
Multi-Message Multicasting 

Teofilo F. Gonzalez 

Department of Computer Science, 
University of California, Santa Barbara, CA, 93106, USA 

Abs t r ac t .  We consider the Multi-Message Multicasting problem for the 
n processor fully connected static network. We present an efficient algo- 
rithm to construct a communication schedule with total communication 
time at most d 2, where d is the maximum number of messages a pro- 
cessor may send (receive). We present an algorithm to construct for any 
problem instance of degree d and fan-out k (maximum number of proces- 
sors that may receive a given message) a communication schedule with 

1 
total communication time at most qd§ k~ (d- 1), for any integer q _> 2. 

1 
The time complexity bound for our algorithm is O(n(d(q § k~))q). Our 
main result is a linear time approximation algorithm with a smaller ap- 
proximation bound for small values of k (< 100). We discuss applications 
and show how to adapt our algorithms to dynamic networks such as the 
Benes network, the interconnection network used in the Meiko CS-2. 

1 I n t r o d u c t i o n  

The Multi-Message Multicasting (MMc) problem over an n processor static 
network consists of finding a communication schedule with least total  communi-  
cation t ime for multicasting a set of messages. Specifically, there are n processors, 
P = {P1, P 2 , - . . ,  Pn), interconnected via a network N.  Each processor is exe- 
cuting processes, and these processes are exchanging messages tha t  are routed 
through the links of N.  The objective is to determine when each of these mes- 
sages is to be t ransmit ted  so that  all of the communications can be carried in 
the least total  amount  of time. 

Routing in the complete static network (there are bidirectional links between 
every pair of processors), is the simplest and most  flexible, when compared to 
other static networks with restricted structure like rings, mesh, star, binary 
trees, hypercube, cube connected cycles, shuffle exchange, etc., and dynamic 
networks, like Omega Networks, Benes Networks, Fat Trees, etc. The minimum 
total  communication t ime for the MMc problem is an obvious lower bound for 
the total  communication t ime of the corresponding problem on any restricted 
communicat ion network. But,  most  interesting, the MMc for dynamic networks 
tha t  can realize all permutat ions  and replicate da ta  (e.g., n by n Benes network 
based on 2 by 2 switches tha t  can also act as replicators) is not tha t  different, in 
the sense tha t  the number  of communication phases in these dynamic networks 
is twice of tha t  in the complete network. This is because each communication 
phase in the complete network can be t ranslated into two communication phases. 
In the first phase data  is replicated and t ransmit ted  to other processors, and in 



218 

the second phase da ta  is distributed to the appropriate processors ([13], [14], 
and [16]). One may reduce the translation process to a single step, by increasing 
the number of network switches about 50% ([13], [14], and [16]). Multiprocessor 
systems based on Benes networks include the IBM G F l l  machine [1], and the 
Meiko CS-2. The two stage translation process can be used in the Meiko CS-2 
computer system and any multimessage multicasting schedule can be realized 
by using basic synchronization primitives. In what follows we concentrate on the 
M M c  problem because it has a simple structure, and, as we mentioned before, 
results for this network can be easily translated to a variety of dynamic networks. 

Formally, processor Pi needs to multicast si messages, each requiring one 
t ime unit to reach any of its destinations. The jth message of processor P/ has 
to be sent to the set of processors Ti,j CC_ P - {Pi}- Let r~ be the number 
of distinct messages that  processor Pi may receive. We define the degree of a 
problem instance as d = max{s i , r i } ,  i.e., the maximum number of messages 
that  any processor sends or receives. We define the Jan-out of a problem instance 
as k = m a x {  I Ti,j I }, i.e., the maximum number of different processors tha t  
must receive any given message. Consider the following example. 

Example 1. There are three processors (n = 3). Processors P1, P2, and P3 must 
transmit  3, 4 and 2 messages, respectively (i.e., sl = 3, s2 = 4, and s3 -~ 2). 
The destinations of all of these messages is: T1,1 = {2},T1,2 = {3},T1,3 = 
{2,3},T2,1 = {1},T2,2 = {1),T2,3 = {3},T2,a = {1,3},T3,1 = {1,2},T3,2 --- {2}. 
In this case r l  --- 4, r2 -~ 4, and ra = 4. 

It is convenient to represent problem instances by directed multigraphs. Each 
processor Pi is represented by the vertex labeled i, and there is a directed edge 
(or branch) from vertex i to vertex j for each message that  processor P~ has to 
transmit  to processor Pj. The ITi,jl directed edges or branches associated with 
each message are bundled together. The problem instance given in Example 1 is 

shown in Figure 1 as a directed multi-graph. 

F ig .  1. Directed Multi-Graph Representation for Example 1. The thin line joins 

all the edges (branches) in the same bundle 



219 

The communications allowed must satisfy two restrictions: 

1.- During each time unit each processor may transmit one message, but  such 
message can be multicast to a set of processors; and 

2.- During each time unit each processor may receive at most one message. 

Our communication model allows us to transmit each message in one or 
more stages. I.e., each set T i j  can be parti t ioned into subsets, and each of these 
subsets is t ransmit ted at a different time. Of course, this does not prevent one 
from sending a message to all its destinations at the same time. Restricting each 
message to be transmit ted to all of its destinations at the same time increases 
the total communication time, and in some cases all feasible communication 
schedules have a total  communication time that  cannot be bounded (above) by 
any function f(d). This is why it is important  to send each message at different 
times. 

A communication mode C is a collection of subsets of branches from a subset 
of the bundles that  obey the following communications rules: 

1.- Branches may emanate from at most one of the bundles in each processor; 
and 

2.- All of the branches end at different processors. 

A communication schedule S for a problem instance I is a sequence of com- 
munication modes such that  each branch in each message is in exactly one of 
the communication modes. The total communication time is the latest t ime at 
which there is a communication which is equal to the number of communication 
modes in schedule S, and our problem consists of constructing a communication 
schedule with least total communication time. From the communication rules we 
know that  a degree d problem instance has at least one processor that  requires 
d time units to send, and/or  receive all its messages. Therefore, d is a trivial 
lower bound for the total communication time. To simplify the analysis of our 
approximation bound we use this simple measure. Another reason for this is tha t  
load balancing procedures executed prior to the multicasting require a simple 
objective function in terms of the problem instance it generates. 

Using our multigraph representation one can visualize the M M c  problem as 
a generalized edge coloring directed multigraph (GECG) problem. This problem 
consists of coloring the edges with the least number of colors (positive integers) 
so that  the communication rules (now restated in the appropriate format) im- 
posed by our network are satisfied: (1) every pair of edges from different bundles 
emanating from the same vertex must be colored differently; and (2) all incom- 
ing edges to each vertex must be colored differently. The colors correspond to 
different time periods. In what follows we corrupt our notation by using in- 
terchangeably colors and time periods; vertices and processors; and bundles, 
branches or edges, and messages. 

In Section 2 we present an efficient algorithm to construct for any degree d 
problem instance a communication schedule with total  communication time at 
most d ~. Gonzalez [7] has found problem instances for which this upper bound 
on the communication time is best possible, i.e. the upper bound is also a lower 
bound. One observes that  the lower bound applies when the fan-out and the 



220 

number of processors is huge. Since this environment is not likely in the near 
future, we study in subsequent sections important subproblems of the MMc 
problems that are likely to arise in practice. 

The basic multicasting problem (BMc) is the degree d = 1 MMc problem. 
The BMc problem can be trivially solved by sending all the messages at time 
zero. There will be no conflicts because d = 1, i.e., each processor must send at 
most one message and receive at most one message. When a set of processors is 
connected via a dynamic network whose basic switches allow replication (input 
lines may be replicated to several output lines), the basic multicast problem can 
again be solved in two stages: the replication step followed by the distribution 
step ([13], [16], [14]). 

Let us now consider the case when each message has fixed fan-out k. When 
k = 1 (multimessage unicasting problem MUG), our problem has been reduced to 
the Openshop Preemptive Scheduling problem [7] which can be solved in polyno- 
mial time [8]. In this case, each degree d problem instance has a d color optimal 
coloration. The interesting point is that each communication mode translates 
into a single communication step for processors interconnected via permutation 
networks (e.g., Benes Network, Meiko CS-2, etc.), because in these networks all 
possible one-to-one communications can be performed in one step. 

It is not surprising that several authors have studied the MUc problem as 
well as several interesting variations for which NP-completeness has been estab- 
lished, subproblems have been shown to be polynomially solvable, and approxi- 
mation algorithms and heuristics have been developed. Coffman, Garey, Johnson 
and LaPaugh [2] studied a version of the multi-message unicasting problem when 
messages have different lengths, each processor can send (receive) a(Pi) _> 1 
(/~(Pi) >- 1) messages simultaneously, and messages are transmitted without 
interruption (nonpreemptive mode). Whitehead [18] considered the case when 
messages can be sent indirectly. The preemptive version of these problems as well 
as other generalizations were studied by Choi and Hakimi ([4], [5], [3]), Hajek and 
Sasaki [11], Gopal, Bongiovanni, Bonuccelli, Tang, and Wong [9]. Some of these 
papers considered the case when the input and output units are interchange- 
able (can send or receive messages). Rivera-Vega, Varadarajan and Navathe [15] 
studied, the file transferring problem, a version the multi-message unicasting 
problem for the complete network when every vertex can send (receive) as many 
messages as the number of outgoing (incoming) links, all messages have the same 
length and take one unit of time to move along any link. Our MMc problem 
is closest to the Meiko CS-2 communication model: and it involves multicasting 

rather than just unicasting. 
The MMv problem is significantly harder than the MUG. Even when k = 

2 the decision version of the MMc problem is NP-complete [7]. Gonzalez [7] 
developed an O(nd 2"~) time algorithm to construct a communication schedule 
with total communication time at most 2d - 1 for every n processor instance of 

the MMG with fan-out k = 2. 
In section 3 we present an algorithm to construct for any problem instance of 

degree d and fan-out k a communication schedule with total communication time 



221 

at most qd+ k~ ( d -  1), for any integer q > 2. The time complexity bound for our 

algorithm is O(n(d(q + k~))q). Our main result is a linear time approximation 
algorithm with a smaller approximation bound for small values of k (< 100), 
these are the problem instances most likely to arise in practice. 

Multimessage multicasting arises in many applications. Suppose that we have 
a sparse system of linear equations to be solved via an iterative method (e.g., a 
Jacobi-like procedure). We are given the vector X(0) and we need to evaluate 
X (t) for t = 1, 2, . . . ,  using the iteration xi (t+ 1) :- fi (X(t)). But since the system 
is sparse every fi depends on very few terms. A placement procedure assigns the 
xis and fi()s to the processors. Effective placement procedures assign a large 
number of fi()s to the processor where the vector components it requires are 
being computed, and therefore can be computed locally. However, the remaining 
fi 0 s need vector components computed by other processors. So at each iteration 
these components have to be multicasted to the set of processors that need them. 
The strategy is to compute X(1), then perform the multimessage multicasting, 
then compute X(2), and so on. The same communication schedule can be used 
at each iteration. Our approximation bounds are in terms of the lower bound d. 
This facilitates the placement procedure since it seeks a placement that induces a 
multimessage multicasting problem with minimum density d and small fan-out. 
Other applications include solution of non-linear equations, and most dynamic 
programming procedures, since all of the multicasting information depends only 
on the initial placement, which is determined a priori. 

2 G e n e r a l  A p p r o x i m a t i o n  B o u n d  f o r  t h e  M M c  P r o b l e m  

We show how to construct a communication schedule with total communication 
time at most d 2 for every degree d problem instance. Gonzalez [7] has shown that 
the bound of d 2 is tight in the sense that there are degree d problem instances 
such that all their communication schedules have total communication time at 
least d 2. For brevity we do not include this lower bound. It is important to note 
that the bound of d 2 arises in problem instances with huge fan-out and a huge 
number of processors. This is why we study in subsequent sections approximation 
algorithms for problem instances with restricted fan-out, which axe the problem 
instances that are likely to arise in practice. 

Let P be any n processor instance of the M M c  problem of degree d. The set 
o fd  2 colors is {(i , j) l l  _< i _< d and 1 _< j _< d}. Now order the incoming edges to 
each vertex, and order all the bundles emanating from each vertex. Assign color 
(i, j) to edge e = {p, q} if e belongs to the i th bundle emanating form vertex p, 
and e is the jth incoming edge to vertex q. 

T h e o r e m  1. The informal algorithm described above generates a communica- 
tion schedule with total communication time at most d 2 .for every degree d in- 
stance of the M Mc problem. Furthermore, the algorithm can be implemented to 
take linear time with respect to the number o] edges in the multi-graph. 



222 

Proof. The proof follows from the observation that  edges emanating from the 
same processor belonging to different bundles are colored with different colors, 
and all the incoming edges to a node are colored with different colors. The total  
number of colors is d ~. It is simple to show that  the time complexity bound for 
the algorithm is linear with respect to the input size. 

3 A p p r o x i m a t i n g  t h e  M M c  w i t h  F a n - O u t  k > 3 

Problem instances of degree d = 1 can always be colored with one color; the 
ones of degree d = 2 and k = 3 can always be colored with four colors; and 
similar results can be obtained for problems with fixed degree d and fan-out k. 
For brevity we do not prove these special cases. 

3.1 Crude Approximations 

Let us now consider some simple approximation algorithms for our problem. 
The algorithms color all edges emanating from P1, P2, . . .  Pj-1.  With respect to 
this partial recoloration we define the following terms. Each branch emanating 
from Pj leads to a processor with at most d -  1 other edges incident to it, some 
of which have already been colored. These colors are called t j -1  -forbidden with 
respect to a given branch emanating from Pj. 

A coloration in which every message is colored with exactly one color may 
require as many as d + k(d - 1) colors. The reason is that  each branch has d - 1 
t j_l-forbidden colors, and none of the t j_l-forbidden colors in a branch can be 
used to color the corresponding bundle. Therefore, there can be k(d - 1) t j -1 -  
forbidden colors that  cannot be used in the bundle. Since there are at most d 
bundles emanating from a processor Pj, and every bundle is assigned one color, 
then d + k(d - 1) colors are sufficient to color all the bundles emanating from 

processor Pj ,  and hence the multigraph. 
The above upper bound can be decreased substantially by assigning up to 

two colors per message (bundle). Again, each branch has d -  1 t j_ l - forbidden 
colors. But,  two colors that  are not t j_l-forbidden in the same branch of a 
bundle can be used to color tha t  bundle. For example, if the forbidden colors 
in the branches are {1,2,3}, {2,3,4} and {2,3,4}, respectively, one can color the 
first branch with color four, and the other two with color one. So the question 
is: What  is the largest number of t j_l-forbidden colors in a bundle such that  no 
two of them can be used to color the bundle? For k = 3 and d -- 7 it is nine. The 
t j_l-forbidden colors in the three branches are: {1, 2, 4, 5, 7, 8}, {1, 3, 4, 6, 7, 9}, 
and {2, 3, 5, 6, 8, 9}. Note that  no two of the nine colors can color completely the 
bundle. We have established that  the largest number of t j_l-forbidden colors in 
a bundle such that  no two of them can color completely the bundle is d - 1 for 

k = 2, about  1.5(d - 1) for k = 3, etc. 
We can restate this problem in graph theoretic terms as follows. Find the 

complete graph with the largest number of vertices such that  all its edges are 
covered by k cliques of size d - 1. The vertices represent the colors, the cliques 



223 

the t j -1  - forbidden colors, and the number of cliques represent k. By simple 
counting arguments, the maximum number is less than v ~ ( d -  1). Therefore, all 
the bundles emanating from processor Pj (and therefore the multigraph) can be 

colored with 2d + vfk(d - 1) colors, the vfk(d - 1) colors are the t j_l-forbidden 
colors, and the 2d colors are the one used in the coloration. One can easily prove 
smaller bounds, 3 d -  1 for k = 2; is about 3 . 5 d -  1.5 for k = 3; etc (see [7]). 

The obvious generalization is to use q colors instead of two for each bundle. 
To find th number of colors needed in this case we need to generalize graphs 
to hypergraphs. A q-hypergraph consists of a set of vertices and a set of q- 
hyperedges, where a q-hyperedge is just a subset of q vertices. Clearly, a 2- 
hypergraph is just a graph. So the previous graph problem becomes, find the 
complete q-hypergraph with the largest number of vertices such that  all its q- 
hyperedges are covered by k q-hypercliques of size d -  t .  By simple counting 
arguments, the maximum number of vertices is less than k~ (d - 1). Therefore, 
all the bundles emanating from processor Pj (and therefore the multigraph) can 

be colored with qd + k { ( d -  1) colors. The time complexity bound in this case 

is O(n(d(q + k{))a), by trying all subsets of colors of size q. The algorithm will 
color with at most q colors all the bundles emanating from each processor. We 
now state our result without its proof. 

Theorem 2. For every instance of the M Mc problem with fan-out k > 3, the 
informal algorithm generates in O(n(d(q + k~)) q) time a schedule with total 
communication time qd + k ~ ( d - 1). 

Gonzalez [7] has developed a linear time algorithm, with respect to the input 
length, to generate a valid coloration for the above case. For brevity we do not 
include these result in this paper. 

In what follows we present another procedure and carry out a much sharper 
analysis. Table 1 has the coefficient for d for different methods. The ones labeled 
"simple" are for the "crude" methods. The "involved (2c)" is the method we 
discuss in the next subsections. The other methods appear in [7] and for brevity 
are not described in this paper. 

3.2 Sharper Approximation 

We present an approximation algorithm and carry out a much s h a r p e r  a n d  
i n v o l v e d  analysis of its performance. The input to our algorithm is a multigraph 
G, and integers h and l that  restrict the color selection process (k > l > h > 1). 
Note that  k and d can be extracted from the graph. The algorithm colors the 
edges emanating out of P1, then P2, and so on. When considering processor Pj, 
a color is selected from each bundle from the set Ci with smallest index, and 
then the existence of a second color for the remaining branches is guaranteed 
by just  having enough colors available. Before we present our results we define 
some useful terms. 

At the beginning of the jth iteration the algorithm has colored all the branches 
emanating from processors P1, P2, . . . ,  Pi-1 and it is ready to begin coloring all 



224 

Table 1. Number of Colors For The Different Methods. 

M e t h o d \ k  3 4 5 7 10 15 20 50 100 

Simple (2 colors)i 3.73 4.00 4.23 4.65 5.16 5.87 6.47 9.07 12.00 
Involved (2c) 3.33 3.50 3.60 4.50 4.60 5.53 6.00 8.56 1'1.54 
With Matching 
Better Bound 
Simple (3 colors) 
Involved (3c) 
Simple (4 colors) 
Simple (5 colors) 

2.67 3.00 3.50]4.29 4.50 5.47 6.008.54 11.53 
2.50i3.00 3.50i4.14 4.40 5.40i5.75 8.52 i 11.52 

4.00 4.55 4.81 5.27 5.60i6.67 7.62 
- 3.56 4.00 4.26 4.67 5.00!5.20 6.23 7.24 
- ] - 5.5015.6315.78!5.9716.11!6.66 7.16 

I 6.48 6.58 6.72 6.82 7.19 7.51 

the branches emanating from Pj.  For 0 < i < k, let C [ be the set of colors tha t  
J IC l. ( When the are t j_l-forbidden in exactly i branches of bundle J .  Let c i = 

set J is understood, we will use c~ for c~ J, and C~ for C~. ) Since there can be at 
most d -  1 t j_l-forbidden colors in each branch and there are at most k branches 

k in each bundle, it then follows that  ~i=1  i C J  ~- (d - 1)k for each bundle J em- 
anating from Pj.  Clearly, all the branches of bundle J can be colored with any 
of the colors in Co J. Also, one can color all the branches of bundle J with two 
colors, a E C [  and b E CJ  provided that  colors a and b are not t j_l-forbidden 
in the same branch of bundle J and have not been used to color another branch 
emanating from processor Pj.  Just after coloring a subset of branches of a bundle 
emanating from processor Pj,  we say that  a color is s j-free if such color has not 
yet been used to color any of the branches emanating from processor Pj.  

The input to the algorithm consists of G (the multi-graph), and h and l (to 
restrict the selection of colors). Note that  k (the fan out), and d (the degree) can 
be computed from G. Later on give the specific values for which the algorithm 

is defined. 
To simplify our notation we define the expressions L and R as follows 

1 h2+h - 2  2(l--h) + 2(d--1)(l--h) L = h:+h+2 + d-1 ~ ,  and R = (h + 1) 2 + (h+l)(h2+ah) --2lh:+h3+h 

2t+2h: k > L, k > l > h > l a n d  d > 4, Our algorithm requires that  d > ~ ,  _ 
which we will show later on is not a limiting factor. We begin by establishing in 
Lemma 3 that  L < R, which we state without its proof. This fact will be used 
to part i t ion in two cases the set of values for which our algorithm is defined. 

L e m m a  3. I f  d > ~ then L < R.  - h(h+3) 

In Table 2 we define equations eq.(0), . . . ,  eq.(h + 1) tha t  are used by the 
algorithm and are necessary for the correctness proof. 

Procedure Coloring, whose input consists of the multi-graph G, and integers 
h and l, is given below. For the set of valid inputs, defined above, procedure 



225 

Table 2. Equations eq.(0), ..., eq.(h + 1) 

co >_ d; eq.(O) 

J 
for 1 < j < h ~-,i=o ci >_ (j + 2)d - 2j; or ca.(j) 

l }-'~i=0 ci _> (h + 2)4 - 2h. eq.(h + 1) 

computes the maximum number of colors needed (A) and a coloration for G 
with at most A colors. 

P r o c e d u r e  C o lo r ing  (G, h, l) 
/* Note that  k, d, L, and R can be easily computed from G */ 
/* Procedure is defined for d > 2Z+2h2 -- h ( h + 3 , k > L , k > l > h > l ,  a n d d > - 4 * /  
case 

:R  < k: A _~ d(k-t-h+l)-(k+h). 
- -  h - t - 1  

((2d-4)h+ad--2)l+2(~-l)~+(2--~)h2+(d-2)h+2~. 
:L <_ k < R: A = 2(l+1) , 

e ndc a s e  
for  each processor Pj do  

for each bundle J emanating from processor Pj do  
compute J J ,c1 ,cL...cZ; 
let p j  be the smallest integer such that  equation eq.(pj) holds; 
let qj  = r a i n  {p j ,  h}; 
let r j  = p j  if 0 < pg <_ h and r j  = 1 otherwise; 

e n d f o r  
/* Color a subset of edges emanating from each bundle of Pj */ 
for  each uncolored bundle J of Pj do; 

color as many branches of bundle J with an sj-free color in C J ,  C J , . . . ,  CJj; 
/* Color the remaining uncolored edges emanating from Pj */ 
for  each partially colored bundle J of Pj with uncolored branches do; 

color all uncolored branches of J with an s j-free color in C J ,  CIJ , . . . ,  CJj ; 
endfor ;  

e n d  o f  P r o c e d u r e  Co lo r ing  

To establish that  Procedure Coloration generates a valid coloration for the 
cases it is defined is difficult. At this point the readers might feel there are a large 
number of cases for which our algorithm is not defined, but we have established 
that  these cases can be ignored because the corresponding graph G with other 
values for h and l that  are valid for our algorithm and requires a smaller A. 



226 

In other words, the cases that  axe omitted by our algorithm do not enhance 
the overall performance of our algorithm. In Theorem 8 we establish that  our 
algorithm generates valid colorations and that  it takes linear time with respect 
to the input length. The proof of this theorem is based on Lemmas 6 and 7 tha t  
are used to establish that  two colors can always be selected from the appropriate 
sets to color all the branches from the bundles that  could not be colored with 
exactly one color. Lemma 5 is used in the proof of Lemmas 6 and 7, and requires 
Lemma 4. For brevity we just list the lemmas without their involved proofs. The 
proof of Theorem 8 shows the need for the lemmas. 

_ h 2 h + l  < R 21+2h2 then (h + 1) 2 ~-$ + L e m m a  4. If d > ~ 

2/+2h2 and k > L, then the value for A defined by Procedure L e m m a  5. / f  d > ~ 
Coloration is at greater than or equal to (h + 2)d - 2h. 

2 1 §  2 L e m m a 6 .  If k > L and d > h(--V4-~' then at the beginning of the jth itera: 
tion of Procedure Coloring each bundle J emanating from processor Pj satisfies 
~ h  cJ > d. 

i = 0  i - -  

21+2h2 and L < k, then at the beginning of the jth iteration LemmaT.  If  d > ~ 
of Procedure Coloring each bundle J emanating from processor Pj satisfies at 
least one of the inequalities eq.(j), for 0 < j < h + 1, holds. 

T h e o r e m  8. For every instance of the M M c  problem with fan-out k > 2, d > 
21+2h2 and L < k, Procedure Coloring generates a communication schedule with 

total communication equal to the value of A computed by the algorithm. The time 
complexity of the procedure is linear with respect to the input size. 

Proof. First we prove that  Procedure Coloration colors all the edges in the graph 
with a number of colors equal to A, as computed by the algorithm. Then  we 

establish the time complexity bound. 
Consider now the iteration for Pj for any 1 < j _< n. By Lemma 7 we know 

that  at least one of the equations eq.(i) for 0 < i < h + 1 holds for each bundle 
emanating from Pj.  Therefore, all the p j  values are integers in the range [0,h+ 1], 
and all the qy values are integers in the range [0,h]. 

We now claim that  one can color a nonempty subset of branches from each 
C6, C1, We prove this by showing bundle with a distinct s-free color in J J C J �9 . -  q j .  

that  qJ _ ~ i = o  cg > d, since this fact guarantees that  one unique s-free color in 
C J, C J, C J for each bundle J can be selected in the first loop to color a 

�9 ' '  q j  

nonempty subset of edges emanating out of each bundle. As we established 
~ i = o  c~ > d. On the before, qj ~_ h. If qj = h then by Lemma 6 it follows that  qJ _ 

other hand, if qj < h then by definition of qj and Lemma 7 we know tha t  eq.(qj) 
holds. This implies that  either Co >_ d or ~qJ=o ci >_ (q j + 2)d -2q j .  Since d > 2, it 
then follows that  ~q~o cJ > d. Therefore, in the first loop one can select unique 
s-free color in Co J, C J , - . .  CJ for each bundle J to  color a nonempty subset of 

q j  

edges emanating out of each bundle. 



227 

We now claim that  at each iteration in the second loop one can select unique 
colors to color the remaining uncolored branches of each bundle. Remember that  

r j  
~-~i=0 ci >_ ( r j  + 2 ) d -  2r j .  The number of colors that  were t j_l-forbidden in the 
same branch as the color selected in the previous loop is at most (d - 2) �9 q j ,  
and the maximum number of colors used during both loops is at most 2d - 1. It 
follows that  the colors that  one can use to color the remaining branches are at 
least (rg + 2 ) d -  2r j  - (d - 2) .qj - 2d+ 1. This is equivalent to (d - 2) ( r j  - q j )  + 1. 
Since d > 2 and r j  ~_ q j ,  we know that  there is at least one color left with 
which we can color all the remaining uncolored branches. This completes the 
correctness proof. 

It  is simple to see that  all the steps take time O(ndk ) ,  and can be implemented 
to take linear time with respect to the input length. 

4 Discussion 

For the case of k = 3 the approximation bound can be shown to be ~d~=__A and 
one can establish that  any algorithm that  colors the bundles emanating form 
each vertex at a time without recoloration must use at least ~ - ~  colors. As we 
mentioned before, for brevity we just presented some of the simpler approxima- 
tion algorithms we have developed. It is worth noting that  the proofs of all the 
lemmas in the previous subsection can be proved by a Symbolic Manipulator 
System such as Mathematica after adding several macros and functions. The 
need to use symbolic manipulators arose from the complexity of the expressions 
that  need to be handled. 

The M M c  problem can be viewed as the generalization of the multigraph 
edge coloration (EC) problem [17], where the edges are directed, and bundled 
in groups. Vizing's [17] approximation algorithm for the EC problem colors the 
edges one at a time with one of the 1.5d available colors, where d is the degree 
of the multigraph. If necessary the algorithm recolors some edges in order to 
color an edge. But,  the necessary backtracking is limited. Recoloration in our 
problem is harder, because at each node there may be many edges that  need to 
be recolored, rather than just two as in Vizing's algorithm. Our currently best 
approximation algorithm allows limited recoloration. 

References  

1. G. S. Almasi, and A. Gottlieb, Highly Parallel Computing, The Ben- 
jamin/Cummings Publishing Co., Inc., New York, 1994. 

2. E. G. Coleman, Jr, M. R. Garey, D. S. Johnson, and A. S. LaPaugh, Scheduling 
File Transfers in Distributed Networks, S I A M  Journal on Computing, 14(3) (1985), 
pp. 744 - 780. 

3. H.-A. Choi, and S. L. Hakimi, Data Transfers in Networks, Algorithraica, Vol. 3, 
(1988), pp. 223 - 245. 

4. H.-A. Choi, and S. L. Hakimi, Scheduling File Transfers for Trees and Odd Cycles, 
S I A M  Journal on Computing, Vol. 16, No. 1, February 1987, pp. 162 - 168. 



228 

5. H.-A. Choi, and S. L. Hakimi, "Data Transfers in Networks with Transceivers," 
Networks, Vol. 17, (1987), pp. 393 - 421. 

6. T. F. Gonzalez, "Unit Execution Time Shop Problems, " Mathematics of Operations 
Research," Vol. 7, No. 1, February 1982, pp. 57 - 66. 

7. T. F. Gonzalez, "Multimessage Multicasting in Networks, " UCSB Technical Report, 
(in preparation). 

8. T. F. Gonzalez, and S. Sahni, Open Shop Scheduling to Minimize Finish Time, 
Journal of the Association for Computing Machinery, Vol. 23, No. 4, October 1976, 
pp. 665 - 679. 

9. I. S. Gopal, G. Bongiovanni, M. A. Bonuccelli, D. T. Tang, and C. K. Wong, An 
Optimal Switching Algorithm for Multibean Satellite Systems with Variable Band- 
width Beams, IEEE Transactions on Communications, COM-30, 11 (1982) pp. 2475 
- 2481. 

10. A J. Hopcroft, and R. M. Karp, An n 2"~ Algorithm for Maximum Matchings in 
Bipartite Graphs, SIAM J. Computing, (1973), pp. 225 - 231. 

11. B. Hajek, and G. Sasaki, Link Scheduling in Polynomial Time, IEEE Transactions 
on In]ormation Theory, Vol. 34, No. 5, Sept. 1988, pp. 910 - 917. 

12. I. Holyer, The NP-completeness of Edge-Coloring, SIAM J. Comput., 11 (1982), 
pp. 117 - 129. 

13. T. T. Lee, Non-blocking Copy Networks for Multicast Packet Switching, IEEE J. 
Selected Areas of Communication, Vol. 6, No 9, Dec. 1988, pp. 1455 - 1467. 

14. S. C. Liew, A General Packet Replication Scheme for Multicasting in Interconnec- 
tion Networks, Proceedings IEEE INFOCOM '95, Vol.1 (1995), pp. 394 - 401. 

15. P. I. Rivera-Vega, R, Varadarajan, and S. B. Navathe, "Scheduling File Transfers 
in Fully Connected Networks," Networks, Vol. 22, (1992), pp. 563 - 588. 

16. J. S. Turner, A Practical Version of Lee's Multicast Switch Architecture, IEEE 
Transactions on Communications, Vol. 41, No 8, Aug. 1993, pp. 1166 - 1169. 

17. V. G. Vizing, On an Estimate of the Chromatic Class of a p-graph, Diskret. Analiz., 
3 (1964)~ pp. 25 - 30 (In Russian). 

18. J. Whitehead, The Complexity of File Transfer Scheduling with Forwarding, SIAM 
Journal on Computing Vol. 19, No 2, April 1990, pp. 222 - 245. 


