
the tree as rooted at u0. Assume without loss of general-
ity that every vertex in ST consisting of exactly one 1-bit
is a child of u0. If this were not the case, the following
simple transformation can be applied to alter the tree to
satisfy this condition. Let a be a one 1-bit vertex in ST
that is not a child of u0, and let b be the parent of a.
In ST delete the edge {a,b} and add the edge {u0,a}. We
now show that instance f (I) has an sp-multicast tree with
at most r edges. Let sp(ST) be the number of vertices in
{u1, u2, . . . , uk} that have a path in ST to u0 with exactly
two edges. Clearly sp(ST) < k. Our approach is to show that
ST can be transformed into another Steiner tree ST ′ with at
most r edges such that sp(ST ′) > sp(ST). After applying this
argument at most k times we know that instance f (I) has
an sp-multicast tree with at most r edges.

Let u ∈ {u1, u2, . . . , uk} be a vertex whose (simple) path
in ST from u0 to u is the longest. Let P be the path in
ST that starts at u0 and ends at u. Clearly, path P has at
least four edges. Let w , x and y be the last three vertices
just before u in path P , i.e., the path from u0 to u visits
vertex w , then it is followed by the edges {w, x}, {x, y}
and {y, u}, to reach vertices x, y and u in that order.

By our assumptions the number of 1-bits of y must
be equal to three. The sub-tree ST w is defined as ST af-
ter deleting all the sub-paths originating at vertex u0 that
do not include vertex w . It is convenient to visualize ST w

as a tree rooted at w . All the neighbors of w are said to
be the children of w in ST w . Define the parent-child re-
lationship for the vertices in ST w when viewing the tree
ST w rooted at w . Every leaf in ST w is at a distance at most
three from w and it is a vertex in {u1, u2, . . . , uk}. There
are two cases depending on the number of 1-bits of x.

Case 1. The number of 1-bits of x is two. Let α be the
number of children of y in ST w . Since the parent of y,
that is x, and all the children of y in ST w have exactly two
1-bits and y has three 1-bits, it must be that 1 � α � 2. By
Lemma 2.1 we know there is an sp-multicast tree rooted at
u0, which we call A, that includes all the children of y in
ST w with α + 1 edges (as α � 2). Define ST ′ as ST after
deleting vertex y and the edges incident to vertex y, and
adding the vertices and edges in sp-multicast tree A that
are not in ST .
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Case 2. The number of 1-bits of x is four. Let β be the
number of children of x in ST w Let α be the number of
vertices in {u1, u2, . . . , uk} that are descendants of x in
the sub-tree ST w . If β = 1, then α is at most three. By
Lemma 2.1 we know there is an sp-multicast tree rooted
at u0, which we call A, that includes all the children of y
in ST w with α + 2 edges. Define ST ′ as ST after deleting
vertices x and y, as well as all the edges incident to them,
and adding the vertices and edges in sp-multicast tree A
that are not in ST . This transformation deletes α + 2 edges
and adds at most α + 2 edges. On the other hand if β > 1,
then by Lemma 2.2 we know there is an sp-multicast tree
rooted at u0, which we call A, that includes all the leaves
that are descendants of x in ST w with α + 3 edges, as x
has four 1-bits. Define ST ′ as ST after deleting vertex x, all
the children of x, as well as all the edges incident to them,
and adding the vertices and edges in the sp-multicast tree
A that are not in ST . The above transformation deletes
α +β + 1 edges and adds at most α + 3 edges. Since β > 1
we know that α + β + 1 � α + 3.

In all cases ST ′ does not have more edges than ST and
sp(ST ′) > sp(ST). Eventually sp(ST ′) will be equal to k and
ST ′ will be an sp-multicast tree with at most r edges. This
concludes the proof of the theorem. �

We now establish that the corresponding problems on
the Chord are NP-Complete.

Theorem 2.3. The Chord sp-multicast and Steiner tree decision
problems are NP-Complete even when every vertex in K/{u0} is
at a distance two from the source vertex u0 .

Proof. The reductions are similar to the ones in the previ-
ous theorems. The difference is that between every pair of
bits of the vertices in K in the previous reduction, which
we call box bits, we add a bit pattern called the signature.

Let G = (V , E), an undirected graph, and c, a pos-
itive integer, be any instance of the VC decision prob-
lem. Let n = |V | and m = |E|. We construct the instance
(K = {u0, u1, . . . , uk}, r) of the t-Chord multicast tree de-
cision problem as follows, where k = m, r = c + m, and
t = n + (n − 1) ∗ (2r + 3). Every vertex in K in our reduc-
tion consists of n box bits and n − 1 signatures arranged
in the order b, s,b, s . . . ,b, s,b, where b is a box bit, and
s is the signature. The signature is the 2r + 3 bit pattern
0101 . . . 010. Vertex u0 in the t-Chord has all the box bits
equal to zero. For every edge el = {i, j} in G we define the
vertex ul in the t-Chord with all the box bits equal to zero,
except for the ith and jth box bits which are 1-bits. There-
fore, k is equal to m.

The proof that the transformation is correct is based on
the proofs of Theorems 2.1 and 2.2, and the argument that
no two neighbors in a tree with r edges have two or more
different box bits. The reason for this is that in order for
two neighbors to have two or more different box bits at
least one of the signatures must equal to all zeros or all
ones. But each signature has r + 1 1-bit runs and at each
step one can reduce the number of 1-bit runs in a signa-
ture by at most one. Since the whole tree has at most r
edges, transforming one signature into all ones or all zeros
is not possible as this would take a tree with more than r
edges. �
3. Discussion

We presented simple proofs to establish that the Steiner
and sp-multicast tree decision problems on the n-cube,
Chord and BNG networks are NP-Complete. Our reductions
and the ones in [1,2] define problem instances where the
number of bits to represent the nodes in the n-cube is
proportional to the size n of the NP-Complete problem be-
ing reduced. However this implies that the n-cube has 2n

vertices, though n vertices (n2 bits) is the input to the n-
cube problem. An important open problem is to determine
whether or not our problems remain NP-Complete when
the reduction is for a hypercube with O (P (n)) vertices,
where P (n) is a polynomial on n. Gonzalez and Serena [5]
have shown that some problems defined over the hyper-
cube are NP-Complete even under this condition.
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