
Information Processing Letters 40 (1991) 181-188
North-Holland

25 November 1991

Gonzalez * *
Department of Computer Science, Utrecht Unkersity, Utrecltt, Netherlartds

Communicated by M.J. Atallah
Received 6 December 1990
Revised 13 September 1991

Abstract

Gonzalez, T.F., Covering a set of points in multidimensional space, Information Processing Letters 40 (1991) 181-188.

Let P ={P,, p2,..., p,) be a set of points in d-space. We study the problem of covering with the minimum number of
fixed-size orthogonal hypersquares (CS, for short) all points in P. We present a fast approximation algorithm that generates
provably good solutions and an improved polynomial-time approximation scheme for this problem. A variation of the CS,
problem is the CR, problem, covering by fixed-size orthogonal hyperrectangles, where the covering of the points is by
hyperrectangles with dimensions D,, D,, . . . , Dd instead of hypersquares of size D. Another variation is the CD, problem,
where we cover the set of points with hyperdiscs of diameter D. Our algorithms can be easily adapted to these problems.

Keywords: Analysis of algorithms, d-space, covering by hypersquares, hyperdiscs and hyperrectangles, efficient algorithms,
polynomial-time approximation scheme

Let P={P,, Pi,..., p,) be a set of points in
the plane (E2). The problem of covering with
fixed-size orthogonal squares, C’S,, consists of
finding a minimum cardinality set of D by D
squares covering all points in P, i.e., each point
in P must be inside or on the boundary of at
least one of the squares in the cover. A general-
ization to d dimensions of the CS, problem is
called the C’S, problem. In this case the points
are in d-dimensional space and the covering is by
orthogonal hypersquares of size D. A variation of

* A preliminary version of this paper appeared in the Pro-
ceedings of the Twenty-eight Annual Allerton Conference
on Communications, Control, and Computing, October
1990.

** On Sabbatical leave from the University of California,
Santa Barbara.

the CS, problem is the CR, problem, covering by
fixed-size hyperrectangles, where the covering of
the points is by orthogonal hyperrectangles with
dimension D,, D,, . . . ,Dd instead of hyper-
squares of size D. Another variation is the CD,
problem, where we cover the points with hyper-
discs of diameter D. A related problem, packing
of squares, is discussed in Section 4. Hereafter,
when we refer to a square (rectangle) or hyper-
square (hyperrectangle) we assume it is orthogo-
nal to the coordinate axes.

These problems have many interesting applica-
tions [1,4]. The most popular application is the
problem of locating the least number of emer-
gency facilities such that all potential users are
located within a reasonable small distance from
one of the facilities. This corresponds to the
problem. The CD,, d and C’S, problems for
d 2 2 are known to NP-hard [1,6,7]. J
[5] discusses several variations of these pr

0020-0190/91/$03.50 0 1991 - Elsevier Science Publishers B.V. All rights reserved 181

Volume 40, Number 4 INFORMA-HON PROCESSING LETTERS 25 November 1991

Heuristics to solve the C’S, problem have been
presented in [8] and [9]. A polynomial time ap-
proxifiration scheme is given in [4], i.e., for every
constant E > 0 thz algorithm takes O(rr*“/“J time
and generates solutions such that F,,,/F,,, 4 I
+ E, where FuPX is the number of hypersquares in
the solution generated by the algorithm an
is the number of hypersquares in an optimal
solution.

For any integer I 2 1, the algorithm for the
CS, problem given in [4] has time-complexity
bound O(ld lzd’ +’) and the approximation bound

is &J&J,, < (1 + I/1)‘. The above bound dis-
agrees with the one in [4] because there is a typo
in that paper. To achieve an approximation bound
of 2d it takes O(nd’ ’) time and to achieve an
approximation bound of 2.25, for d = 2, it takes
O(n”) time. In general, the only approximation
bound that can be guaranteed within reasonable
tinie constraints is 2” when ii is small, since to
guarantee a solution within 2d- ’ the worst-case
time complexity becomes O($) when d = 2.

For the CD, problem and any integer I > I the
algorithm in [4] has worst-case time complexity

and the approximation bound is FaP.,,O$ < (1

+ l/ZJd. For d = 2, to guarantee solutions within
4 (2.25) of optimal, the worst-case time complex-
ity bound is O(n”) (O(n’“J). These huge time
complexity bounds make the algorithms unusable
even when n is small.

In this paper we present a fast approximation
algorithm for the Csd problem with worst-case
approximation bound of 2”-‘. The algorithm
takes

0(du + n log s)

time, where s is the number of hypersquares in
an optimal solution. Since our algorithm exam-
ines each point c log s times, where c is a small
constant, and each time it
operations, we know that the constant associated
with the time-complexity bound is small. The
amount of space required by the algorithm is a
small constant times the total input. This is why
we say that our algorithm is usable in practical

182

situations. We also present an efficient algorithm

tion and time
probIem are not identical to t ones for the CSd
problem; however, they are provements over
the ones for previous algorith We discuss these
extensions in Sect
rithm is presente
approximation sc

Before presentiug our algorithms, we define
e terms. Point p is said to be located at

x,(p)), and we assume without
loss of generality that Xi(p) > 0, for all p and j.
We define the function ii(p) as lXj(P)/D], for all
p and j.

In this section we present our approximation
algorithm for CS, problem. The worst-case
approximation und is 2J-’ and it takes

O(dn +n log 3)

time, where ,P is the number of hypersquares in
an optimal solution.

Before we explain our approximation algo-
rithm, let us solve a restricted version of our
problem which we call the slab problem. In this
problem all points are located inside a rectangle
(whose sides are orthogonal to the axes) with
height D. optimal tovcr for the slab problem
can be obtained as follows. Consider all points in
increasing order with respect to their x,(p) value
(the l-axis corresponds to the width). The left-
most point (point with smallest x JpI value) is
covered by the left boundary of the D by D

Volume 40, Number 4 INFORMATION PROCESSING LETTERS 25 November 190 1

square whose top boundary coincides with the
top boundary of the slab. All the points that fall
inside this square are said to be covered. Then
the leftmost uncovered point is covered in a simi-
lar fashion, and so on. Our algorithm outputs
these D by D squares. This procedure, referred
to as to colyr the leftmost point first (CLPF), has
worst-case time complexity of 001 log n) and
generates a minimum cardinality cover.

The CLPF procedure is not a procedure with
the b,tst worst-case time-complexity bound for the
slab problem. Let us now discuss a better algo-

) whose worst-case time-complex-
ity bound is only O(n log s), where s is the
number of squares in an optima1 cover. The idea
behind the procedure is to sort the points with
respect to their it(p) values. This requires 00~ -
log s) time, instead of O(U log 12). Then the set
of points is partitioned into sets S,, S2, . . . , S, in
such a way that all points in set Sj have identical
i,(p) values and the i,(p) value of the points in
set Sj is smaller than the one for the points in

‘j+ 1’ Clearly, a point in Sj and a point in Sj+ z
cannot be covered by the same square in a fessi-
ble solution. Our new procedure implements the
CLPF algorithm by taking advantage of the above
properties for the sets S,, Sz,. . . . S,.

Procedure fastCLPF(P, D)
Sort the points with respect to i,(p) into sets

S,, Sz, * * * ‘) Sk as described above;
R + S, U S,; j + 2;
while R # fl do

q c- min(x,(p) I P E RI;
Let Q be the set of points in R at a distance at

most D (with respect to X, only) from q;
R+-R-Q;
output the D by D square whose left boundary

includes point q and whose top boundary
coincides with the top boundary of the slab;

while j < k ad R contains elements from at
most one of the sets in IS,, S,, . . . , Sk) do

We claim that the cover generated by the
above procedure is identical to the one generated
by procedure CLPF. The reason is that when R
has elements from two adjacent sets. S, and S,, 1,
q must be in set Si and no element in Si+z or
higher indexed set can be covered by the same
square as point q. We also claim that the time
complexity is O(n log s). Sorting takes
001 log k) time by using balanced binary search
trees for the i,(p) values. Since no point in S, can
be covered by the same square as a point in set
S i -7’ it must be that s >/ k/2. Therefore, sorting
tdkes O(rz log s) time. The min operation is per-
formed on each element of S, at most twice and
the test in the conditions of the while statement
can be computed in constant time by associating
with R the number of different sets S,. where its
elements are located. Note that this information
can be easily updated when the number of ele-
ments of R increases or decreases. Therefore,
the overall time complexity is O(rz log sj. One
can solve the above problem in O(n) time by
increasing (substantially in some cases) the space
complexity [3]. For more details about this (im-
practical) method the reader is referred to [3].

Now let us use the above procedure to obtain
a fast approximation algorithm for the CS, and
then for the CS, problem. Our strategy for d = 2
is to divide the problem into two subproblems, R,
and R,, and then finding an optimal cover for
each of them. SubprobIem R, contains all the
points with i,(p) odd, and subproblem R, con-
tains the remaining points. Let us consider prob-
lem R,. It is simple to see that all the points in
R, belong to slabs (with height D) which are D
units apart. Therefore, an optimal solution to R,
consists of finding an optimal soiution to each of
the slabs which we know takes O(n log s) time.
Since the number of squares in an optimal SO~U-

tion to the original problem is at least 3s large as
that of an optimal solution for R, or Rz, it then
follows that our algorithm has an approximation
bound of two. For ti 2 2, the problem is parti-
tioned into 2d-’ subproblems. By following simi-
lar arguments, one can easily show that the ap-
proximation bound for our procedure is 2d- ‘. In
our implementation, instead of finding a partition
and then refining it, we perform both partitions

183

Volume 30. Number 4 INFORMATION PROCEWNG LETTERS 25 November 1991

directly. The set of problems generated is &,
P 2,“‘V and Pk. Each of these subproblems con-
tains all points with the same (i,(p), . . . , i,(p))
value, i.e., each corresponds to a slab in a sub-
problem Rj. Procedure PARTITION-FIRST

on the above strategy is given below.

gorit TV = {P,,

PZ, **a, P,), m
partition the elements with respect to

(i,(p),..., i,(p)) into sets P,, PZ,. . . , Pk;
he fast to set:
algorit FI

The partition can be obtained by a lexico-
graphic sort of the points with respect to
&(p)..... i,(p)). Sorting by the algorithm given
in [2] (or an equivalent algorithm) takes

O(O?J +?r !og k)

time. The second step applies procedure fast-
CLPF which takes overall time Q(.v log t), where
t is the number of hypersquares in the solution
generated by the algorithm. Since k G t g 2”-‘S,
it the follows that the overall time complexity for
our procedure is

Q(G/n + I2 log s).

. Algorithm PARTITION-F1 RST gen-
erates a solution for the CS, problem with approxi-
mation bound 2 d- ’ The time complexity for our .
algorithm is

O(dn +n log s)

time, where s is the number of hypersquares in an
optimal solution.

rwf. By the above discussion. q

3. SC

Let us consider the I,-slab pr , i.e., all
points he in E2 inside a rectangle eight ID,
for some integer 12 1. First we show that the

lem can be solved in 0(41n4’) time via

ogramming. Then we generalize our
0 SOhe the ld-Skib problem (i.e., all

184

respect to their first coordinate value, i.e.,

Square ci in a cover is said to be an a-square
~a?lc~lQred squares if t re is a point r E P located
on the left boundary of ci and a point s E P (not
necessarily different from r) located on the top
boundary of Ci that are not contained (are not
located inside or on the boundary) in another
square in the cover C. The point Pi with least
index located on the left (top) boundary of the

in a cover C that is not contained in
are in C is called the ieft (top) an-

chor of ci in C. We shall also refer to the two
points as simply anchors. A cover is said to be an
a-col’er (anchor co[‘er) if all the squares in it are
a-squares. It is simple to show that any cover can
be transformed to an a-cover without increasing
the number of squares in it. Therefore, for each
problem instance there is at least one a-cover in
the set of optimal covers. We say that a vertical
line intersects a square if the intersection of the
set of points that form the line and the square is
nonempty. We say than an a-cover is an s-corer
if every vertical line does not intersect more than
21- 1 squares in the cover. To show that the time
complexity of our algorithm is bounded by a
polynomial on n, we establish in Lemma 2 that
every problem instance has an s-cover among the
set of optimal covers.

Before we prove lemma 2 we need to define
more terms. Let Copr be the set of optimal a-

Voiume 40, Number 4 INFORMATION PROCESSING LETI-ERS 25 November 1991

covers for some problem instance. Assume that
the number of squares in each of these covers is
t. We define bi as the x1 coordinate value of the
left anchor of square ci in the optimal a-cover C.
Assume without loss of generality that the squares
in each optimal a-cover C have been rearranged
so that b, <bZ< ..* -<b,.

Define C, as

(ClCGp, and 6, for C is maximum
amongst all covers in Copr)

and Cj as

(C 1 C E Ci+ I and bj for C is maximum
amongst all covers in Cj + ,) ,

for 1 <j < r. Each cover C in C, is called a
maximum index coLyer.

Lemma 2. Erlery I,-slab problem has an s-coLler
among the set of optimal cotiers.

roof. As mentioned above, every problem in-
stance has at least one a-cover among the set of
optimal covers. We now show that at least one of
these a-covers is an s-cover. The proof is by
contradiction. Suppose that all optimal a-covers
are not s-covers. Let C’ be a maximum-index
cover among all optimal a-covers. By assumption
there is a vertical line, w, that intersects at least
21 squares in C’. Transform C’ by the rule given
in Fig. 1 at line w and then move the newly
introduced squares down and to the right until all
of them are anchored or some can be deleted
because all points have been covered. Let C be
the cover. It is simple to see that the cardinality
of C is not larger than the cardinal@ of C ‘. If C

has fewer squares than C’, then it contradicts
that C’ is an optimal cover. On the other hand, if
C and C’ have the same cardinal&y. then we
contradict the assumption that C’ is the maxi-
mum-index cover, since one can easily show that
the maximum-index cover in (C, C’} is not C’. So
it must be that there is at least one s-cover in the
set of optimal covers. This completes the proof of
the lemma. o

Before presenting our algorithm we define
more terms. Deleting a subset of oquares from an
a-cover C results in an a-subcocer which we call
C’. If points pl, pz, . . . ,pi are covered by an
a-subcover C’, and all the left anchors of the
squares in C’ are points from the set

{P,, P2,.*., pi}, then C’ is called an i-a-wb-
cocer. Two i-a-subcovers are said to be t-equk-
alent (tail equiL!alent) if every square in each of
these i-a-subcovers intersected by a vertical line
through pi is also in the other i-a-subcover. Two
i-a-subcovers are said to be ct-equzllalent (cardi-
nality and tail equicalent) if they are t-equivalent
and have the same cardinality. An i-a-subcover
C dominates the i-a-subcover C’ iff C and C’
are t-equivalent and C has fewer squares than
C’. An i-a-subcover is said to be an optimal
i-a-.subcoL-er if it is the i-a-subcover of an s-cover
in the set of optimal covers. A set of a-subcovers
is said to be irreducible if every pair of a-sub-
covers in the set are incomparable, i.e., one does
not dominate the other and both are not ct-
equivalent. Procedure DP scans the points in the
order pl, Pi,..., p,, and generates at each itera-
tion a set of irreducible i-a-subcovers. To show
correctness we prove in Lemma 3 that every
optimal i-a-subcover has a ct-equivalent i-a-

W W

Fig. 1. Transformation rule when I = 3.

185

Volume 40, Number 4 INFORMATION PROCESSING LETTERS 25 November 1991

subcover in the set of irreducible i-a-subcovers
constructed by the procedure.

gorit P (P,, Pz,..., P,)
sort the elements SO that x,(p,) f-~,(p,)G ‘*.

< x *(P,t 1;
FS c- {@.I; / * a set with one element whose

value is an empty list of squares */
for i = 1 to n do

newFS + (d;

the same number of elements as in C ends in
FS,.. Since T is an optimal cover. it must be that
C’ has the same cardinal&y as C. Therefore, C’
which is ct-equivalent to 7; ends in FS,, and the
result follows. Cl

for each a-subcover C in FS do
case
:pi is covered in C: Add {C} to newFS;
:less than 21- 1 squares are intersected by
a vertical tine through pi:

Add (C’ 1 C’ is C plus an u-square with
pi as its left anchor) to newFS:

:else: / * newFS remains unchanged */;
endcase
for;
FS be a maximal cardinality subset of

irreducible a-covers in newFS;
endfor;
Output any cover with the least number of squares

in FS
end of algorit

ma 3. For every 1,&b problem, algorithm
nerates an optimal cover.

roof. It is simple to show that the proof of the
lemma reduces to showing that if at the ith
iteration every optimal (i - l)-a-subcover has a
ct-equivalent (i - l)-a-subcover in FS, (xt FS at
the beginning of the iteration), then ev6-y opti-
mal i-a-subcover has a et-equivalent i-u-sub-
cover in FS, (set FS at the end of the iteration).
Let T be any s-cover in the set of optimal covers.
Let &_, (q> be the (i - I)-a-subcover (i-a-sub-
cover) of T. By assumption there is an (i - l)-a-
subcover in FS, (say Ci _ I) ct-equivalent to Ti _ ,.
If pi is covered by the squares in ‘T;._ ,, then
C = C;_ 1 is added to newFS and 7;: is the same as
q- i- On the other hand, if pi is not covered by
the squares in T!_ ,, then when Ci_ I is considered

To establish our time-complexit) bound we
need to specify some implementation details. We
find a maximal subset of irreducible a-covers in
newFS as follows. Each a-cover in newFS is char-
acterized by the anchors of the squares inter-
sected by a vertical line through pi and the num-
ber of squares in the cover. We sort via radix sort
the covers in newFS using as keys the indices of
the points which are anchors (in sorted order) of
the squares that characterize the covers. Associ-
ated with each key there is the number of squares
in the cover. Deletion of dominated i-a-sub-
covers and ct-equivalent i-a-subcovers can be
easily done by traversing the list once. Thus, if
newFS has m elements, the overall time taken to
execute the step is c(m + n), where c is the
number of anchor points that characterize an
i-u-subcover. The above bound can be achieved
by sorting the elements via radix sort since the
keys are c dimensional points whose value along
each axis is an integer in the range [1, n].

Lemma 4. For er*ery I,-slab problem, algorithm
DP takes 0(41 n”) time .

roof. By Lemma 2, the defim-ion of s-covers,
and the fact that there are at most two anchors
per square, we know that 1 FS I < n41m2. Since for
each element in FS at most iz covers are added
to newFS, 1 newFS I < n4’-‘. Using the procedure
discussed above the maximal set of irreducible
covers in newFS can be identified in

0((41- 2)n4’-‘)

time. The above operation is repeated n times,
therefore the overall time complexity is O(41 n4*).

El
-loop an i-a-subsover C t-equivalent to

7;: is added to newFS. In either case the i-a-sub- For the I,-slab problem, the number of squares
cover C’ = C in zewFS ends in FS,, or an i-a-

subcover C’ t-equivalent to C and with at most
partitioned by a hyperplane passing through pi is
at most 2P’ - 1 instead of 21- 1, and the num-

186

\lolume 40, Number 4 INFQRMATIGN PRGCESSING LETTERS 25 November 1991

ber of anchors per square is d instead of two.
Therefore, the time complexity for the /,-slab
problem is

Q(d(2[d_ I _ +“‘2’d-‘- I)+ I)_

This aigorithm can be easily incorporated with
the polynomial-time approximation scheme given
in [4]. The idea is to apply the algorithm to In
problem instances of the [,-slab problem. The IJ
problem instances can be partitioned into I”-’
groups such that the total number of points in all
problems in each group is n. This results in an
overall time complexity bound

0(/d-‘d(21”- I _ 1)n11(21”-‘-l)+I)~

The approximation bound is (1 + 1 /I)“- ‘.

Theorem 5. Combining algorithm DP with the
polynomial-time approximation scheme in [4] re-
sults in a procedure that generates a solution to the
CS, problem with approximation bound (1 +
1 /I)“- ’ and time complexity

o(l&ld(21&’ _ Qd(2I”-‘-1)+1)_

Proof. By the above discussion, 0

All our techniques can also be adapted to the
CR, and the CD, problem. For the CR, prob-
lem the approximation and time-complexity
bounds are identical to the ones for the CS,
problem. For the CD, problem the algorithm in
Section 2 has identical time-complexity bound;
however, the approximation bound is 2d-‘[G]d.
For the polynomial-time approximation scheme,
the approximation bound is 2(1 + 1 /I Id- ’ and
the time-complexity bound is

The same techniques can be adapted to the pack-
ing problem studied in [4]. The approximation
and time-complexity bounds are smaller than for
the CS, problem. For brevity we do not discuss

this further. As pointed out in [4] it is important
to develop fast approximation algorithms for the
[,-slab problem These algorithms would imply a
much better time-complexity bound for the CSd
problem at the expense of a slightly larger ap-
proximation bound.

From our algorithms one can define a heuristic
which we believe has a reasonable behzvior with
respect to the time complexity and the approxi-
mation. The idea is to partition the set of points
into two groups. Those which are “far” from
other points and those with “close” neighbors.
The heuristic then applies our polynomial-time
approximation scheme to the problem defined by
all the points in the first group. An optimal
solution will be generated quickly for this sub-
problem. The remaining problem is solved by the
approximation algorithm in Section 2.

Gonzalez [3] has developed other approxima-
tion algorithms for the problems discussed in this
paper. The algorithm in this paper outperforms
these algorithms because it is either faster, re-
quires less space, or has a smaiier worst-case
approximation bound. To generate good solutions
in practice one should execute all of these algo-
rithms concurrently and then select the best of
the solution generated. Proving
preach has a src.;:ller worst-case
bound is not sirii:iir, and remains
lem.

that this ap-
approximation
an open prob-

References

[II

[I

131

t41

El

R.J. Flower, M.S. Paterson and S.L. Tanimoto, Optimal
packing and covering in the plane are NP-complete, In-
form. Process. Lett. 12 (19811 133-137.
T. Gonzalez, The on-line d-dimensional dictionary prob-
lem, Tech. Rept. RUIi-CS-90-31. University of Utrecht,
July 1990.
T. Gonzalez, Covering a set of points with fixed size
hypersquares and related problems. in: Proc. 28th Ann.
Akrtort Conf 011 Contmurzications, Cotltrol. and Comput-
ing (1990) 838-847.
D.S. Hochbaum and W. Maass, Approximation schemes
for covering and packing probiems in image processing
and VLSI, 1. ACM 32 (1) (1985) 130-136.
D. Johnson, The NP-completeness column: An ongoing
guide, 1. Algorithm 3 (1982) 182-195.

187

Volume 40, Number 4 INFORMATION PROCESSING LETTERS 25 November 1991

[6] S Masuyama, T. Ibaraki, and T. Hasegawa, The computa-
tional complexity of the m-center problems on the plane.
Trans. ZECE Japan E64 (1981) 57-64.

[7] K.J. Supowit, Topics in computational geometry, Rept.
No. UIUCDCS-R-81-1062, Dept. Computer Science, Uni-
versity of Illinois, Urbana, IL, 1981.

[8] S.L. Tanimoto, Covering and indexing an image subset, in:

Proc. 1979 iEEE Computer Society Conf. on Pattern Recog-
nition and image Processing (IEEE, Chicago, 1979) 239-
245.

[9] S.L. Tanimoto and R.J. Fowler, Covering image subsets
with patches, in: ?roc. 5th tnternat. Conf. on Pattern
Recognition (1980) 835-839.

188

