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Abstract 

Gonzalez, T.F., Covering a set of points in multidimensional space, Information Processing Letters 40 (1991) 181-188. 

Let P ={P,, p2,..., p,) be a set of points in d-space. We study the problem of covering with the minimum number of 
fixed-size orthogonal hypersquares (CS, for short) all points in P. We present a fast approximation algorithm that generates 
provably good solutions and an improved polynomial-time approximation scheme for this problem. A variation of the CS, 
problem is the CR, problem, covering by fixed-size orthogonal hyperrectangles, where the covering of the points is by 
hyperrectangles with dimensions D,, D,, . . . , Dd instead of hypersquares of size D. Another variation is the CD, problem, 
where we cover the set of points with hyperdiscs of diameter D. Our algorithms can be easily adapted to these problems. 

Keywords: Analysis of algorithms, d-space, covering by hypersquares, hyperdiscs and hyperrectangles, efficient algorithms, 
polynomial-time approximation scheme 

Let P={P,, Pi,..., p,) be a set of points in 
the plane (E2). The problem of covering with 
fixed-size orthogonal squares, C’S,, consists of 
finding a minimum cardinality set of D by D 
squares covering all points in P, i.e., each point 
in P must be inside or on the boundary of at 
least one of the squares in the cover. A general- 
ization to d dimensions of the CS, problem is 
called the C’S, problem. In this case the points 
are in d-dimensional space and the covering is by 
orthogonal hypersquares of size D. A variation of 

* A preliminary version of this paper appeared in the Pro- 
ceedings of the Twenty-eight Annual Allerton Conference 
on Communications, Control, and Computing, October 
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the CS, problem is the CR, problem, covering by 
fixed-size hyperrectangles, where the covering of 
the points is by orthogonal hyperrectangles with 
dimension D,, D,, . . . ,Dd instead of hyper- 
squares of size D. Another variation is the CD, 
problem, where we cover the points with hyper- 
discs of diameter D. A related problem, packing 
of squares, is discussed in Section 4. Hereafter, 
when we refer to a square (rectangle) or hyper- 
square (hyperrectangle) we assume it is orthogo- 
nal to the coordinate axes. 

These problems have many interesting applica- 
tions [1,4]. The most popular application is the 
problem of locating the least number of emer- 
gency facilities such that all potential users are 
located within a reasonable small distance from 
one of the facilities. This corresponds to the 
problem. The CD,, d and C’S, problems for 
d 2 2 are known to NP-hard [1,6,7]. J 
[5] discusses several variations of these pr 
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Heuristics to solve the C’S, problem have been 
presented in [8] and [9]. A polynomial time ap- 
proxifiration scheme is given in [4], i.e., for every 
constant E > 0 thz algorithm takes O(rr*“/“J time 
and generates solutions such that F,,,/F,,, 4 I 
+ E, where FuPX is the number of hypersquares in 
the solution generated by the algorithm an 
is the number of hypersquares in an optimal 
solution. 

For any integer I 2 1, the algorithm for the 
CS, problem given in [4] has time-complexity 
bound O(ld lzd’ +’ ) and the approximation bound 

is &J&J,, < (1 + I/1)‘. The above bound dis- 
agrees with the one in [4] because there is a typo 
in that paper. To achieve an approximation bound 
of 2d it takes O(nd’ ’ ) time and to achieve an 
approximation bound of 2.25, for d = 2, it takes 
O(n”) time. In general, the only approximation 
bound that can be guaranteed within reasonable 
tinie constraints is 2” when ii is small, since to 
guarantee a solution within 2d- ’ the worst-case 
time complexity becomes O($) when d = 2. 

For the CD, problem and any integer I > I the 
algorithm in [4] has worst-case time complexity 

and the approximation bound is FaP.,,O$ < (1 

+ l/ZJd. For d = 2, to guarantee solutions within 
4 (2.25) of optimal, the worst-case time complex- 
ity bound is O(n”) (O(n’“J). These huge time 
complexity bounds make the algorithms unusable 
even when n is small. 

In this paper we present a fast approximation 
algorithm for the Csd problem with worst-case 
approximation bound of 2”-‘. The algorithm 
takes 

0( du + n log s) 

time, where s is the number of hypersquares in 
an optimal solution. Since our algorithm exam- 
ines each point c log s times, where c is a small 
constant, and each time it 
operations, we know that the constant associated 
with the time-complexity bound is small. The 
amount of space required by the algorithm is a 
small constant times the total input. This is why 
we say that our algorithm is usable in practical 
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situations. We also present an efficient algorithm 

tion and time 
probIem are not identical to t ones for the CSd 
problem; however, they are provements over 
the ones for previous algorith We discuss these 
extensions in Sect 
rithm is presente 
approximation sc 

Before presentiug our algorithms, we define 
e terms. Point p is said to be located at 

x,(p)), and we assume without 
loss of generality that Xi(p) > 0, for all p and j. 
We define the function ii(p) as lXj(P)/D], for all 
p and j. 

In this section we present our approximation 
algorithm for CS, problem. The worst-case 
approximation und is 2J-’ and it takes 

O(dn +n log 3) 

time, where ,P is the number of hypersquares in 
an optimal solution. 

Before we explain our approximation algo- 
rithm, let us solve a restricted version of our 
problem which we call the slab problem. In this 
problem all points are located inside a rectangle 
(whose sides are orthogonal to the axes) with 
height D. optimal tovcr for the slab problem 
can be obtained as follows. Consider all points in 
increasing order with respect to their x,(p) value 
(the l-axis corresponds to the width). The left- 
most point (point with smallest x JpI value) is 
covered by the left boundary of the D by D 
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square whose top boundary coincides with the 
top boundary of the slab. All the points that fall 
inside this square are said to be covered. Then 
the leftmost uncovered point is covered in a simi- 
lar fashion, and so on. Our algorithm outputs 
these D by D squares. This procedure, referred 
to as to colyr the leftmost point first (CLPF), has 
worst-case time complexity of 001 log n) and 
generates a minimum cardinality cover. 

The CLPF procedure is not a procedure with 
the b,tst worst-case time-complexity bound for the 
slab problem. Let us now discuss a better algo- 

) whose worst-case time-complex- 
ity bound is only O( n log s), where s is the 
number of squares in an optima1 cover. The idea 
behind the procedure is to sort the points with 
respect to their it(p) values. This requires 00~ - 
log s) time, instead of O(U log 12). Then the set 
of points is partitioned into sets S,, S2, . . . , S, in 
such a way that all points in set Sj have identical 
i,(p) values and the i,(p) value of the points in 
set Sj is smaller than the one for the points in 

‘j+ 1’ Clearly, a point in Sj and a point in Sj+ z 
cannot be covered by the same square in a fessi- 
ble solution. Our new procedure implements the 
CLPF algorithm by taking advantage of the above 
properties for the sets S,, Sz,. . . . S,. 

Procedure fastCLPF( P, D) 
Sort the points with respect to i,(p) into sets 

S,, Sz, * * * ‘) Sk as described above; 
R + S, U S,; j + 2; 
while R # fl do 

q c- min(x,(p) I P E RI; 
Let Q be the set of points in R at a distance at 

most D (with respect to X, only) from q; 
R+-R-Q; 
output the D by D square whose left boundary 

includes point q and whose top boundary 
coincides with the top boundary of the slab; 

while j < k ad R contains elements from at 
most one of the sets in IS,, S,, . . . , Sk) do 

We claim that the cover generated by the 
above procedure is identical to the one generated 
by procedure CLPF. The reason is that when R 
has elements from two adjacent sets. S, and S,, 1, 
q must be in set Si and no element in Si+z or 
higher indexed set can be covered by the same 
square as point q. We also claim that the time 
complexity is O(n log s). Sorting takes 
001 log k) time by using balanced binary search 
trees for the i,(p) values. Since no point in S, can 
be covered by the same square as a point in set 
S i -7’ it must be that s >/ k/2. Therefore, sorting 
tdkes O(rz log s) time. The min operation is per- 
formed on each element of S, at most twice and 
the test in the conditions of the while statement 
can be computed in constant time by associating 
with R the number of different sets S,. where its 
elements are located. Note that this information 
can be easily updated when the number of ele- 
ments of R increases or decreases. Therefore, 
the overall time complexity is O(rz log sj. One 
can solve the above problem in O(n) time by 
increasing (substantially in some cases) the space 
complexity [3]. For more details about this (im- 
practical) method the reader is referred to [3]. 

Now let us use the above procedure to obtain 
a fast approximation algorithm for the CS, and 
then for the CS, problem. Our strategy for d = 2 
is to divide the problem into two subproblems, R, 
and R,, and then finding an optimal cover for 
each of them. SubprobIem R, contains all the 
points with i,(p) odd, and subproblem R, con- 
tains the remaining points. Let us consider prob- 
lem R,. It is simple to see that all the points in 
R, belong to slabs (with height D) which are D 
units apart. Therefore, an optimal solution to R, 
consists of finding an optimal soiution to each of 
the slabs which we know takes O(n log s) time. 
Since the number of squares in an optimal SO~U- 

tion to the original problem is at least 3s large as 
that of an optimal solution for R, or Rz, it then 
follows that our algorithm has an approximation 
bound of two. For ti 2 2, the problem is parti- 
tioned into 2d-’ subproblems. By following simi- 
lar arguments, one can easily show that the ap- 
proximation bound for our procedure is 2d- ‘. In 
our implementation, instead of finding a partition 
and then refining it, we perform both partitions 
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directly. The set of problems generated is &, 
P 2,“‘V and Pk. Each of these subproblems con- 
tains all points with the same (i,(p), . . . , i,(p)) 
value, i.e., each corresponds to a slab in a sub- 
problem Rj. Procedure PARTITION-FIRST 

on the above strategy is given below. 

gorit TV = {P,, 

PZ, **a, P,), m 
partition the elements with respect to 

(i,(p),..., i,(p)) into sets P,, PZ,. . . , Pk; 
he fast to set: 
algorit FI 

The partition can be obtained by a lexico- 
graphic sort of the points with respect to 
&(p)..... i,(p)). Sorting by the algorithm given 
in [2] (or an equivalent algorithm) takes 

O(O?J +?r !og k) 

time. The second step applies procedure fast- 
CLPF which takes overall time Q(.v log t), where 
t is the number of hypersquares in the solution 
generated by the algorithm. Since k G t g 2”-‘S, 
it the follows that the overall time complexity for 
our procedure is 

Q( G/n + I2 log s). 

. Algorithm PARTITION-F1 RST gen- 
erates a solution for the CS, problem with approxi- 
mation bound 2 d- ’ The time complexity for our . 
algorithm is 

O(dn +n log s) 

time, where s is the number of hypersquares in an 
optimal solution. 

rwf. By the above discussion. q 

3. SC 

Let us consider the I,-slab pr , i.e., all 
points he in E2 inside a rectangle eight ID, 
for some integer 12 1. First we show that the 

lem can be solved in 0(41n4’) time via 

ogramming. Then we generalize our 
0 SOhe the ld-Skib problem (i.e., all 
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respect to their first coordinate value, i.e., 

Square ci in a cover is said to be an a-square 
~a?lc~lQred squares if t re is a point r E P located 
on the left boundary of ci and a point s E P (not 
necessarily different from r) located on the top 
boundary of Ci that are not contained (are not 
located inside or on the boundary) in another 
square in the cover C. The point Pi with least 
index located on the left (top) boundary of the 

in a cover C that is not contained in 
are in C is called the ieft (top) an- 

chor of ci in C. We shall also refer to the two 
points as simply anchors. A cover is said to be an 
a-col’er (anchor co[‘er) if all the squares in it are 
a-squares. It is simple to show that any cover can 
be transformed to an a-cover without increasing 
the number of squares in it. Therefore, for each 
problem instance there is at least one a-cover in 
the set of optimal covers. We say that a vertical 
line intersects a square if the intersection of the 
set of points that form the line and the square is 
nonempty. We say than an a-cover is an s-corer 
if every vertical line does not intersect more than 
21- 1 squares in the cover. To show that the time 
complexity of our algorithm is bounded by a 
polynomial on n, we establish in Lemma 2 that 
every problem instance has an s-cover among the 
set of optimal covers. 

Before we prove lemma 2 we need to define 
more terms. Let Copr be the set of optimal a- 
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covers for some problem instance. Assume that 
the number of squares in each of these covers is 
t. We define bi as the x1 coordinate value of the 
left anchor of square ci in the optimal a-cover C. 
Assume without loss of generality that the squares 
in each optimal a-cover C have been rearranged 
so that b, <bZ< ..* -<b,. 

Define C, as 

(ClCGp, and 6, for C is maximum 
amongst all covers in Copr) 

and Cj as 

(C 1 C E Ci+ I and bj for C is maximum 
amongst all covers in Cj + ,) , 

for 1 <j < r. Each cover C in C, is called a 
maximum index coLyer. 

Lemma 2. Erlery I,-slab problem has an s-coLler 
among the set of optimal cotiers. 

roof. As mentioned above, every problem in- 
stance has at least one a-cover among the set of 
optimal covers. We now show that at least one of 
these a-covers is an s-cover. The proof is by 
contradiction. Suppose that all optimal a-covers 
are not s-covers. Let C’ be a maximum-index 
cover among all optimal a-covers. By assumption 
there is a vertical line, w, that intersects at least 
21 squares in C’. Transform C’ by the rule given 
in Fig. 1 at line w and then move the newly 
introduced squares down and to the right until all 
of them are anchored or some can be deleted 
because all points have been covered. Let C be 
the cover. It is simple to see that the cardinality 
of C is not larger than the cardinal@ of C ‘. If C 

has fewer squares than C’, then it contradicts 
that C’ is an optimal cover. On the other hand, if 
C and C’ have the same cardinal&y. then we 
contradict the assumption that C’ is the maxi- 
mum-index cover, since one can easily show that 
the maximum-index cover in (C, C’} is not C’. So 
it must be that there is at least one s-cover in the 
set of optimal covers. This completes the proof of 
the lemma. o 

Before presenting our algorithm we define 
more terms. Deleting a subset of oquares from an 
a-cover C results in an a-subcocer which we call 
C’. If points pl, pz, . . . ,pi are covered by an 
a-subcover C’, and all the left anchors of the 
squares in C’ are points from the set 

{P,, P2,.*., pi}, then C’ is called an i-a-wb- 
cocer. Two i-a-subcovers are said to be t-equk- 
alent (tail equiL!alent) if every square in each of 
these i-a-subcovers intersected by a vertical line 
through pi is also in the other i-a-subcover. Two 
i-a-subcovers are said to be ct-equzllalent (cardi- 
nality and tail equicalent) if they are t-equivalent 
and have the same cardinality. An i-a-subcover 
C dominates the i-a-subcover C’ iff C and C’ 
are t-equivalent and C has fewer squares than 
C’. An i-a-subcover is said to be an optimal 
i-a-.subcoL-er if it is the i-a-subcover of an s-cover 
in the set of optimal covers. A set of a-subcovers 
is said to be irreducible if every pair of a-sub- 
covers in the set are incomparable, i.e., one does 
not dominate the other and both are not ct- 
equivalent. Procedure DP scans the points in the 
order pl, Pi,..., p,, and generates at each itera- 
tion a set of irreducible i-a-subcovers. To show 
correctness we prove in Lemma 3 that every 
optimal i-a-subcover has a ct-equivalent i-a- 

W W 

Fig. 1. Transformation rule when I = 3. 
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subcover in the set of irreducible i-a-subcovers 
constructed by the procedure. 

gorit P (P,, Pz,..., P,) 
sort the elements SO that x,(p,) f-~,(p,)G ‘*. 

< x *( P,t 1; 
FS c- {@.I; / * a set with one element whose 

value is an empty list of squares */ 
for i = 1 to n do 

newFS + (d; 

the same number of elements as in C ends in 
FS,.. Since T is an optimal cover. it must be that 
C’ has the same cardinal&y as C. Therefore, C’ 
which is ct-equivalent to 7; ends in FS,, and the 
result follows. Cl 

for each a-subcover C in FS do 
case 
:pi is covered in C: Add {C} to newFS; 
:less than 21- 1 squares are intersected by 
a vertical tine through pi: 

Add (C’ 1 C’ is C plus an u-square with 
pi as its left anchor) to newFS: 

:else: / * newFS remains unchanged */; 
endcase 
for; 
FS be a maximal cardinality subset of 

irreducible a-covers in newFS; 
endfor; 
Output any cover with the least number of squares 

in FS 
end of algorit 

ma 3. For every 1,&b problem, algorithm 
nerates an optimal cover. 

roof. It is simple to show that the proof of the 
lemma reduces to showing that if at the ith 
iteration every optimal (i - l)-a-subcover has a 
ct-equivalent (i - l)-a-subcover in FS, (xt FS at 
the beginning of the iteration), then ev6-y opti- 
mal i-a-subcover has a et-equivalent i-u-sub- 
cover in FS, (set FS at the end of the iteration). 
Let T be any s-cover in the set of optimal covers. 
Let &_, (q> be the (i - I)-a-subcover (i-a-sub- 
cover) of T. By assumption there is an (i - l)-a- 
subcover in FS, (say Ci _ I) ct-equivalent to Ti _ ,. 
If pi is covered by the squares in ‘T;._ ,, then 
C = C;_ 1 is added to newFS and 7;: is the same as 
q- i- On the other hand, if pi is not covered by 
the squares in T!_ ,, then when Ci_ I is considered 

To establish our time-complexit) bound we 
need to specify some implementation details. We 
find a maximal subset of irreducible a-covers in 
newFS as follows. Each a-cover in newFS is char- 
acterized by the anchors of the squares inter- 
sected by a vertical line through pi and the num- 
ber of squares in the cover. We sort via radix sort 
the covers in newFS using as keys the indices of 
the points which are anchors (in sorted order) of 
the squares that characterize the covers. Associ- 
ated with each key there is the number of squares 
in the cover. Deletion of dominated i-a-sub- 
covers and ct-equivalent i-a-subcovers can be 
easily done by traversing the list once. Thus, if 
newFS has m elements, the overall time taken to 
execute the step is c(m + n), where c is the 
number of anchor points that characterize an 
i-u-subcover. The above bound can be achieved 
by sorting the elements via radix sort since the 
keys are c dimensional points whose value along 
each axis is an integer in the range [ 1, n]. 

Lemma 4. For er*ery I,-slab problem, algorithm 
DP takes 0(41 n”) time . 

roof. By Lemma 2, the defim-ion of s-covers, 
and the fact that there are at most two anchors 
per square, we know that 1 FS I < n41m2. Since for 
each element in FS at most iz covers are added 
to newFS, 1 newFS I < n4’-‘. Using the procedure 
discussed above the maximal set of irreducible 
covers in newFS can be identified in 

0((41- 2)n4’-‘) 

time. The above operation is repeated n times, 
therefore the overall time complexity is O(41 n4*). 

El 
-loop an i-a-subsover C t-equivalent to 

7;: is added to newFS. In either case the i-a-sub- For the I,-slab problem, the number of squares 
cover C’ = C in zewFS ends in FS,, or an i-a- 

subcover C’ t-equivalent to C and with at most 
partitioned by a hyperplane passing through pi is 
at most 2P’ - 1 instead of 21- 1, and the num- 
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ber of anchors per square is d instead of two. 
Therefore, the time complexity for the /,-slab 
problem is 

Q(d(2[d_ I _ +“‘2’d-‘- I)+ I)_ 

This aigorithm can be easily incorporated with 
the polynomial-time approximation scheme given 
in [4]. The idea is to apply the algorithm to In 
problem instances of the [,-slab problem. The IJ 
problem instances can be partitioned into I”-’ 
groups such that the total number of points in all 
problems in each group is n. This results in an 
overall time complexity bound 

0(/d-‘d(21”- I _ 1)n11(21”-‘-l)+I)~ 

The approximation bound is (1 + 1 /I)“- ‘. 

Theorem 5. Combining algorithm DP with the 
polynomial-time approximation scheme in [4] re- 
sults in a procedure that generates a solution to the 
CS, problem with approximation bound (1 + 
1 /I)“- ’ and time complexity 

o(l&ld(21&’ _ Qd(2I”-‘-1)+1)_ 

Proof. By the above discussion, 0 

All our techniques can also be adapted to the 
CR, and the CD, problem. For the CR, prob- 
lem the approximation and time-complexity 
bounds are identical to the ones for the CS, 
problem. For the CD, problem the algorithm in 
Section 2 has identical time-complexity bound; 
however, the approximation bound is 2d-‘[G]d. 
For the polynomial-time approximation scheme, 
the approximation bound is 2( 1 + 1 /I Id- ’ and 
the time-complexity bound is 

The same techniques can be adapted to the pack- 
ing problem studied in [4]. The approximation 
and time-complexity bounds are smaller than for 
the CS, problem. For brevity we do not discuss 

this further. As pointed out in [4] it is important 
to develop fast approximation algorithms for the 
[,-slab problem These algorithms would imply a 
much better time-complexity bound for the CSd 
problem at the expense of a slightly larger ap- 
proximation bound. 

From our algorithms one can define a heuristic 
which we believe has a reasonable behzvior with 
respect to the time complexity and the approxi- 
mation. The idea is to partition the set of points 
into two groups. Those which are “far” from 
other points and those with “close” neighbors. 
The heuristic then applies our polynomial-time 
approximation scheme to the problem defined by 
all the points in the first group. An optimal 
solution will be generated quickly for this sub- 
problem. The remaining problem is solved by the 
approximation algorithm in Section 2. 

Gonzalez [3] has developed other approxima- 
tion algorithms for the problems discussed in this 
paper. The algorithm in this paper outperforms 
these algorithms because it is either faster, re- 
quires less space, or has a smaiier worst-case 
approximation bound. To generate good solutions 
in practice one should execute all of these algo- 
rithms concurrently and then select the best of 
the solution generated. Proving 
preach has a src.;:ller worst-case 
bound is not sirii:iir, and remains 
lem. 

that this ap- 
approximation 
an open prob- 
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