
Volume 15, Number 3 INFORMATION PROCESSING LETTERS I I October 1982

SORTING NUMRERS IN LINEAR EXPECTED TIME AND OP’I’IM,~L EXTRA SPACE +*

Teofilo F. GONZALEZ

Mathematical Sciences Program, Tire Unicwrsity of Texas at Daltas, Richadon, TA 75080, U.S.A.

Donald B. JOHNSON

Department of Computer Science, The Pennsylvania State Universiry, Unioersity Park, PA 16802, U.S. A.

Received 30 October 1981; revised version received 9 July 1982

An algorithm is shown that sorts n numbers, each representable in h bits, in 8(n) time on the average where the numbers to
be sorted are selected randomly from some interval. The algorithm only uses 8(log n) hits of extra space, which is
asymptotically optimal.

Keywor& Sorting in linear expected time

Among the most widely used internal sorting
algorithms are Quicksort f4,6,7) and Heapsort
17,121. The expected running time of both these
~go~~s is e(n logn) when sorting n numbers,
each representable in h bits and each permutation
of which is equally likely. Quicksort uses 8(log2n)
bits of extra space; Heapsort uses $(logn).

In 1965 MacLaren [8] presented an algorithm
which sorts numbers in e(n) expected time when
the input numbers are independently and identi-
cally distributed uniformly. We note that this run-
~o~~n~ss ~su~~t~~n implies each pe~utation to
be equally likely, but the converse does not hold.
MacLaren’s algorithm requires for some fixed in-
teger p >P 1 at least n + nl/P extra locations, each
large enough to hold the number n. Variants pro-
posed by others also require asymptotically signifi-
cant extra space. Knuth’s improvement 1’71 needs
at least rP2 extra locations. Dobosiewicz’s recur-

* This research was supported in part by the National Science
Foundation under Grants MCS 77-21092 and MCS 8042684.

* A pan version of this paper was presented at the
AlIerton Conference, September, 1978 [6].

sive version of MacLaren’s algorithm [I,21 requires
at least 2n extra locations, as do other related
algorithms [9,13 f.

Our algorithm sorts n numbers in 8(n) ex-
pected time under the randomness assumption and
requ&s only B(logn) bits of extra space. This
amount of space is equivalent to a constant num-
ber cf registers that can hoid a pointer to an input
numlxr and therefore is optimal to within a con-
stant factor. Our complexity model charges unit
cost for arithmetic operations. We assume that
execution of arithmetic operations and swapping
the ccjirtents of two memory locations do not us-e
extra space. Swapping locations a and b may be
implemented, for example, by a sequence of three
exclusive OR operations applied to the Iocations,
assi~~g the results to a, to b and to a again.

In order to determine the extra gpace reqmircd
1%;’ our algorithm it 1s necessary to ~~~~rn~ that the
memory locations holding the input ~ur~~b~rs~ or
kqvs, have a fixed size which in the worst case is
necessary to represent the keys. Thus, it is ~rnp~s~i~
bte to encode additional information in a ~~~ti~n
containing a key without risking; lo
tion irn the key* To make this ~~~rn~t~o~ c~~c~ctc~
let each location containing a key be capable of

aoZ0-0~90/82/oooO-oooO/$~2.75 e 1982 North-Holl~d

Volume IS, Number 3 INFORMAfiON PROCESSING LETTERS 11 October 1982

containing a binary number of at most h bits and
let the keys be h-bit nonnegative numbers. Our
results could easily be restated under other specific
assumptions, for they are in fact independent of
the question of number representation.

To understand our algorithm it is helpful to
understand MacLaren’s algorithm. It has two
stages. In the first stage, the n input keys are
bucket sorted according to a subkey composed of
the m most significant bits of each key. If extra
space is allowed for bucket headers and pointers
with which to chain elements in buckets, this stage
can be implemented to run in G(pn + P~~/P) time
for any input, where p a 1 bucket-sorting passes
are employed. The second stage is an insertion sort
on the whole keys. Given the initial bucket sort on
m-bit subkeys, insertion sort runs in time asymp-
totically proportional to ’

T(n, m) = 2$’ cost(ri)
i=O

where ri is the number of keys for which the
subkeys composed of the m most significant bits
have value i, and cost(y) is the cost to fully sort a
sequence of y numbers. Thus, for i = 0,. . . , 2m - 1,

E(T(n,m)) = E(‘x1 cost(r,))

= ‘5 ’ E(cost(ri))

= ~~~~~St(r,)),

where E(x) denotes the expected value of x.
Under the randomness assumption the proba-

bility that ri = k is

(;,(f)“(1 -f)“-”
for k =O,...,n. If we choose

I
0, y=o,

cost(y) = 1,

I

y= 1,

y(y - 0, y = 2,...,n,

to represent the asymptotic cost of insertion sort,

then, for any i,

E(cost(ri)) =

= ~ocost(k)(~)(f)“(1 - f)n-k
z

1 (1
n-l

=- n 1-F
2”

+ j2L(k- 1)(;)($i)k(l -$)n-k =
1 (1

n-l
=- n 1-F

2m

+ n(;2; l) j2(::;)($)k-2(1 -$)n-k
=

1 (1
n-l

=- nl-F +
n(n- 1)

2m 22” ’

Substituting, we find the expected cost of the
insertion sort to be

n-l
E(T(n,m))=n +

n(n - 1)
2 m .

To obtain linear running time for this stage,
MacLaren sets m = log,n for n a power of two. If
we choose m = [log, n] , then

E(T(n, llos2nl)) c

4n
C-++(n- 1)=0(n), n>l.

3e’j2
MacLaren proposed p = 2 in stage 1 but it is

clear that any constant number of passes p 5 1 will
yield an algorithm with O(n) running time overall,
provided m = @(log n). Knuth’s modification, al-
luded to above, is MacLaren’s algorithm with p =
2, in which the bucket sort is replaced by an
address computation sort, thereby eliminating the
pointers used to chain keys within buckets. Extra
space is still consumed by the n’/2 locations needed
for bucket headers. The algorithm reported by
Dobosiewicz can be viewed as MacLaren’s algo-
rithm with p = 1, but in which stage 1 of Mac-
Laren’s algorithm is applied recursively in place of
the stage 2 insertion sort. In addition, a linear-time
median-finding algorithm is used to balance the
number of elements between the first [in1 buckets

Volume 15, Number 3 INFORMATION. PROCESSING LETTERS 11 October 1982

and the remaining buckets. This latter feature im-
proves the worst case running time to O(n log n)
while worsening the expected running time by a
constant factor. Van der Nat [131 achieves the
same improvement in worst case running time
simply by dividing the given file into two subfiles
of equal size. Each of the subfiles is bucket sorted
as in MacLaren’s algorithm. After recursive appli-
cation of the entire algorithm to each of the
buckets, the results on the two subfiles are com-
bined by merging. Meijer and Akl’s algorithm [9]
is easily understood by vit .kg it as MacJ4aren’s
algorithm in which the insertion sort stage is re-
placed by a heapsort of each bucket indepen-
dently. An analysis similar to that given above
yields an O(n logn) worst case bound directly.
Ehrlich [3] has also treated the subject of sorting
numbers.

2. Sorting in linear expected time and
optimal extra space

Insertion sort requires no more than O(logn)
bits of extra space. Therefore, to present our result
it is sufficient to consider the problem of sorting n
keys on m-bit subkeys, for m = Llog,nj.

For any input X, which we may take to be
indexed from zero, let I be the set of distinct
subkeys in X, and let 2 be X in some sorted order
on the subkeys. Looking only at the subkeys, 2
can be described in terms of the start and finish
indices of each run of numbers with equal sub-

keys. Thus, for j E I, we may define

s(j) = min(iI (subkey at i in a) = j)

and

f(j)=max(il(subkeyatiin%)=j).

It is also convenient to define the number of
subkeys equal to j as

c(j)=f(j)-s(j)+1.

Our algorithm uses a logarithmically succinct
representatioxl for the order of the m-bit subkeys
of %. This representation is constructed in two
n-bit arrays, ska (for ‘subkey-equals-address’) and

sor (for ‘stzrt-of-run’ on subkey) where a 1 in
ska(j) indicate: j is a subkey and a 1 in sorfj) says
that a run pi identical subkeys in k begins at j.
Concisely stated, ska and sor represent % when,
for j = O,...,n - 1,

s(i) = j for some i E 1,
(2)

A proof of the sufficiency of lhis representation is
given later.

The first step of our algorithm obtains space for
the bit arrays ska and sor (plus an additional bit
per word, to be discussed shortly) by bucket sort-
ing the keys on their three most significant bits.
This can be done in linear time and within the
space bound required. It leaves X arranged so that
eight pointers into X suffice to identify subse-
quences that are equal on the first three bits. The
eight pointers therefore suffice to record the values
of the three most significant bits over the entire
array X. The algorithm then zeros the first three
bits in each key and sorts each of the subsequences
delineated by the pointers. When all subsequences
are sorted, the algorithm uses the pointers to res-
tore the leading three bits in each key.

Of the bits freed in X by the initial bucket sort,
let the first be ska and the second be sor. The third
is used to augment the next m = Llog2nJ bits,
which comprise the subkey, so that subkeys will be
taken to have m + 1 bits but to range in value
from 0 to 2” - 1 G n. These m + 1 bits can contain
pointers as large as n. In our discussion we denote
the (m + Q-bit subkey at position j by k(j) and the
remaining less significant bits at position j by z(j).

We have now reduced the problem to sorting
(h - 2)-bit keys ranging in value from 0 to 2h-- 3 - 1
on (m + I)-bit subkeys k(j), having bit arrays ska
and ser. available as extra space, initialized to zero.
The basic idea of the algorithm to solve this prob-
lem is to record the sorted order on the subkeys in
ska and sor in the manner just described. Since ska
encodes I, the subkey fields can be replaced with
pointers to the location each key is to occupy in
allowing each key (with pointer in place of subkey)
to be ,noved to its final location. The information

121

Volume 15, Number 3 INFORMATION PROCESSING LETTERS 11 October 1982

in ska and sor can then be used to restore the
subkeys. We now present the algorithm for this
problem in some detail It is composed of five
steps. In our discussion we use superscripts on the
input array and its associated fields to indicate the
contents of the array or field after a given step.
Taking the input of (h - 2)-bit keys as X, we thus
use X’ to denote the array after step i.

Algorithm to sort on subkeys.
Step 1.

Step 2.

Step 3.

Encode one instance of each subkey as an
address by permuting the input X0 so that
k(j) = j for each distinct subkey value j E I.
Set &a(j) L 1 for each such j.
complete recording of some sorted order
X as follows: Set k(j) = c(j) for each dis-
tinct subkey value j. Then, for each such j,
accumulate these counts so that k(j) = s(i),
and set sor(s(j)) = 1.
Record the sorting permutation implied by
ska and sor in the subkeys k(i) = w(i), for
*- I- O 4***9 n - 1, for a permutation Q which
takes X’ to X (that is, X(i) = X’(?z(i)) for
all i).

Step 4. Apply v to X3 by moving X(i) to position
k(i) for all i.

Step 5. Restor subkeys using ska and sor bits.

At this level of presentation, the following ob-
servations are sufficient to establish correctness.
Step 1 merely permutes X0. Step 2 modifies the
contents of X1 only in k(j) and at values of j where
&a(j) = 1 indicates that the contents of k(j) are
encoded as j. Therefore, sufficient information is
retained to restore some permutation of the input.
Thus, Steps 3 and 4 can be performed correctly.
Under our assumption of the sufficiency of the
information in ska and sor, Step 5 completes the
sort on subkeys.

We now give for each step an implementation
which runs in linear time and within Q(logn) bits
of extra space. We continue our inessential as-
sumption that X is indexed from zero.

//Step 1. Encode one instance of each subkey as
an address by setting k(j) = j and &a(j) = 1 for
each j E I.//

fori:=Oton-I do
t: = k(i)
while k(t)# t do

X(i): =X(t)
&a(t): = 1
t: =k(i)

emhvhile
ska(t): = 1

endfor

The only data movements in Step 1 are swaps,
so Step 1 maintains a permutation of X. A key
part of the invariant of the main loop is: each key
k(j), 0 <j < i, satisfies k(j) = k(k(j)). It is true ini-
tially (for i = 0); it is never falsified because no
X(j) for which k(j) =j is ever moved; and each
iteration establishes k(i) = k(k(i)). Therefore, upon
termination each key k(j) in the array satisfies
k(i) = kM))*

Since X(j) is never moved for any j once k(j) = j,
it follows from Step 1 that &a(j) = 1 if and only if
k(j) = j upon termination. Step 1 runs in linear
time because each iteration of the while loop in-
creases the number of indices j for which k(j) = j.
Finally, no more than O(logn) bits of extra space
are used.

//Ship 2” Complete recording of the sorted order
X by :;etting k(j) - s(j) and s@(j)) = 1 for each
j E I.//

for i:=O ton-l do
if ska (i)= 1 then k(i): = 1

endfor
fori:=Oton-1 do

if ska (i)# 1 then k(k(i)): = k(k(i)) + 1
endfor
t:=n
fori:=n-1 by -1 toOdo

if &a(i)=1 then
t:=t-k(i)
k(i): = t
SOIQ): = 1

endif
endfor

The first two loops of Step 2 set k(j) = c(j) for
j E I. Then the third loop computes the accu-
mulated counts so that k(j) = s(j) and s@(j)) = 1
for j E I. It is evident that the requirements for
linear time and O(logn) extra space are met.

122

Volume 15, Number 3 INFORMATION PROCESSING LE’ITERS 11 October 1982

//Step 3. Record the sorting permutation implied
by ska and s~r by setting k(i) = Ir(i) for a suitable
permutation v.//

fori:=Oton-I do
if ska (i)=O then

k(i): = k&(i))
es0: = k&(i)) + 1

endfor

Suppose k(j) = j for some j. In Step 3, for each i

statisfying f # j and k(e) = j, a unique index in
(s(j),...,f(j)- 1) is assigned .to It(f) and k(j) is
increased by 1. This leaves k(j) = f(j). Time and
space bounds are as required.

//Step 4. Apply 7r to X3 by mzimg X(i) to
position k(i) for all i.//

fori:=Oton-Id0
t: =k(i)
whllet#ido

z(i): = z(t)
k(i): = k(t)
t: =k(i)

endwkde
endfor

‘

An argument similar to that given for Step 1
establishes the correctness of Step 4 and its linear
running time. The space bound is obviously met.

//Step 5. Restore subkeys using ska and sor
bits.//

i: = -1
j:=O
whlle j<n do

lf sor(j)=l then
repeati:=i+luntllska(i)=l

k@: = i
j:-j+l

cadwlalle

We note that ska and sor satisfy properties (1)
and (2). The invariant of the outer loop is

- 14iCn AOGjGnA
A elements k(O:j - 1) have been assigned their

final value
A k(j - 1) has the value i (unless j = 0 and

i= -1).

Proof. For c * 2 a complete algorithm is the fol-
lowing:

step (1)

WP (2)

Bucket sort X on the three most signifi-
cant bits.
Sort each of the subsequences induced
by Step (1) using the algorithm de
scribed above.

step (3) Insertion-sort the result of Step (2).
Whenover cc2 at most 22-c auxiliary counters

Because of properties (1) and (2), the value to
assign to k(j) is either i (if sor(j) = 0) or the next
greatest integer i’ satisfying ska(i’) = 1 (if sor(j) =
1). The execution time is clearly linear and the
space bound is met.

We thus have the following theorem.

Theorem. It is possible to sort n number in O(n)
expected time and O(log n) bits of extra space pro-
oidkd the numbers are independently and iaknticalty
distributed uniformly and at least h = [loglnJ + c
bits are wed to represent the input numbers, for any
fixed integer constant c.

are required.

The above theorem can be shown to hold for
any h whenever n is divisible by the number of
distinct keys. The construction involves grouping
equal keys in adjacent locations to expand count-
ing capacity. We omit the details.

In the implementation of the five steps of the
algorithm to sort on the subkeys, there are seven
loops that pass over the entire array X.

The first three can be combined, leaving five
loops in a reasonable implementation. While it is
possible to reduce the number of bit arrays from
two to one, as has been demonstrated by Torn&
Pisanski, this innovation appears to require an
algorithm with more passes over the array.

3. Conclusion

Our algorithm sorts numbers in linear expected
time and using only a constant number of regicters
of extra space. One barrier to practical use is that
the program itself will be more lengthy than the
programs for commonly used methods. But, this

123

Volume 15, Number 3 INFORMATION PROCESSING LETTERS 1 I October 1982

question aside, is an impleme&ation possible that
is competitive in running time to other methods on
files of reasonable size?

To shed light on this question we have made a
comparison with Quicksort. Using the best version
of Quicksort from the study of this method by
Sedgcwick [IO,1 l], we implemented both Quicksort
and our algorithm in IBM 370 assembler language.
For n 2 500 keys, our implementation takes no
more than twice as much time as Quicksort on the
average, where we measure time as the number of
machine instructions executed. We would expect
substantially better results on machines with in-
structions more suited to operate on arbitrary fields
of bit wizthin computer words. It is also likely that
our assemblei- language program can be made
faster.

It is not likely that our algorithm can be speeded
up significantly by replacing insertion sort in the
final pass of the algo ithm with another sorting
method. This judgmel\t follows from observing
that E(ri > 0), the expected length of subsequences
that the insertion-sort paTs sorts, is small. This
quantity is given by

E(ri>13)= i k
Prob(r, = k)

k= I Prob(r, = o>

=
;1 lr Oif)k(1-&j”-”

L A-
k=l

n =

which for m = [log+] is less than 2.313.
Our algorithm is not stable (see [7]). However,

neither sre Quicksort, Heapsort, Knuth’s modifi-
cation of MacLaren’s algorithm and Dobosiewicz’s

algorithm. It is an open question whether there
exists a stable sorting algorithm that runs in 9(n)
expected rime and O(log n) bits of extra space.

Acknowledgment

We are grateful to David Gries for helpful
comments.

References

111

121

[31

VI

PI

VI
(71

181

PI

WI

WI

[121

1131

W. Dobosiewicz, Sorting by distributive partitioning, In-
form. Process. Lett. 7 (1x1978) 1-6.
W. Dobosiewicz, The practical significance of d.p. sort
revisited, Inform. Process. Lett. 8(4) (1979) 170- 172.
G. Ehrlich, Searching and sorting real numbers, J. Algo-
rithms 2 (1982) I-12.
C.A.R. Hoare, Partition (Algorithm 63); Quicksort (Algo-
rithm 64); and Find (Algorithm 65), Comm. ACM 4(7)
(1961) 321-322.
D.B. Johnson and T. Gonzalez, Sorting numbers in linear
expected time and constant extra space, Proc. 16th Ann.
Allerton Conf. on Comm., Control and Computing (1978)
pp. 64-72.
C.A.R. Hoare, Quicksort, Comput. J. S(4) (1982) lo- 15.
D.E. Knuth, The Art of Computer Programming Vol. 3:
Sorting and Searching (Addison-Wesley, Reading, MA,
1973).
M.D. MacLaren, Internal sorting by radix plus sifting, J.
ACM 13j3) (1966) 404-411.
H. Meijer and S.G. Akl, The design and analysis of a new
hybrid sorting algorithm, Inform. Process. Lett. 10 (4,5)
(1980) 213-218.
R. Sedgewick, The analysis of quicksort programs, Acta
Inform. 7 (1977) 327-355.
R Sedgewick, Implementing quicksort programs, Comm.
ACM 21 (10) (1978) 847-857.
J.W.J. Williams, Algorithm 232: Heapson, Comm. ACM 7
(6) (1964) 347-348.
M. Van der Nat, A fast sorting algorithm, a hybrid of
distributive and merge sorting, Inform. Process. Lett. 10
(3) (1980) 163-167.

