
Algor i thms  for a Class of Min-Cut  and 
Max-Cut  P r o b l e m  

Teofilo F. Gonzalez 1 and Toshio Murayama 2 

1 Department of Computer Science, University of California, 
Santa Barbara, CA 93106, USA 

2 Sony Corporation System LSI Group, 
4-14-1 Asahi-cho Atsugi Kanagawa, 243 Japan 

Abstract .  The k.Min-Cut (k-Maz.Cut)problem consists of partitioning 
the vertices of an edge weighted (undirected) graph into k sets so as to 
minimize (maximize) the sum of the weights of the edges joining vertices 
in different subsets. We concentrate on the k-Max-Cut and k-Min-Cut 
problems defined over complete graphs that satisfy the triangle inequal- 
ity, as well as on d-dimensional graphs. For the one-dimensional version 
of our partitioning problems, we present efficient algorithms for thelx so- 
htion as well as lower bounds for the time required to find an optimal 
sohtion, and for the time reqni~ed to verify that a solution is an optimal 
one. We also establish a bound for the objective function value of an Ol>- 
timal solution to the k-Min-Cut and k-Max-Cut problems whose graph 
satisfies the triangle inequality. The existence of this bound is important 
because it implies that any feasible solution is a near-optimal approxi- 
mation to such versions of the k-Max-Cut and k-Min-Cut problems. 

1 Introduct ion 

Partitioning a set of objects into equal size subsets is a fundamental problem 
that  arises in many disciplines including CAD (placement of devices) [9] and 
sparse matrix computations [5]. Our partition problems consist of an integer 
k, and an edge weighted undirected graph G = (V, E, W), where V is a set of 
n vertices, E is the edge set, and W is the edge weight function W : E ~  
(the set of non-negative reals). The k-Min-Ca~ (k-Maz-Cu 0 problem consists of 
partitioning V into k sets so as to minimize (maximize) the sum of the weights 
of the edges joining vertices in different subsets. 

It is well known that  the k-Min-Cut and the k-Max-Cut problems are NP- 
hard even when k is two ([3], and [4]). As a result of this, numerous researchers 
have studied heuristics, and restricted versions defined over special classes of 
graphs, e.g. pl.anar graphs, interval graphs, mesh graphs, etc ([5], [6], [9], [10], and 
[12]). In this paper we concentrate on the k-Max-Cut and k-Min-Cut problems 
defined over complete graphs that  satisfy the triangle inequality, as well as on a 
restricted class of these graphs called d-dimensional. 

We say that  a k-Max-Cut (/c-Min-Cut) problem is one-dimensional, denoted 
by (k,1)-Maz-Cu~ ((k,1)-Mia-Cat), if the graph is complete, and the set of ver- 
tices V can be placed along a straight line in such a way that  the weight of each 
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edge is the distance between the two vertices it joins. The (k,d)-Max-Cut and 
(k,d)-Min-Cui are defined as the one-dimensional case, but the set of points lie 
in d-dimensional Euclidean space. 

An instance of the k-Min-Cut and k-Max-Cut problems is said to satis~ the 
triangle ineqnality if the set of edges is complete, and the weight of an edge 
between any pair of vertices is never larger than the sum of the weights of the 
edges in any path between such vertices. We shall refer to the problems restricted 
this way as the (k,Q-Min-Cut and (k,t)-Min.Cut problems. 

In [11] it was established that the (k, t)-Min-Cut and (k, Q-Max-Cut are NP- 
hard. The proofs are based on the reductions that show that simple Max-Cut 
is NP-hard [3]. The (k, 2)-Max-Cut was also shown to be NP-hard in [11]. The 
proof is involved and follows an approach similar to the one used to establish 
that a 2-dimensional clustering problem is NP-bard [7]. 

In this paper we consider the one-dimensional version of our partitioning 
problems which in our notation are called the (k, 1)-Max-Cut and (k, 1)-Min-Cut 
problems. We present a characterization of optimal solutions to these problems, 
and present a simp!e O(n log n) time algorithms to generate optimal solutions, 
where n is the number of vertices. Let k be any fixed constant. For the (k, 1)- 
Max-Cut, we present a faster algorithm that takes only O(n) time, and for the 
(~, 1)-Max-Cut problem we establish robust ~(n log n) lower bound for the time 
required to compute an optimal partition. For the (k, 1)-Min-Cut we discuss an 
O(n) time algorithm, and for the (~, 1)-Min-Cut problem we show that verifying 
whether or not a solution is an optimal solution requires ~(n log n) time. Of 
course the lower bounds hold only on certain models of computation. 

We~ also establish a bound for the objective function value of an optimal 
solution to the (k, t)-Min-Cut and (k, t)-Max-Cut problems, for all k. We give 
problem instances, for all k, that nearly match the bounds when k is at least 5. 
For the case when k is two, we give problem instances that match the bound. 
The existence of these bounds is important because they imply that any feasible 
solution can be used to approximate the (k, t)-Max-Cut and (k, i)-Min-Cut, and 
such an approximation is near-optimal for reasonable values of k. 

2 One-Dimens iona l  Problems  

In this section we study the (k, l)-Max-Cut and the (k, l)-Min-Cut problems. We 
present a characterization of optimal solutions to these problems, and present 
simple O(n log n) time algorithms to generate optimal solutions. Let k be any 
fixed constant. For the (k, 1)-Max-Cut, we present a faster algorithm that takes 
only O(n) time, and for the (~, 1)-Max-Cut problem we establish an ~(n log n) 
lower bound for the time required to compute an optimal partition. For the 
(k, 1)-Min-Cut we discuss an O(n) time algorithm, and for the (-~, 1)-Min-Cut 
problem we show that verifying whether or not a solution is an optimal solution 
requires O(n log n) time. Of course the lower bounds hold only on certain models 
of computation. 



99 

Let P1, P2," " ' ,Ptm-hPtm be the set of points on a straight line for an 
instance of the (k, 1)-Max-Cut or (k, 1)-Min-Cut problems, where kra = n. We 
assume without loss of generality that P1 <_ P2 <_ "'" <_ Ptm-1 <_ Ptm. A 
characterization of optimal solutions to the (k, 1)-Min-Cut and (k, 1)-Max-Cut 
problems is given by the following theorem. 

T h e o r e m  1. The partition {Sx, $2 ," . ,  St}({S~, S~,. . . ,  S~)) is an optimal so- 
Intion to the (k, 1)-Min-Cut ((k, 1)-Max-Cut) problem, where 

Si = {Pi, P~+t,'" ",Pi+t(,n-2),P~+tCrn-1)} for 1 < i < k, and 

S~ = {P(~-~)~+~, P(~-i)m+2," "', P(~-l)m+~-~, P i , d  for 1 < i < k. 

Proof. We prove this theorem by showing that a partition with smaller (larger) 
objective function value can be obtained for any partition that differs from the 
S (S t) partition. This is established through the use of interchange arguments. 
For brevity the proof is omitted. 

One can easily show that the partition {Si, S~, . . . ,  S~,} given in Theorem 
1 is the only optimal solution to the (k, 1)-Max-Cut problem. As pointed out 
by an anonymous referee, the partition {81, $2 , . . . ,  St} is not the only optimal 
solution to the (k, 1)-Min-Cut problem. In this case one can show that any 
partition in which the points PC~-I)m+I,P(~-I)m+2,'", P(~-l)r~+,~-l, P~m, for 
1 < i < k belong to distinct sets is an optimal solution. One can show that this 
represents the sets of all optimal solutions to the (k, 1)-Min-Cut problem. Let 
us now discuss algorithms that  generate optimal solutions based on the above 
characterizations. 

Algorithm sort-it-Min for the (k,1)-Min-Cut problem reads in the set of 
points and then sorts them from smallest to largest. The points are then tra- 
versed in that order and are assigned to the sets $1, $2, . . . ,  St, $1, $2, . . . ,  St, 
and so on. Clearly, this procedure takes O(n log n) time. Similarly, algorithm 
sort.it-Max for the (k,1)-Max-Cut problem reads in the points and sorts them 
from smallest to largest. The smallest m points are assigned to S~, the next small- 
est m points are assigned to S~, and so on. This procedure also takes O(n log n) 
time. We formalize these results in the following theorem that we state without 
a proof. 

T h e o r e m 2 .  Algorithm sort-it-Min (sort.it.Max) solves in O(n log n) time the 
(k,1}-Min-Cut ((k,1}-Max-Cut) problem. 

An alternate algorithm, which we call 2~fast-Max, for the (2,1)-Max-Cut 
problem first selectsthe smallest ~ points, and assigns them to S~. The remaining 
points are assigned to S~. This algorithm takes O(n) time because selection takes 
linear time [8]. A similar algorithm, k-fast-Max, for the (k, 1)-Max-Cut takes 
linear time. Note that k in this ease is not an input to the algorithm, i.e., k is a 
fixed constant in the algorithm (but n is a variable). Thus, we have the following 
theorem. 
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T h e o r e m  3. Algorithm k-fast-Max solves n O(n} time the (k,1)-Maz-Cut prob- 
lem, for an~t fixed value of k. 

The question now is whether or not a linear time algorithm exists for the other 
cases? In what follows we show that linear time decision tree algorithms do no t  
exist for the other one dimensional versions of the problem. More specifically, 
we establish an t2(n log n) lower bound for the (-~, 1)-Max-Cut problems. 

By theorem 1 we know that an optimal solution to this problem is of the 
following form: {P1, P2}, {P3, P4},...,  {P,-1, P~}. We now show that any algo- 
rithm that finds an optimal solution to the (~, 1)-Max-Cut problem in T(n) 
time can be used to determine element uniqueness ([2]) of g real numbers in 
T(n) + O(n) time. Such algorithm works as follows. Let X = ~zl, z2 , . . . ,  z~) be 
the ~ elements in the element uniqueness problem. Let rain (maz) the smallest 
number in X. There are two sets of inputs to the (~, 1)-Max-Cut problem. The 
first input set is X, and the second input set is X plus the numbers rain - 1 and 
maz + 1. The output to the element uniqueness problem is "yes" if, and only 
if, the two dements in each of the sets that form an optimal solution to both 
of the instances of the (~, 1)-Max-Cut are distinct. Since this checking can be 
done in O(n) time, we know that any algorithm that solves the (~, 1)-Max-Cut 
problem in T(n) time can be used to determine dement uniqueness for a set 
of ~ elements in T(n) + O(n) time. As a result of this, "any" lower bound for 
element uniqueness also holds for (~, 1)-Min-Cut problem. Since an t2(n log n) 
lower bound for element uniqueness is known ([1], and [2]), we also have an 
I2(n log n) for the (~, 1)-Min-Cut problem. The following theorem is a trivial 
extension of these observation. 

T h e o r e m 4 .  Any algorithm that solves (-~, 1)-Maz-Cut problem, for any fized 
value of k, in T(n) time can be used to determine element uniqueness for a set 
of -~ elements in T(n) + O(n) time. 

Let us now discuss very nice O(n) time algorithm for the (~, 1)-Min-Cut 
problem which was developed by an anonymous referee. By the comments just 
after theorem 1 we know that an optimal solution to the (~, 1)-Min-Cut problem 
is of the following form: each of the ~ sets contains exactly two points, one from { 
P1, P2, . . . ,  P~ } and the other from the remaining points. This characterization 
suggests a simple O(n) algorithm to construct an optimal partition. First we 
find the median using the linear time algorithm in [8]. Then we assign each of 
the first ~ points to distinct sets, the remaining points are assigned similarly. 
It is simple to see that this linear time algorithm generates an optimal solution 
to the (~, 1)-Min-Cut problem, and that it can be easily extended to solve the 
(~, 1)-Min-Cut problem, for any fixed value for k. 

For the (2, 1)-Min-Cut we do not know of any O(n) for its solution, and we do 
not know of any nontrivial lower bound for it. However, we feel an ~(n  log n) 
lower bound is likely to exist. We base this on the following results for the 
verification version of these problems. By the verification version of a problem 
we mean given a problem and a solution, is the solution an optimal solution to 
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the problem. In this case the solution is a partition and we are asked to decide 
whether or not the partition is an optimal one for the problem. 

The (2,1)-Max-Cut verification problem can be easily solved in O(n) time by 
just checking whether or nor all the points in one set of the partition are either 
located to the left, or to the right, of all the points in the other set. A similar 
algorithm can be developed for the (k, 1)-Max-Cut verification problem. The 
(~, 1)-Min-Cut verification problem is a little bit more complex. The problem 
can be reduced to checking whether or not the sum of the distance between each 
pair of points in each set in the given solution is equal to the corresponding sum 
of the sets in an optimal solution, which we know can be computed in O(n) 
time. A similar algorithm can be developed for the (~, 1)-Min-Cut verification 
problem, for any constant k. 

T h e o r e m 5 .  The (~, 1)-Min-Cut and the (k, 1)-Min-Cut verification problems, 
for any fired value for k, can be solved in O(n) time b~/ the above algorithms. 

Proof. By the above discussion. 

For the (~, 1)-Max-Cut and the (2, 1)-Min-Cut verification problems we es- 
tablish an f2(n log n) lower bound in what follows. Before presenting those re- 
sults, we need to define a decision problem related to the element uniqueness 
problem. The element e-uniqueness decision problem consists of ~ real numbers, 
and a real number e > 0. An instance is a yes-instance if, and only if, every 
two of such numbers are at least e units from each other. It is simple to show 
that "any" lower bound that can be established for the element uniqueness prob- 
lem can also be established for the element e-uniqueness problem as long as the 
bound is derived strictly for the number of "yes" components. 

We now show that any algorithm that solves the (~, 1)-Max-Cut verification 
problem in T(n) time can be used to determine dement c-uniqueness of ~ real 
numbers in T(n) + O(n) time. The resuction is defined as follows. Let X = 
(z l, z2 , . . . ,  z ~) be the ~ elements in the element e-uniqueness problem. The set 
of inputs to the (9, 1)-Max-Cut verification problem is X followed by zt + e, z2 + 
e , . . . ,  z} + e, and the partition which we want to determine whether or not is 
an optimal one is: {zl, zl  + ~}, {z2, z2 + e}, . . . ,  {z~, z~ + ~}. With this linear 
time reduction it is simple to establish the following theorem. 

T h e o r e m  6. Any algorithm that solves ( ~, 1)-Max-Cut verification problem, for 
any fired value for k, in T(n) time can be used to determine element e-uniqueness 
for a set of -~ elements in T(n) + O(n) time. 

Proof. The proof is based on the above reduction. 

We now show that any algorithm that solves the (2, l)-Min-Cut verification 
problem in T(n) time can be used to determine element e-uniqueness of ~ real 
numbers in T(n) + O(n) time. The reduction is defined as follows. Let X = 
(zz, z2,..., z~) be the ~ elements in the element e-uniqueness problem. The 
set of inputs to the (2, 1)-Min-Cut verification problem is X followed by zl + 
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e, z2 + e , . . . ,  z ]  + e, and the partition which we want to determine whether 
or not it is an optimal one is: {zl, z2 , . . . ,  z{} and {Zl + e, z2 + e , . . . ,  z~ + e}. 
After extending this linear time reduction for any fixed value for k, we can easily 
establish the following theorem. 

Theo rem 7. Any algorithm thai solves (k, 1)-Min-Cui verification problem, or 
any fized value for k, in T(n) time can be used to ddermine element e-uniqueness 

" elements in T(n) + O(n) time. for a set of i 

Proof. The proof is based on the above reduction. 

3 Triangle Inequality Case 

Let us now consider the (b,/)-Min-Cut and (k, f)-Max-Cut problems, i.e., the 
graph satisfies the triangle inequality. In this section we establish a bound be- 
tween .f:t,O_Min(1) and :~*t,O_Max(1), where f~t,t)_Min(1) and ::t,t,)_Ma~,(1) 
are the objective function values of optimal solutions to the (k, t)-Min-Cut and 
(k, t)-Max-Cut, respectively. 

T h e o r e m 8 .  Lel I be any inslanee of the (k,f)-Min-Cut ((k,i)-Max-Cuf) prob- 
lem. Then, 

k +  1 o, ,., _< and fo, , ) -M~ -< 

Proof. The proofs are based on elaborate accounting of the cost of transforming 
from one solution to the other. For brevity the proofs are omitted. 

We now show that f~2,1)-Maa~ can be arbitrarily close to 2f~2,1)_Min. Consider 
the example given in Fig. 1. From Theorem I, we know that an optimal (2, 1)- 
Min-Cut partition is 

sl = and S2 = 

and an optimal (2, 1)-Max-Cut partition is 

SI= {zi,z~} andS~= {z3, z4}. 

If two vertices are allowed to be at the same location, the above bound becomes 
exactly 2. 

From theorem 2.1 we know that any algorithm which partitions the input 
into two equal-sized subsets and generates a solution with objective function 
value f ( I )  has the property that 

[f(2:)-M~,~ -- f(1)l [/~'2,i)-M,,, --/(1)l 1 
1, and < ~. 

f(2,l )-Min f~2,1)-Max 

Then, we know that 
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d d 

x l  x2  x3 x4  ~ 

Fig. 1. Example where $~24)_Ma=(I) ~, 2fi~4)_M,n(I ). The distance d is very small. 

Thus, any algorithm is a 1-approximation algorithm for the (2, 1)-Min-Cut prob- 
lem and a �89 algorithm for the (2, 1)-Max-Cut problem when the 
input graph satisfies the triangle inequality. These results suggest that  there may 
be other approximation algorithms with a smaller approximation bound. 

We know establish that  for any positive integer k (> 2), there exists an 
instance I such that  

k 

There are nk points partitioned into k subsets {$1, $2 , . . . ,  St}. All the points 
in each subset have the same coordinate value. Points in different subsets are at 
a distance d from each other. In this case, the partitions T1 and T2 satisfy 

tl  k 
~2 - k - 1  

where T1 is the partition {S~, S~, . . . ,  S~} and T2 is the partition {S1, $2 , . . ' ,  S~}, 
and tl  and ~2 are the objective function values of T1 and T2, respectively. It is 
simple to show that T1 is an optimal (k,t)-Max-Cut partition, and T2 is an 
optimal (k,t)-Min-Cut partition (the proof is similar to Theorem 1). Therefore, 
we know that 

- k -  1" 

We know from this result that when k is large, the objective function value 
of any partition is near optimal regardless of n. 

4 Discussion 

We presented a characterization of optimal solutions to the (k, 1)-Max-Cut and 
the (k, 1)-Min-Cut problems. This characterization enabled us to develop a sim- 
ple O(n log n) t ime algorithms to generate optimal solutions. Let k be any fixed 
constant. For the (k, 1)-Max-Cut, we presented a faster algorithm that takes only 
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S' l (n /k  points) 
S'2(n/k points) 

S1 
0 

$2 d ~,'~ "'~" Sk ~"."g S'k(n/k points) 

id d 
S~' ;' o o 

~ ~ 

0 0 

S4' 

TI 1"2 

Fig. 2. Possible Upper Bound. T1 (T2) is an optimal solution for the (k, t)-Max-Cut 
((k, t)-Min-Cut) problem. 

O(n) time, and for the (~, 1)-Max-Cut problem we established robust a(n log n) 
lower bound for the time required to compute an optimal partition. For the (k, 1)- 
Min-Cut we discussed an O(n) time algorithm developed by an anonymous ref- 
eree, and for the (~, 1)-Min-Cut problem we showed that verifying whether or 
not a solution is an optimal solution requires D(n log n) time. 

We also established a bound for the objective function value of an optimal 
solution to the (k, t)-Min-Cut and (k, t)-Max-Cut problems. We presented prob- 
lem instances, for all k, that nearly match the bounds when k is at least 5. For 
the case when k is two, we presented a problem instance that match the bound, 
The existence of these bounds is important because they imply that any feasible 
solution can be used to approximate the (k, t)-Max-Cut and (k, t)-Min-Cut, and 
such an approximation is near-optimal for reasonable values of k. For a special 
type of problem instances we can establish tight bounds. For brevity we did not 
discuss these results. 

Several interesting heuristics for our 2-dimensional partitioning problems 
were developed, and results of an experimental evaluation of these methods is 
given in [11]. A very interesting open problem is that of finding efficient approxi- 
mation algorithms for the two dimensional case. A very interesting problem is to 
determine whether or not the (2,2)-Max-Cut problem is an NP-hard problem. In 
[11] it was shown that there are problem instances of the (2,2)-Max-Cut problem 
which do not have an optimal solution in which the two sets in the partition can 
be separated by k lines, for any fixed value of k. 
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