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Abstract 

We present a simple LP-free (i.e., not requiring linear programming) approximation algorithm for the minimum weight 
vertex cover problem. Our new approximation algorithm does not need to solve a linear programming problem, nor such a 
formulation is needed to establish its approximation bound. The algorithm takes linear time with respect to the number of 
nodes and edges in the graph, and generates solutions that are within twice the weight of a minimum weight vertex cover. 
Both the algorithm and its proof of correctness are elegant and simple. 
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1. Introduction 

We present a simple LP-free (i.e., not requiring lin- 
ear programming) approximation algorithm for the 
minimum weight vertex cover problem. The most im- 
portant feature of the algorithm is that linear program- 
ming theory is not needed to establish its approxima- 
tion bound. Our proof is based on simple intuitive ar- 
guments. 

A vertex cover for an undirected graph is a set of 
vertices such that all the edges in the graph are incident 
upon at least one vertex in the cover. The minimum 
cardinality vertex cover for a graph is a vertex cover 
with the least number of vertices. 

The simplest approximation algorithm for the mini- 
mum cardinality vertex cover problem was developed 
by Gavril [ 21. The approximation algorithm takes as 
input a graph G, and finds a maximal (maximal not 
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maximum) matching, M, for G. The endpoints (ver- 
tices) of the edges in the matching M form the vertex 
cover generated by the algorithm. 

Clearly, the number of vertices in the vertex cover 
generated by the algorithm is f = Z]M]. Since for ev- 
ery edge in M at least one of its two endpoints must 
be in any vertex cover, we know that the cardinality 
of an optimal vertex cover, denoted by f’, must be 
greater than or equal to \A#(. Therefore, given any in- 
stance of the minimum cardinality vertex cover prob- 
lem, Gavril’s algorithm generates a vertex cover with 
cardinality f < 2f*. The approximation bound is 
best possible, i.e., there are problem instances (com- 
plete bipartite graphs, for example) for which equality 
holds. However, one can add a simple postprocessing 
procedure so that the new algorithm generates solu- 
tions such that p < 2f*. The postprocessing proce- 
dure deletes a maximal subset of vertices from the pre- 
vious solution while maintaining a vertex cover. Note 
that if at least one vertex is deleted, then the new ap- 
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proximation bound holds since the new p is less than 
2]M]. On the other hand, if none of the vertices can 
be deleted, then one can establish that f* > [MI. 

A maximal matching can be constructed in O(n + 
m) time (where n is the number of nodes, and m is 

the number of edges in G) by simply beginning with 
an empty matching (one with zero edges), and re- 
peatedly adding an edge (which is not adjacent to an 
edge in the current matching) until no further addi- 
tion is possible. Therefore, Gavril’s algorithm can be 

easily implemented to take O( n + m) time. The post- 
processing procedure can also be implemented to take 
linear time. 

For the weighted version of the vertex cover prob- 

lem the graph has a weight assigned to each vertex, 
and the problem consists of finding a vertex cover with 
least total weight, i.e., find a vertex cover whose sum 
of the weight of the vertices in it is least possible. 

Several approximation algorithms for this more gen- 
eral problem were developed in the 80’s [ 1,3-51, all 
having an approximation bound of two, or asymp- 

totic to two. The only one of these algorithms that 
takes linear time is the one by Bar-Yehuda, and Even 
[ I]. However, the proof to establish the approxima- 
tion bound is not simple, and it is based on linear pro- 
gramming theory. We present a new approximation 
algorithm. Our algorithm also takes linear time, and 

has the approximation bound of two. Our algorithm is 
very simple, and one can establish its approximation 

bound in a very simple and elegant way without lin- 
ear programming theory. One can view our algorithm 

as a generalization of Gavril’s method, and a modified 
version of Bar-Yehuda and Even’s procedure. 

2. Approximation algorithm for minimum weight 
vertex cover 

Our approximation algorithm constructs a special 
type of matching (maximal generalized matching) for 
G and then selects the set of vertices (called saturated) 
in it as the cover for G. Let us now define precisely 
these terms. 

Let G = (YE, W) be a vertex weighted (non- 
negative real weights) graph. An edge weighted (non- 
negative real weights) graph G’ = (YE, IV’) is said to 
be a generalized matching for G if for every node vi in 
V the sum of the weights ( W’) of the edges incident 
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Fig. 1. (a) Graph G. (b) Non-maximal generalized matching for 
G. (c) Maximal generalized matching for G. 

to vertex vi is less than or equal to the weight ( W) of 
vertex Ui in G. A generalized matching G’ is said to 
be muximal if increasing the weight of any edge by 

any 6 > 0 results in a graph that is not a generalized 
matching for G. 

Vertex vi in G’ is said to be saturated if the sum 
of the weights of the edges incident to vi in G’ is 
equal to the weight of vi in G, otherwise, the vertex 
is unsaturated. It is simple to show that if G’ is a 
generalized maximal matching for G, then no edge in 
E can join two unsaturated vertices. Therefore, the set 
of saturated vertices in G’ is a vertex cover for G. 

A maximal generalized matching for G can be gen- 
erated as follows. Initially G’ is a copy of G with the 

weight of all edges set to null. Initialize the vector 
tat to zeroes. The value of tOti represents the sum of 
the weights of the edges incident upon vertex i in G’, 
where the value of null is zero. Now consider each 

edge in G’ at a time. Assign the edge a weight of zero 
if at least one of the vertices adjacent to it is saturated. 
On the other hand, when both the edge’s endpoints are 
unsaturated vertices, assign to the edge a weight such 
that at least one of the vertices becomes saturated and 
update the value of tot of both vertices. It is simple to 
show that the above procedure can be implemented to 
take linear time with respect to the number of nodes 
and edges in the graph G. The approximation algo- 
rithm, which we shall refer to as GMM, is defined be- 
low (see Fig. 1). 

procedure GMM 
Find a maximal generalized matching, G’, 

for graph G, 
Output the set of saturated vertices in the 

maximal generalized matching; 
end of procedure; 
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G’ Imaximal) optimal 

Fig. 2. Solution generated by the algorithm, and an optimal cover. 

Clearly, the weighyof the cover for G generated by 
procedure GMM is f = W(S), where S is the set of 
saturated vertices in G’, and W(S) is the sum of the 
weights of the vertices in S in G. We now claim that 
W(S) /2 is a lower bound for the weight of a minimum 
weight vertex cover for G, i.e., f* 3 W(S) /2. The 
reason for this is simple. Let F* be any optimal cover 
for G and let f* be its objective function value (i.e., 
the sum of the weights of the vertices in it). Partition S 
into the set of vertices that are part of the optimal cover 

F* (S( in) ) , and the ones that are not in it (S( out) ) . 
Let NS( in) be the set of unsaturated vertices in G’ that 
are part of the optimal cover F*, and let NS(out) be 
the remaining set of unsaturated vertices (see Fig. 2). 

Clearly, f’ > W( S( in)). Let us now establish that 
W( S( out) ) 6 f*. Since every vertex ui E s(out) is 
a saturated vertex in G’, we know that W( S(out)) = 

W’ (E( out) ) , where E(out) is the set of edges incident 
to a vertex in S( out). Since each vertex S(out) is 
not in F*, and since F* is a vertex cover, we know 

that S(out) is an independent set and every vertex 
adjacent to a vertex in S(out) must be in F*. Since 

for every vertex Ui E V the sum of the weights of the 
edges in G’ is no more than the weight of vertex Ui in 
G (because G’ is a generalized matching for G), we 
knowthatW’(E(out)) f W(S(in))+W(NS(in)) = 
f*. Therefore, W(S(out)) = W’(E(out)) < f*, and 

f = W(S(in)) + W(S(out)) 6 2f*. 

Theorem 1. For any instance of the minimum weight 

vertex cover problem algon’thm GMM generates so- 

lutions such that p d 2f*, where f and f* are as 

defined above. Furthermore, algorithm GMM takes 

linear time with respect to the number of nodes and 
edges in G. 

Proof. The proof follows from the above argu- 
ments. 0 

As in the case of Gavril’s procedure [ 21, there are 
problem instances for which the approximation bound 
of two can be achieved, but our algorithm can be eas- 
ily modified so that 1 < 2f*. The idea is similar to 
the one used in the introduction for the minimum car- 
dinality vertex cover. Delete a maximal set of satu- 
rated vertices while maintaining a vertex cover. If at 

least one vertex is deleted, then p < W(S). Other- 
wise, we know that either f = f*, or NS( in) # 0. 
In the former case the result follows, and in the lat- 

ter case one can establish that f* > W( S( in) ), and 
f* > W(S) /2. Therefore, for the new algorithm f < 
2f*. The new algorithm can be easily implemented to 
take linear time with respect to the number of nodes 
and edges in the graph. 

3. Discussion 

We have presented a simple approximation algo- 
rithm for the minimum weight vertex cover problem. 
We have established that its approximation bound is 
two, by using a simple and intuitive proof that does 
not require linear programming theory. 
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