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Abstract 

Approximation algorithms for embedding hyperedges in a cycle so as to minimize the maximum congestion are presented. 
Our algorithms generate an embedding by transforming the problem into another problem solvable in polynomial time. One 
algorithm transforms it to a linear programming problem, and the other one to the problem of embedding edges in a cycle. Both 
algorithms generate an embedding with congestion at most twice of that in an optimal solution. Our problem has applications 
in CAD and parallel computation. 0 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

The problem of Embedding Hyperedges in a Cycle 

so a to Minimize Congestion (EHCMC) [3] has 

applications in design automation (routing nets around 
a rectangle [6-8,101, and moat routing [1,4,9,11], 
and in parallel computing (mapping data structures 
onto a ring network [3]). The EHCMC problem 
consists of a hypergraph H = (V, EH), where V = 

IVl.U2,..., un} is a set of n vertices, and EH = 

{hl,h2,..., hm} is a set of m hyperedges, i.e., each 
hyperedge is a subset of two or more vertices. The 
cycle C defined over the set of vertices V consists of 
the edges 

1 Email: teo@cs.ucsb.edu. 

0020-0190/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved. 
PII: SOO20-0190(98)00117-3 

A connecting path or (simply a c-path) Pi in C, for 
1 < i < m, is a path in C such that all the vertices 
in the ith hyperedge are in Pi. Our problem consists 

of finding c-paths Pi, for 1 < i < m, such that the 
congestion which is measured by maxx,ec 1 (i such that 

e E Pi}/ is least possible. 
Frank et al. [2] developed a linear time algorithm for 

the EHCMC problem when the hypergraph is a graph 
(all hyperedges contain exactly two vertices). Gan- 
ley and Cohoon [3] showed that the EHCMC prob- 
lem is NP-hard in general, but solvable in polynomial 
time when there is an embedding with congestion at 

most k, for any fixed value k. Ganley and Cohoon [3] 

also developed an approximation algorithm that gen- 
erates embedding with congestion at most three times 
the congestion of an optimal solution, i.e., jZ < 3fT, 

where Z is an instance of the EHCMC problem, f, is 
the congestion of the solution generated by the algo- 
rithm for instance I, and f,T is the congestion of an 
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optimal solution to I. The time complexity of the al- 
gorithm is linear with respect to the sum of the cardi- 
nalities of the hyperedges. In this paper we present two 
new approximation algorithms that generate solutions 
whose congestion is within two times the congestion 
of an optimal solution. The two algorithms are similar 
in nature. The difference is that the first algorithm (LP) 
transforms the problem to a linear programming prob- 
lem, and the other one (LP-Free) transforms it to the 
problem of embedding edges in a cycle. The LP-Free 
algorithm takes linear time with respect to the total 
number of vertices in the hyperedges, but the LP algo- 
rithm is more robust because it may be easier to mod- 
ify for minor variants of the EHCMC problem. Gon- 
zalez [5] presents problem instances for which both 
of these algorithms generate solutions with congestion 
about twice of that in an optimal solution. 

2. LP approximation algorithm Find Minimum k such that 

Let mi be the number of vertices in hyperedge hi, 
an let hi = (hi,l, hg, . . . , hi,mi) be the ordered set 
Of vertices in hi, i.e., hi,1 6 hi,2 < e.0 6 hi,mi. We 
define the adjacentpaths (or simply a-paths) pi,j, for 
1 6 j f mi, as the set of edges in C from vertex hi,j 

to vertex hi,j+l, where hi,mi+l is defined as hi.1. 

A feasible solution (or simply a solution) to the 
EHCMC problem is a set of c-paths, one for each 
hyperedge. For hyperedge hi a c-path Pi consist of at 
least mi - 1 of its a-paths. Note that if the c-path Pi 
consists of all its rni a-paths, then one of the a-paths 
may be deleted without affecting feasibility. 

For each a-path pi,j we define the variable ai,j 
which holds a real value in the interval [0, I]. We 
define the inequalities 

mi 

c Ui,j = ml - 1, O<igm, 

j=l 

0 < ai,j < 1 Vi and j. 

Any solution to (1) must satisfy that at least mi - 1 
of the ai,.‘s have value at least l/2. We define the 
roundfunction r(x) as 1 if x Z l/2 and 0 otherwise. 
Applying the round function to any feasible solution 
to (1) (i.e., r(ai,j)) we know that for each value of i 
at least mi - 1 of the rounded values r(ai,.) are equal 
to one, and at most one of the r(ai,.) has the value 

of zero. For each i and a solution to (1) we define 
the c-path Qi as a-path pi,j is in Qi iff r(ai,j) = 1. 
The paths Qis are a feasible solution to the EHCMC 
problem. Clearly, every solution to the EHCMC can 
be generated from a solution to (1) by following this 
rounding procedure. 

The decision version of the EHCMC problem is to 
find an embedding into C with congestion at most k, 
i.e., the total number of c-paths covering each edge 
in C is at most k. This additional constraint can be 
modeled by the following equations. 

For each edge e in the cycle C add the equation 

c Ui,j 6 k. 

pi,i includes e 

The EHCMC problem is to find the least k such that 
there is an embedding into C with congestion at most 
k. Let us now consider the following LP program. 

c ai,j 6 k Ve E C, 
pi,j includes e 

mi 

c 
Ui,j =t?li - 1, O<i<m, (2) 

j=l 

0 < ai,j < 1 Vi and j. 

Any feasible solution to any instance I of the 
EHCMC is a feasible solution to its corresponding 
LP program (2). Therefore, f; 2 k*, where k* is the 
objective function value (k) of an optimal solution 
to the LP program (2) corresponding to instance I. 
Now consider an optimal solution to (2) for problem 
instance 1. Clearly the rounded values r&j) satisfy 
the same properties as the rounded values for (1). but 
we cannot claim that the congestion of the embedding 
constructed from the rounded solution to (2) is at most 
k* because the rounding may increase congestion. 
However, the congestion is at most doubled, i.e., it is at 
most 2k*. Therefore, the embedding generated for any 
instance I of the EHCMC problem from the rounded 
solution to an optimal solu9on to the LP program (2) 
for instance Z is such that fZ Q 2f7. We shall refer to 
this procedure as algorithm LP. 

Theorem2.1. The embedding generated for every 
instance Z of the EHCMC problem by algorithm 
LP satisJes f; < 2fT. The time complexity of this 
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Fig. 1. The numbers inside the circle are the hyperedges that include those points. 

procedure is bounded by a polynomial on the number 

of bits that represent the instance of the EHCMC 

problem. 

Proof. By the above discussion and the facts that the 
currently fastest algorithm to solve LP problems is 

polynomial on the number of input bits, and all the 
numbers in the LP instance are integers between 0 and 

n, remember that II is the number of vertices in the 
hypergraph. q 

An alternate LP formulation can be defined over 
the complement of the variables ai,j, which we call 
iii,j. By the complement of a variable we mean ai,j = 
1 - iii,i. This LP formulation is simpler because the 
set of inequalities 0 < ai,j < 1 is reduced to 0 < iii, j . 

For brevity we only include the “seed” problem 

instance (Fig. l(A)) which when generalized as in [5] 
defines a class of problem instances for which the 

LP algorithm generates solutions whose congestion 
is asymptotic to twice of that in an optimal solution. 
The “seed” problem instance has an optimal solution 
with congestion 3 (see Fig. l(B)). An optimal solution 

to the LP problem is given in Fig. l(C) (the dotted 
lines means that the variable corresponding to the a- 
path has value $ ; and the thick line means that it 

has value 1; otherwise it is zero). 2 Therefore, the 

*Actually this is the solution generated by using the simplex 

method to solve the LP problem. 

objective function value of an optimal solution to the 
LP problem is 3. The solution to the EHCMC problem 
generated by our LP method has congestion 5, and the 
approximation bound is $. 

3. LP-Free approximation algorithm 

The main problem with the LP approximation al- 
gorithm is the time required to solve the linear pro- 
gramming problem. Even though the time is polyno- 
mial with respect to the number of bits in the input, the 
constant associated with the time complexity bound is 
huge. Solving the LP problem via the simplex method 
takes, in the worst case, exponential time, but, on aver- 
age, it is fast. To guarantee that we can always generate 
solutions very quickly, we develop an alternate method 
with the same worst case approximation bound, but the 
time required to find it is linear with respect to the in- 

put size. Furthermore, the constant associated with the 
time complexity bound is small. 

Our algorithm, which we call LP-Free, transforms 
the problem instance to an instance of the EHCMC 
problem in which all the hyperedges have exactly two 
vertices which we know can be solved in linear time 
by the algorithm in [2]. Then from the solution to 
that problem we construct our solution to the original 
EHCMC problem. The transformation is as follows: 
Each hyperedge hi with rni points is transformed 
into rni edges (i.e., hyperedges with two vertices) in 
the obvious way. For example, the problem instance 
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Fig. 2. The vertex numbers are inside the circle and the numbers outside indicate the hyperedges that including that vertex. 
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Fig. 3. Possible embeddings for the resulting edges for a hyperedge with three points. 

in Fig. 2(A) is transformed to the instance given in edges could be embedded (see Fig. 3). However, em- 
Fig. 2(B). Note that hyperedge 1 in Fig. 2(A) becomes bedding patterns E, F, G, and H in Fig. 3 can be con- 
edges 1 and 2 in Fig. 2(C). This is represented by verted to pattern A without increasing the congestion. 
1 + 1,2. Similarly 2 + 3,4,5 and 3 +- 6,7,8. Therefore, there exists an optimal solution where the 

A hyperedge with three points is transformed into hyperedge with three points is embedded as in Fig. 3 
three edges and there are eight different ways all these (A, B, C, or D). The same idea can be generalized to 
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all hyperedges. Once we have constructed the instance 
of the EHCMC problem in which all tbe hyperedges 
have exactly two vertices we solve it with the linear 
time algorithm given in [2]. Now we transform back 
such solution to the original problem and remove the 
duplicate connections, or delete an a-path from a c- 
path thatjncludes all its a-paths. The solution has con- 
gestion fr < 2f,? simply because an optimal solution 
to the original problem can be transformed into a fea- 
sible solution to the resulting problem with congestion 
2f,? and the algorithm in [2] gives the best possible 
solution to the resulting problem. 

Theorem 3.1. Algorithm LP-Free generates for every 

instance of the EHCMC a solution with congestion 
f~ < 2f,*. The time complexity is linear with respect 

to the sum of the cardinalities of the hyperedges. 

Proof. By the above discussion. q 

Both the LP and the LP-Free algorithms generate 
solutions with congestion about twice of that of an 
optimal solution for the class of problem instances 
given in [_5]. 

4. Discussion 

A slightly better approach results by applying the 
last transformation, but leaving out for each hyperedge 
one of the resulting edges. Perhaps the best choice for 
the edge to be deleted is random. For hyperedges with 
four points there is a simpler construction that uses 
only two edges that join the opposite points of the 
hyperedge. We should note that the above heuristics 

do not improve the worst case approximation bound, 
but, in general, a better solution may be obtained. In 
practice one could run several variations of our two 
algorithms, and then find and output the best of the 
solutions generated. 
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