
Volume 15, Number 3 INFORMATION PROCESSING LETTERS I I October 1982 

SORTING NUMRERS IN LINEAR EXPECTED TIME AND OP’I’IM,~L EXTRA SPACE +* 

Teofilo F. GONZALEZ 

Mathematical Sciences Program, Tire Unicwrsity of Texas at Daltas, Richadon, TA 75080, U.S.A. 

Donald B. JOHNSON 

Department of Computer Science, The Pennsylvania State Universiry, Unioersity Park, PA 16802, U.S. A. 

Received 30 October 1981; revised version received 9 July 1982 

An algorithm is shown that sorts n numbers, each representable in h bits, in 8(n) time on the average where the numbers to 
be sorted are selected randomly from some interval. The algorithm only uses 8(log n) hits of extra space, which is 
asymptotically optimal. 

Keywor& Sorting in linear expected time 

Among the most widely used internal sorting 
algorithms are Quicksort f4,6,7) and Heapsort 
17,121. The expected running time of both these 
~go~~s is e(n logn) when sorting n numbers, 
each representable in h bits and each permutation 
of which is equally likely. Quicksort uses 8(log2n) 
bits of extra space; Heapsort uses $(logn). 

In 1965 MacLaren [8] presented an algorithm 
which sorts numbers in e(n) expected time when 
the input numbers are independently and identi- 
cally distributed uniformly. We note that this run- 
~o~~n~ss ~su~~t~~n implies each pe~utation to 
be equally likely, but the converse does not hold. 
MacLaren’s algorithm requires for some fixed in- 
teger p >P 1 at least n + nl/P extra locations, each 
large enough to hold the number n. Variants pro- 
posed by others also require asymptotically signifi- 
cant extra space. Knuth’s improvement 1’71 needs 
at least rP2 extra locations. Dobosiewicz’s recur- 
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sive version of MacLaren’s algorithm [I,21 requires 
at least 2n extra locations, as do other related 
algorithms [9,13 f. 

Our algorithm sorts n numbers in 8(n) ex- 
pected time under the randomness assumption and 
requ&s only B(logn) bits of extra space. This 
amount of space is equivalent to a constant num- 
ber cf registers that can hoid a pointer to an input 
numlxr and therefore is optimal to within a con- 
stant factor. Our complexity model charges unit 
cost for arithmetic operations. We assume that 
execution of arithmetic operations and swapping 
the ccjirtents of two memory locations do not us-e 
extra space. Swapping locations a and b may be 
implemented, for example, by a sequence of three 
exclusive OR operations applied to the Iocations, 
assi~~g the results to a, to b and to a again. 

In order to determine the extra gpace reqmircd 
1%;’ our algorithm it 1s necessary to ~~~~rn~ that the 
memory locations holding the input ~ur~~b~rs~ or 
kqvs, have a fixed size which in the worst case is 
necessary to represent the keys. Thus, it is ~rnp~s~i~ 
bte to encode additional information in a ~~~ti~n 
containing a key without risking; lo 
tion irn the key* To make this ~~~rn~t~o~ c~~c~ctc~ 
let each location containing a key be capable of 
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containing a binary number of at most h bits and 
let the keys be h-bit nonnegative numbers. Our 
results could easily be restated under other specific 
assumptions, for they are in fact independent of 
the question of number representation. 

To understand our algorithm it is helpful to 
understand MacLaren’s algorithm. It has two 
stages. In the first stage, the n input keys are 
bucket sorted according to a subkey composed of 
the m most significant bits of each key. If extra 
space is allowed for bucket headers and pointers 
with which to chain elements in buckets, this stage 
can be implemented to run in G(pn + P~~/P) time 
for any input, where p a 1 bucket-sorting passes 
are employed. The second stage is an insertion sort 
on the whole keys. Given the initial bucket sort on 
m-bit subkeys, insertion sort runs in time asymp- 
totically proportional to ’ 

T(n, m) = 2$’ cost( ri ) 
i=O 

where ri is the number of keys for which the 
subkeys composed of the m most significant bits 
have value i, and cost(y) is the cost to fully sort a 
sequence of y numbers. Thus, for i = 0,. . . , 2m - 1, 

E(T(n,m)) = E( ‘x1 cost(r, )) 

= ‘5 ’ E(cost(ri )) 

= ~~~~~St(r,)), 

where E(x) denotes the expected value of x. 
Under the randomness assumption the proba- 

bility that ri = k is 

(;,( f)“( 1 -f)“-” 
for k =O,...,n. If we choose 

I 
0, y=o, 

cost(y) = 1, 

I 

y= 1, 

y(y - 0, y = 2,...,n, 

to represent the asymptotic cost of insertion sort, 

then, for any i, 

E(cost(ri)) = 

= ~ocost(k)(~)( f)“( 1 - f)n-k 
z 

1 ( 1 
n-l 

=- n 1-F 
2” 

+ j2L(k- 1)(;)( $i)k(l -$)n-k = 
1 ( 1 

n-l 
=- n 1-F 

2m 

+ n(;2; l) j2(::;)( $)k-2( 1 -$)n-k 
= 

1 ( 1 
n-l 

=- nl-F + 
n(n- 1) 

2m 22” ’ 

Substituting, we find the expected cost of the 
insertion sort to be 

n-l 
E(T(n,m))=n + 

n(n - 1) 
2 m . 

To obtain linear running time for this stage, 
MacLaren sets m = log,n for n a power of two. If 
we choose m = [log, n] , then 

E(T(n, llos2nl)) c 

4n 
C-++(n- 1)=0(n), n>l. 

3e’j2 
MacLaren proposed p = 2 in stage 1 but it is 

clear that any constant number of passes p 5 1 will 
yield an algorithm with O(n) running time overall, 
provided m = @(log n). Knuth’s modification, al- 
luded to above, is MacLaren’s algorithm with p = 
2, in which the bucket sort is replaced by an 
address computation sort, thereby eliminating the 
pointers used to chain keys within buckets. Extra 
space is still consumed by the n’/2 locations needed 
for bucket headers. The algorithm reported by 
Dobosiewicz can be viewed as MacLaren’s algo- 
rithm with p = 1, but in which stage 1 of Mac- 
Laren’s algorithm is applied recursively in place of 
the stage 2 insertion sort. In addition, a linear-time 
median-finding algorithm is used to balance the 
number of elements between the first [in1 buckets 
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and the remaining buckets. This latter feature im- 
proves the worst case running time to O(n log n) 
while worsening the expected running time by a 
constant factor. Van der Nat [ 131 achieves the 
same improvement in worst case running time 
simply by dividing the given file into two subfiles 
of equal size. Each of the subfiles is bucket sorted 
as in MacLaren’s algorithm. After recursive appli- 
cation of the entire algorithm to each of the 
buckets, the results on the two subfiles are com- 
bined by merging. Meijer and Akl’s algorithm [9] 
is easily understood by vit .kg it as MacJ4aren’s 
algorithm in which the insertion sort stage is re- 
placed by a heapsort of each bucket indepen- 
dently. An analysis similar to that given above 
yields an O(n logn) worst case bound directly. 
Ehrlich [3] has also treated the subject of sorting 
numbers. 

2. Sorting in linear expected time and 
optimal extra space 

Insertion sort requires no more than O(logn) 
bits of extra space. Therefore, to present our result 
it is sufficient to consider the problem of sorting n 
keys on m-bit subkeys, for m = Llog,nj. 

For any input X, which we may take to be 
indexed from zero, let I be the set of distinct 
subkeys in X, and let 2 be X in some sorted order 
on the subkeys. Looking only at the subkeys, 2 
can be described in terms of the start and finish 
indices of each run of numbers with equal sub- 

keys. Thus, for j E I, we may define 

s(j) = min( iI (subkey at i in a) = j) 

and 

f(j)=max(il(subkeyatiin%)=j). 

It is also convenient to define the number of 
subkeys equal to j as 

c(j)=f(j)-s(j)+1. 

Our algorithm uses a logarithmically succinct 
representatioxl for the order of the m-bit subkeys 
of %. This representation is constructed in two 
n-bit arrays, ska (for ‘subkey-equals-address’) and 

sor (for ‘stzrt-of-run’ on subkey) where a 1 in 
ska(j) indicate: j is a subkey and a 1 in sorfj) says 
that a run pi identical subkeys in k begins at j. 
Concisely stated, ska and sor represent % when, 
for j = O,...,n - 1, 

s(i) = j for some i E 1, 
(2) 

A proof of the sufficiency of lhis representation is 
given later. 

The first step of our algorithm obtains space for 
the bit arrays ska and sor (plus an additional bit 
per word, to be discussed shortly) by bucket sort- 
ing the keys on their three most significant bits. 
This can be done in linear time and within the 
space bound required. It leaves X arranged so that 
eight pointers into X suffice to identify subse- 
quences that are equal on the first three bits. The 
eight pointers therefore suffice to record the values 
of the three most significant bits over the entire 
array X. The algorithm then zeros the first three 
bits in each key and sorts each of the subsequences 
delineated by the pointers. When all subsequences 
are sorted, the algorithm uses the pointers to res- 
tore the leading three bits in each key. 

Of the bits freed in X by the initial bucket sort, 
let the first be ska and the second be sor. The third 
is used to augment the next m = Llog2nJ bits, 
which comprise the subkey, so that subkeys will be 
taken to have m + 1 bits but to range in value 
from 0 to 2” - 1 G n. These m + 1 bits can contain 
pointers as large as n. In our discussion we denote 
the (m + Q-bit subkey at position j by k(j) and the 
remaining less significant bits at position j by z(j). 

We have now reduced the problem to sorting 
(h - 2)-bit keys ranging in value from 0 to 2h-- 3 - 1 
on (m + I)-bit subkeys k(j), having bit arrays ska 
and ser. available as extra space, initialized to zero. 
The basic idea of the algorithm to solve this prob- 
lem is to record the sorted order on the subkeys in 
ska and sor in the manner just described. Since ska 
encodes I, the subkey fields can be replaced with 
pointers to the location each key is to occupy in 
allowing each key (with pointer in place of subkey) 
to be ,noved to its final location. The information 
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in ska and sor can then be used to restore the 
subkeys. We now present the algorithm for this 
problem in some detail It is composed of five 
steps. In our discussion we use superscripts on the 
input array and its associated fields to indicate the 
contents of the array or field after a given step. 
Taking the input of (h - 2)-bit keys as X, we thus 
use X’ to denote the array after step i. 

Algorithm to sort on subkeys. 
Step 1. 

Step 2. 

Step 3. 

Encode one instance of each subkey as an 
address by permuting the input X0 so that 
k(j) = j for each distinct subkey value j E I. 
Set &a(j) L 1 for each such j. 
complete recording of some sorted order 
X as follows: Set k(j) = c(j) for each dis- 
tinct subkey value j. Then, for each such j, 
accumulate these counts so that k(j) = s(i), 
and set sor(s(j)) = 1. 
Record the sorting permutation implied by 
ska and sor in the subkeys k(i) = w(i), for 
*- I- O 4***9 n - 1, for a permutation Q which 
takes X’ to X (that is, X(i) = X’(?z(i)) for 
all i). 

Step 4. Apply v to X3 by moving X(i) to position 
k(i) for all i. 

Step 5. Restor subkeys using ska and sor bits. 

At this level of presentation, the following ob- 
servations are sufficient to establish correctness. 
Step 1 merely permutes X0. Step 2 modifies the 
contents of X1 only in k(j) and at values of j where 
&a(j) = 1 indicates that the contents of k(j) are 
encoded as j. Therefore, sufficient information is 
retained to restore some permutation of the input. 
Thus, Steps 3 and 4 can be performed correctly. 
Under our assumption of the sufficiency of the 
information in ska and sor, Step 5 completes the 
sort on subkeys. 

We now give for each step an implementation 
which runs in linear time and within Q(logn) bits 
of extra space. We continue our inessential as- 
sumption that X is indexed from zero. 

//Step 1. Encode one instance of each subkey as 
an address by setting k(j) = j and &a(j) = 1 for 
each j E I.// 

fori:=Oton-I do 
t: = k(i) 
while k(t)# t do 

X(i): =X(t) 
&a(t): = 1 
t: =k(i) 

emhvhile 
ska(t): = 1 

endfor 

The only data movements in Step 1 are swaps, 
so Step 1 maintains a permutation of X. A key 
part of the invariant of the main loop is: each key 
k(j), 0 <j < i, satisfies k(j) = k(k(j)). It is true ini- 
tially (for i = 0); it is never falsified because no 
X(j) for which k(j) =j is ever moved; and each 
iteration establishes k(i) = k(k(i)). Therefore, upon 
termination each key k(j) in the array satisfies 
k(i) = kM))* 

Since X(j) is never moved for any j once k(j) = j, 
it follows from Step 1 that &a(j) = 1 if and only if 
k(j) = j upon termination. Step 1 runs in linear 
time because each iteration of the while loop in- 
creases the number of indices j for which k(j) = j. 
Finally, no more than O(logn) bits of extra space 
are used. 

//Ship 2” Complete recording of the sorted order 
X by :;etting k(j) - s(j) and s@(j)) = 1 for each 
j E I.// 

for i:=O ton-l do 
if ska (i)= 1 then k(i): = 1 

endfor 
fori:=Oton-1 do 

if ska (i)# 1 then k(k(i)): = k(k(i)) + 1 
endfor 
t:=n 
fori:=n-1 by -1 toOdo 

if &a(i)=1 then 
t:=t-k(i) 
k(i): = t 
SOIQ): = 1 

endif 
endfor 

The first two loops of Step 2 set k(j) = c(j) for 
j E I. Then the third loop computes the accu- 
mulated counts so that k(j) = s(j) and s@(j)) = 1 
for j E I. It is evident that the requirements for 
linear time and O(logn) extra space are met. 

122 
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//Step 3. Record the sorting permutation implied 
by ska and s~r by setting k(i) = Ir(i) for a suitable 
permutation v.// 

fori:=Oton-I do 
if ska (i)=O then 

k(i): = k&(i)) 
es0: = k&(i)) + 1 

endfor 

Suppose k(j) = j for some j. In Step 3, for each i 

statisfying f # j and k(e) = j, a unique index in 
(s(j),...,f(j)- 1) is assigned .to It(f) and k(j) is 
increased by 1. This leaves k(j) = f(j). Time and 
space bounds are as required. 

//Step 4. Apply 7r to X3 by mzimg X(i) to 
position k(i) for all i.// 

fori:=Oton-Id0 
t: =k(i) 
whllet#ido 

z(i): = z(t) 
k(i): = k(t) 
t: =k(i) 

endwkde 
endfor 

‘ 

An argument similar to that given for Step 1 
establishes the correctness of Step 4 and its linear 
running time. The space bound is obviously met. 

//Step 5. Restore subkeys using ska and sor 
bits.// 

i: = -1 
j:=O 
whlle j<n do 

lf sor(j)=l then 
repeati:=i+luntllska(i)=l 

k@: = i 
j:-j+l 

cadwlalle 

We note that ska and sor satisfy properties (1) 
and (2). The invariant of the outer loop is 

- 14iCn AOGjGnA 
A elements k(O:j - 1) have been assigned their 

final value 
A k(j - 1) has the value i (unless j = 0 and 

i= -1). 

Proof. For c * 2 a complete algorithm is the fol- 
lowing: 

step (1) 

WP (2) 

Bucket sort X on the three most signifi- 
cant bits. 
Sort each of the subsequences induced 
by Step (1) using the algorithm de 
scribed above. 

step (3) Insertion-sort the result of Step (2). 
Whenover cc2 at most 22-c auxiliary counters 

Because of properties (1) and (2), the value to 
assign to k(j) is either i (if sor(j) = 0) or the next 
greatest integer i’ satisfying ska(i’) = 1 (if sor(j) = 
1). The execution time is clearly linear and the 
space bound is met. 

We thus have the following theorem. 

Theorem. It is possible to sort n number in O(n) 
expected time and O(log n) bits of extra space pro- 
oidkd the numbers are independently and iaknticalty 
distributed uniformly and at least h = [loglnJ + c 
bits are wed to represent the input numbers, for any 
fixed integer constant c. 

are required. 

The above theorem can be shown to hold for 
any h whenever n is divisible by the number of 
distinct keys. The construction involves grouping 
equal keys in adjacent locations to expand count- 
ing capacity. We omit the details. 

In the implementation of the five steps of the 
algorithm to sort on the subkeys, there are seven 
loops that pass over the entire array X. 

The first three can be combined, leaving five 
loops in a reasonable implementation. While it is 
possible to reduce the number of bit arrays from 
two to one, as has been demonstrated by Torn& 
Pisanski, this innovation appears to require an 
algorithm with more passes over the array. 

3. Conclusion 

Our algorithm sorts numbers in linear expected 
time and using only a constant number of regicters 
of extra space. One barrier to practical use is that 
the program itself will be more lengthy than the 
programs for commonly used methods. But, this 

123 
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question aside, is an impleme&ation possible that 
is competitive in running time to other methods on 
files of reasonable size? 

To shed light on this question we have made a 
comparison with Quicksort. Using the best version 
of Quicksort from the study of this method by 
Sedgcwick [ IO,1 l], we implemented both Quicksort 
and our algorithm in IBM 370 assembler language. 
For n 2 500 keys, our implementation takes no 
more than twice as much time as Quicksort on the 
average, where we measure time as the number of 
machine instructions executed. We would expect 
substantially better results on machines with in- 
structions more suited to operate on arbitrary fields 
of bit wizthin computer words. It is also likely that 
our assemblei- language program can be made 
faster. 

It is not likely that our algorithm can be speeded 
up significantly by replacing insertion sort in the 
final pass of the algo ithm with another sorting 
method. This judgmel\t follows from observing 
that E(ri > 0), the expected length of subsequences 
that the insertion-sort paTs sorts, is small. This 
quantity is given by 

E(ri>13)= i k 
Prob(r, = k) 

k= I Prob(r, = o> 

= 
;1 lr Oif)k( 1-&j”-” 

L A- 
k=l 

n = 

which for m = [log+] is less than 2.313. 
Our algorithm is not stable (see [7]). However, 

neither sre Quicksort, Heapsort, Knuth’s modifi- 
cation of MacLaren’s algorithm and Dobosiewicz’s 

algorithm. It is an open question whether there 
exists a stable sorting algorithm that runs in 9(n) 
expected rime and O(log n) bits of extra space. 
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