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degree 2. We should note that our result holds
he also in the case where multiplication is com—
mutative. On the other hand, in the case where
it is possible to eliminate common subexpres—
sions, the problem can be solved in polynomial
time ([GJ]).
Other related problems in graph theory and
! arithmetic complexity are also shown to be NP-

: complete.
zs. We now define precisely our general prob-
1 lem. Let L be a countable set of variable
names and let O = {+, *} be the set of binary
in’ operators on I such that the following laws
- hold:
(i) + and * are associative, i.e.,
(a+b)+c=a+(d+ec) :
r . (a*b) *c=a%* (b *c), for all
a, b, cel
e (ii) + is commutative, i.e.,
a+b=b>b+4+a, for all a, bel
T (iii) * is distributive with respect to +,
’ i.e.,
a**(b+c)=a*b+a*c
. - (b +e¢c)y *a=b*a+c*a, for all
. ) a, b, cel.
z— The main reason we have not assumed that
ve * is commutative is that the same techniques
T can be applied to a matrix expression (in par-
- t -allel computation) to reduce the number of
c' arithmetic operaticns. We should note that the
- results of section 2 will also hold when * is
es commutative.
i A 0-dag is a dag with a single root whose
= o interior nodes are either + or * from 6 and
. ée  whose leaves are from ZI. Our problem can now
/// - be stated as follows: given a 0-dag D, find
an equivalent dag D' with the fewest number
el e ic of interior nodes.

’ 2. NP-completeness result for expression dags
aw It is easy to check that if the given dag
gle is a tree, the corresponding problem is trivial.

The next simplest class of dags is that of leaf
- dags.' Moreover, any arithmetic expression which
involves both operators + and * got to be of
on degree at least 2. Therefore, the simplest type
i of g-dags beyond trees is the class of leaf dags
a whose corresponding expressions are of degree 2.
. .We define a subclass of these dags, namely
" those corresponding to bilinear arithmétfic ex—
e .. pressions. An arithmetic expression B is

bilinear if it is of the form

B=x, %y, +x, ¥y, +...+x%x, ¥y, ,
oun- 173t T ok




where {xi} and {yj} are nonoverlapping sets

" of variables and (il’ jZ) #~(i£,, jg')’ -

A bilinear expression can also be repre-
T L .

sented as B = x Ry, where rij =1 1iff ..
x4 % yj appears in B, Totherwise, rij = 0.
Theorem 2.1: ‘Let. B = xRy ‘bean n'Xm
bilinear arithmetic expréssion. The fewest
number of multiplications needed to compute B
is equal to the smallest r such that- R = XY,*
where X and Y are nXr and T Xm e
matrices with 0, 1 entries.

Let B = xTRy be a bilinear arithmetic
expression. We can associate with B the bi-

partite graph+ G(B) = (Vl, Vs E) defined as

. - P i q :
follows: V; {Vi}i=1 and V, {wj}j=l are
two sets of distinct modes corresponding
respectively to the indeterminates {Xi}§=l and

a . _ - )

{yj}j=1’ an edge e {vi, wj} is in E iff
rij = 1. A decomposition of G(B) consigts'

of a set of Kuratowski (complete) subgraphs
(Vi’ Wi, E. ), 1 <i<r, such that

R

i=1 i=1

r
U v, =V, LJ w =W, U Ei = E and
_ i=1
Eg ﬂEj =¢ for i# j; r dis called the

1egg£__of the decomposition.

We need several results before proving our
‘main result. We start with the following defi-
nitions:

3-colorability problem: Given an undi- -
rected graph G = (N, E) , does there
exist three disjoint sets of vertices

3
S3) such that U S = N and
‘ i=1
if {Vi’ vj}EE, then v, and vy are

S

(sl’ 2°

in different sets?

3-m colorability problem: Given an undi-
rected connected graph G = (N, E) such
that the degree of each node is at least
4 and IE| > 2|Nl +1, is G 3 colorable?

Theorem 2.2: The 3~m colorability problem is
NP-complete.

Proof: We use a reduction from the 3-colora-
bility problem which is known to be NP-complete
[s1. O

Lemma 3.2: Given a graph G = (N, E) deg v >4,
veN, the elimination of k edges leaves at
most k/2 nodes of degree zero.

Proof: The proof is simple and will be omit-
ted. O

Our main result is to prove that the fol-
lowing problem (which we call the MP problem)
is NP-complete: Given a p X q matrix with

TSee [H] and [L] for definitionms.




1g sets 0, 1 entries and given a positive integer m,
does there exist two matrices A and B such
that R=AB, A and B are respectively

pre- P X m. and m, X g matrices with 0, 1 entries?

= ) We reduce the @xcolorablllty problem @ into
an instance of the above problem.

= 0.
Theorem 2.3: The MP problem is NP-complete.
N =T S ;
st Proof: It is straightforward to check that MP
ite B is in NP. We now show how to reduce the 3-m
Vl = XY colorability problem to MP in polynomial time.

. Let G = (N, E) be an undirected graph in
which each vertex is of degree greater than or

eie equal to 4 and |E| > ZlN| + l»—&&\—_;
e bi- Vos eees vn} and E =-{'ei," " , er} . —
led as where n = IN] and r = IE] From G, we con-

struct the following instance of the MP

. are problem. Take p=6n+3r +1, q=6r +n
and m = 3r + 6n; clearly, q > m.
t:]_ and The set of constants {rij} defining R
1 iff is constructed as follows:
sts al) for each vertex v;EN and all edges
hs ’ ejeE incident upon Vi set .
: Ti5 T Tabt,ed] T Tontd,2rt) T Sndavil, et
- . L3rthnti, brent]
e T3rt5nt, Shtnti - L
a?) for each i, 1<i<mn, set
= ‘éngezgf Ti,3v4 T Tnbd,3rtt T T2nbi,dred T
a3) for each j, 1<3j<3r, set
. fﬁi“' - T3n+i,3 © T3ndj,drtnky L
s : o ak) for j, 1<j<6r+mn, set

1.

Tart6n+l,

a5) set all other r.j to zero.

. ’ o Flgure 2.1 shows the matrix R = (r,.).
P , , ij

7 wndi- GO is the incidence matrix of the graph G,
S J such'" ~ " 4i,e., it is an n X r matrix such that the
.east entry (i, j) is equal to 1 if and only if wv.
- .orable? ... L
- . i is incident upon ej. Ik represents the
m s identity matrix of size k. Row x consists
of a sequence of conmsecutive 1's,
i -ora— : We will prove that G is 3-colorable if,
mplete and only if, R can be expressed as R = AB,
P where A and B are pXm and m X q
g v > & - matrices with 0, 1 entries (recall that
'f)v 3
Car m = 3r + 6n).
1) Suppose that 6. is 3-colorable and let
{Sl’ Sz, SB} be the corresponding partition of
L the nodes of G. Let A and B be the fol- )
o lowing matrices.
fol-
‘oblem)

rith
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“

where
. bl) for all vit-:Sk , yik = Dn + i] =
y3r + (k- L)n + 1] = 1,
b2)- for all edges ej ipcident upon a
vertex in § and a vertex in S,

2 3
set y[3n+ j] =1,

b3) for all edges ey incident upon a
vertex in Sl and a vertex in S
set y[B3n+xr + il =1, v

b4) for all edges ej incident upon a
vertex in Sl and a vertex in §

set y[3n + 2r + j] = 1.

To prove that R = AB, it is clear that we only

have to verify that yB = x whose proof is
given by the following lemma.

Lemma 1: Let y and B be as defined in
figure 2.2 and let x be a row vector con-—
sisting of 1's. Then we have yB = x.

" Proof of lemma 1: The equation yB = x is
equivalent to

m
Z

Yob., =1, for all j=1,-2,...,
p=1 %34

6r+n. (*)

We distinguish several cases.
Case 1: 1< j<r.
Lgt e, = {vi, vk}. It is easy to see
from the construction of B that
P157 P " Panty, g

1

‘\V’iES'Z “and Vi ES4 (say). 1In the first case,
precisely one of y[i] or y[k] is equal to 1

‘and - y{3n + j] = 0; -in the second case,

y[3n + j] =1 and y[i] = y[k] = 0. 1In either

_case (%) is satisfied.

Case 2: r+1<3j<3r or 3r+n+1<j<

6r + n.
The proof is similar to that of case 1.
Case 3: 3r+1 <3 < 3r +n.

The only nonzero elements in row Jj  of

matrix - B .are bJ s 31‘+j ] bn+j , 3r+j and

Ponti,3rkic LE V4ESk»

51 Yzbjgzl.' 0O : :

Proof bf Theorem 2.3 éontinued’: The above lemma
is- 3-colorable,
then R=AB, where A and B are pXx (3r+6n)

:completes the proof that, if. G

and (3r+6n) xq matrices with 0, 1 entries.

AEithver one of vl or’ Vi belongs to S, or

=1 and b,,=0 otherwise.
1]

then y{(k-1L)n+j]=1
and y{(k'-1)n+3j]#1 for all k'#k. Thus




2) Suppose that
will prove that
proof is contained in the following lemma.

Lemma 2

R=AB with m=3r+6n. We
G 1is 3~colorable. The main

: Let R be as given in figure 2.1 and
let A and B be any two pXm and mXq

" matrices of 0's and 1's such that . R= AB. Then
A and - B ‘must be of the form glven in.,

figure 2.2.

Proof of -lemmé’-'z':' ‘e actuaily 'p'ro{z‘é'that' if

-.'R'.= AB..’ .

‘where

"R is-the game a8 "R ~without the-
“last row (i.e., row x) and A and B are

(p—1)xm and -mxgq mat*‘lces, then

The proof is=b

énd
,f\ (', '}"f’v \4’\ @/‘wﬁrﬁlﬁ »J/

theorem 2 l T e

The bipartite graph G(R) = corresponding to - I—{
is given in figure 2.3 where there are two types
‘of edges:

a) edges which represent the incidence

.matrix and which exist among the following sets
of nodes: )

{xl, ceesx b oand {yg, cees Y, }

{xn+1’ . X2n} and {yr+l, vies y2r} .

Gy 1 oo Xyt and Iy gs oo vy}

X an+3r+l

"

Note th

J

Yir

>

>

4n+3r+1°
1,

5n+3r+l ’

Y5r4n

Y6rtn

at,

1.

Yio lf_iin,‘

‘if the node’ vy

""le+3r'} and {y3r+n+l, v

e Bgpua b oand Ly, s

vees X } and {x

6n+3r Sri4n+l’ °° "2

for example, an edge between X and

1 f_ j < r, exists if and only

of G is incident upon ’ej.-

b) edges which represent In or I_ and

{%,, vuvs xn} and {y3r+l’

{x
{x
{x
{x
{x

{x
{x

{x

2

3ntr+l

n+l> °°
3n+l? *°

>

3n+2r+l’

y3r} ’

3ntl’ °°

Yrin
3n+rtl
YSr4n

}

)

}

3nt+2r+l’
.

Yer+n

r

‘which exist among the following set of nodes:

s Yyt

e ""XZn} and {y3r+l’ ""y3r+n}’

s xgpd and Ay s s Vgt
’ x3n+r} and {yl’ tete yr} ’

0 X3n+2r} and {yr-l-l’ Tt YZr} >

cees X

.

ENTIREL LI AT

» Xyped 304 g ees

cey X3n+2r} and {yl}r-h'\+l’ cuns

"”x3n+?_r} and {y5r+n+l""’
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Notice that A‘G(i) has only two Eypes of com-

“plete subgraphs K %, where r,

T 1,4 ,1 2

£ > 1. The statement of the lemma can be re-
formulated as follows: G(R) has only one
decomposition of length 3r+6n  and this de-

and K
T

composition is obtained by faking each x; and

‘constructing the »co»mplete subgraph consisting

“of ‘all edges Incident. upom: Xj. - The main idea

- ;'Note that Km o ig the .complete graph based on
3

m nodes among the xi's and n nodes among the

. S.
yJ




‘t‘xe o subgraphs, then, at most, min(

of the proof is to show that any decomposition
of G(R) which contains complete subgraphs of

the type Kr I r>1, has length greater than
s .

3r+ 6n. We now prove this fact.

Consider any decomposition D of G(R) of
length 3r+6n and suppose it contains o com—-
plete Subgraphs of the type K 1 , r>1. -Each -

such K has one vertex among the yv.rs say

al 3

Vo - Therefore o can be expressed as

Ir

oc=ocl+oc2+ot3+a4+a5+oc6+a7, ‘wherev a; -is

the number of Kr 1 subgraphs with: Jr be-.

longing to the ith set of modes which form

the yj's
We now remove the edges corresponding to

the above Kr 1 subgraphs and try to determine
s

.the number of the xi s nodes whose degrees are
%nonzero. Removing the first al+az+a3 sub—
.graphs destroys no xi's. If we next remove

“1

2

oy
4)+m1n(2,' 4)+m1n(2, 4) of the x;'s

will disappear completely (Lemma 3. 2)
Deleting the next - Og subgraphs can cause at
! o

: . 5 .

most m:m(ots, otl) +—2— x; nodes to disappear.

5»Similenrly, taking out the remaining subgraphsu
‘can result in the removal of at most min(ozﬁ,

: a6 0L7 .

'{aZ) +—2— + min(oL7, OLS) +— x5 nodes.

It follows that the maximum number of x;
nodes which could disappear is given by

% %y o3
u= min(T’ (14) + min(—z—, 0‘4) +min(7, 014) +

min(as,

min(a7,

bThree cases arise:
(i) u4_>_l. Using the fact that
k, +k

1 R
- and min(k,, 1{2)_<_kl or

k?_ , we obtain the following

min (k1 R kz) <

o o o o +o a
1 2 3 5 1 5
& (— if — — (A -
R e e
(a6+a2)+2§+ (a7+a
2 2 2 >
u<a, to,ta to +a.+o =0-0

17277375 76 7 4"

But since all the remaining subgraphs of 7] are
of the type Kl s then Y% must have at least




lon
of
than

v of
com—
lach

say

are
ast

6n+ 3r -~ (a~oa4) such complete subgraphs.
Therefore, the length of 7 is at least

o+ (bn+3r- (a~0,))=6n+3r+0, >6n+ 3r

4) 4

which contradicts the assumption that the length
of 7 is 6n+3r.

(i1) 044=O and a;+ta,to >1. 1In this

2 3
case,
a o
u=min(tg, o) +5 +min(ag, o)) +5 +
a
mm(u7, 3)+2 .
oy e, o

Thus u<(x5+a6+a7+ 5 +-2—+7—

It is easy to check that u<0L ‘o, +a,+o.+

2 3 5
6+0L -1 and the proof carries as before.

+a,+a,=0. It is

7
(dii) a4=0 and o oty

1
C!S + Ot6 + 0,7
clear that pi——z—-— and the proof is

similar to the previous cases.

Therefore any decomposition of G(R) which

contains subgraphs of the type Kr 1 r>1,
N L]

has to be of length greater than 6én+3r. [

Proof of Theorem 2.3 continued: We now know
that for any A and B such that R=AB,

both A and B. must be of the form given in
figure 2.2. Note thdt row y of A has not

.been specified. Define the following three

sets of nodes in G:
Dlr:{vjl}'[j]=l}:
D2={vjly[n+j]=l},
D3'={v.|y[2n+j]=1}.

These sets are palrWlse disjoint because

if VgEDy n D, , say, then multiplying y by

the (3:r:+k)th column of B produces a sum of

2 which is not correct. Moreover, these sets
exhaust all the nodes of G by the fact that

1]
n
I
n
I
n
0 n
pU—
ylol=q11 1 ... 11.
. 0
“lo —
.
L O " &/ Z/
Lo Tl
, e

We now prove that no edge hasiitw/two nodes in
one set D.,. Suppose e5= {vi, vﬁ} is such




\_  that v, and vy are in Dy. Multiplying y

by the ((k—l)r+j)th column of B results in a
number greater than one since . y[(k- L)n-+i]=
y(k-=1)n+2]1=1. It follows that the above
partition of vertices defines a 3-coloration for
G and the proof of the theorem is complete. 0

. 3. Complexity of Related Problems

Another context where these results are -
relevant is that of computing a set of bilinear
forms in algebraic complexity ([BD], [BM], [J],
[W]). ©Note that it is not known whether the
general problem with integer constants is de—
cidable [M]. Let R be a commutative ring. and
let K &R such that 0,1eK. Suppose  x= (x

x,...,x)T and y= (y,y,...,y) ,a;:etwo
2 1? 72 .

column vectors of 1ndeterm1nates we have to

N comkt,e\ m bilinear forms:
&/// P_4q

T s
B, =S L O iqe xjyk=xGiy, i=1, 2, ...,
. N m 2
‘where Gi is a pXq matrix with elements in
‘K.
Theorem 3.1: Given a bilinear form B over
0, 1} and given a positive integer &, the

problem of determining whether or not B can be
computed with § multiplications is NP—complete

We have the following immediate corollary.

Corollary: Given a set of bilinear forms
{Bi}?LLl over {0, 1} and given a positive

integer &, the problem of determining whether
or not these bilinear forms can be computed with
8§ multiplications is NP-complete. [}

The above results rely heavily on’ the fact
that the constant set is {0, 1} < Z. A much
more interesting case is when the constant set
consists of {0, 1, -1} as in most of the pub-
lished algorithms ([St]). Finding the corres-
ponding complexity seems to be harder in this
case; however, we could not extend the above
proofs to cover this case. It is worth mention-
ing that, for a given single bilinear form

B= Zj rijxlyj R lJ—O 1, the introduction of
’

subtraction can reduce the number of multlplica—

tions.

As we have seen in section 2, the multipli-
cative complexity of a single bilinear arithmeti.
expression is related to the length of a de-
composition of the associated bipartite graph
G(B). 1In view of Theorem 2.3, we have the fol-
lowing immediate result.

Theorem 3.2: Given a bipartite graph G and a
positive integer k, the problem of determining

whether G has a decomposition of length k is
NP-complete.
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