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1. INTRODUCTION

Several interesting results concerning the
problem of code generation for arithmetic ex-
pressions have been established by several
authors. Extending the work of Anderson [A],
Nakata [N], and Redziejowski [R], Sethi and
Ullman [SU] have presented an efficient algo-
rithm to generate minimal length codes for a
special type of arithmetic expressions, namely
those expressions with no common subexpressions.
Aho and Johnmson [AJ] have found a more general
algorithm which allows general addressing
features such as indirect addressing, but again
restricting themselves to the same type of ex—
pressions.. The case of arbitrary expressions
‘has been proven to be difficult in a precise
‘sense, i.e., it is NP-complete ({X]), even for
‘the class of one-register machines with no
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degree 2. We should note that our result holds
he also in the case where multiplication is com—
mutative. On the other hand, in the case where
it is possible to eliminate common subexpres-
sions, the problem can be solved in polynomial
time ([GJ]).
Other relatedproblems in graph theory and
arithmetic complexity are also shown to ‘be NP-

complete. .
y . .
ns. We now define precisely our general prob-
1 lem. Let X be a countable set of variable
names and let 6 = {+, *} be the set of binary
in’ operators on L such that the following laws
hold:

i (i) + and * are associative, i.e.,
} (a+b) +c=a +-(b + c)
r . - {a *b) *c=a* (b *c), for all
a, b, cel

algebraic identities allowed (Brumo and Sethi (ii) + is commutative, i.e.,
[BSe]). Aho et. al. [AJU] have shown that the . a+b=">b+a, for all a, bel
‘problem remains NP-complete for dags whose et

1ii) * is - . . . ) .
shared nodes are leaves or nodes at level one (111) distributive with respect to +,

i.e.
and have developed heuristic algorithms to 2
P e a*((+c)=a*b+a*c
generate good codes. - (b+e¢)y *a=b *a+ec*
The effect of algebraic laws on code gen-— a4 b, cer at+ec®a, forall
‘eration has received little attention in the - ‘ S
3 }literature. Sethi and Ullman [SU] have discus-— . - . The main reason we have not assumed that
i sed the.case where some of t@e operators of an ve, . * is commutative is that the same techniques
expression tree are associative and commutative, . can be applied to a matrix expression (in par—
and Breuer [B] used the distributive law to : -allel computation) to reduce the numb £
r - number o
factor polynomials in a manner similar to that g 'arlthmetic operations. We should note that the
of Hornmer's algorithm. When certain algebraic sm results of section 2 w1ll also hold when * is
.transformations apply for am arithmetic expres- as . commutative.
sion A, we are not required to generate codes A g-dag is a dag with a 51ng1e root whose
for A, but we may generate codes for amy 7 interior nodes are either + or * from 6 and
equivalent expression A' obtained by succes- e " 'whose' leaves are from Z. Our problem can now
sive applications of the algebraic laws. Since - be stated as follows: given a 0-dag D, find
the number of arithmetic operations may then “an equivalent dag D' with the fewest number
vary, the optimality criterion of generated i . - ©of interior nodes.
codes should depend on the number of arlthmetlc 2 ; :

. NP-completeness result f i
operations as well as on the code length.' In W - L or _expression dags
this paper, we assume that the distributive law . It is easy to check that if the given dag
iﬁlds ;gd co?siderhthe problem of migimizing ) sle %ﬁ a trie,.thi czrrisponding problemhis trivial.

e number of arithmetic operations for a single . ) e next simplest class o ags is that of leaf
arithmetic expression which involve only addi-~ - dags. Moreover, any arithmetic expression which
tion and multiplication. We also assume that "+ dinvolves both operators + and * got to be of
addition is commutative and associative and n degree at least 2. Therefore, the simplest type
that multiplication is associative. In section - of ¢-dags beyond‘trees is t?e class of leaf dags
2, we show that minimizing the number of multi- N whose corresponding expressions are of degree 2.
plication nodes is NP-hard even when the given e ;nge deflne a subclass of these dagq namely
dag is a leaf dag and the expression is of those corresponding to bilinear arithmefic ex-
= » n— _pressions. An arithmetic: expression B is -
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where {x.} and {yj} are ponoverlapping sets
i

" of variables and (il’ j%) #”<i1., jl')' .

A bilinear expression can also be repre-
T - .

sented as B = x Ry, where rij =1 4iff

* ears in B otherwise r.. = 0.,
Xi Yj app 3 T Fonia v’ i3
Theorem 2.1: ‘Let. B = x Ry ‘be an mn X ‘m
bilinear arithmetic expréssion. The fewest
number of multiplications needed to compute B

s equal to the smallest T ‘such that “ R = X{, "'

where X and Y are m Xt and T Xm
matrices with 0, 1 entries.

Let B = xTRy be a bilinear arithmetic
expression. We can assoclate with B the bi-

partite graph-“ G(B) = (Vl, ‘Vz., E) defined as

. - P - q
follows: V; = {vi}i———l and 'V, {wj}j=1 are
two sets of distinct nodes corresponding
respectively to the indeterminates {xi}:?r—:l and
vy ¥

T, .
i3

=13 an edge e = {Vi, wj} is in E iff
= 1. A decomposition of G(B) consists

of a set of Kuratowski (complete) subgraphs“

= (V s Wi’ E.), 1<4i<r, such that
1 —_ - )
T T

-\LJ v,=v, UwW =W, UE =E and

i=1 i=1 « T i=1

iE ﬂE =¢ for i# j; r d4s called the

lerlg_ of the decomposition. .

‘ We need several results before proving our
‘main result. We start with the following defi-
nitions: '

3-colorability problem: Given an undi- -
rected graph G = (N, E), does there
exist three disjoint sets of vertices
3
(Sl’ 5,5 83) such that .U s, = N and
) i=1
if {vi, vj}EE , then v, and vy are

in different sets?

 3-m colorability problem: Given an undi-
rected connected graph G = (N, E) such
that the degree of each node is at least
4end |E| > 2|8} +1, is G 3 cplorable?

Theorem 2.2: The 3-m colorability problem is
NP-complete.

Proof: We use a reduction from the 3-colora-
bility problem which is known to be NP—complete
[s]. O

Lemma 3.2: Given a graph G = (N, E) deg v >4,

veN, the elimination of k edges leaves at
most k/2 mnodes of degree zero.

Proof: The proof is simple and will be omit-—
ted. O

Our main result is to prove that the fol-
lowing problem (which we call the MP problem)
is NP-complete: Given a p X q matrix with

.l.

See [H] and [L] for definitions.

“d.e., it 4s an n X r matrix such that the

M

0, 1 entries and given a positive integer m,
does there exist two matrices A and B such
that R =AB, A and B are respectively
PpXm and m X ! matrices with 0, 1 entries?
We reduce the @«colorablllty problem @v into
an instance of the above problem.

Theorem 2.3: The MP problem is NP-complete.

Proof: It is straightforward to check that MP
is in NP. We now show how to reduce the 3-m
colorability problem to MP in polynomial time.

Let G = (N, E) be an undirected graph in
which each vertex is of degree greater than or

equal to 4 and £} 2 /_!Nl + 1. Let = {v,,
vz,...,v} and E = {e,ez .., e}, \“—"“
where n lNI and T = lE] From G, we con-

struct Lhe following instance of the MP
problem. Take p = 6n + 3r + 1, q=6r +n
and m = 3r + 6n; clearly, q > m.

The set of comstants {rlj} defining R

is constructed as follows:
al) for each vertex vieN and all edges

eJ.EE incident upon Vi set

= = = '\’:,, - e A
rij rn+i,‘r+j r2n+i,2r+j a3yl BED

T3rthn+i, brinty
T3r4Snti, Shdnti

a2) for each i, 1 <i<n, set

Ty At T Tobi,3rhi © Toni,3rdd s S

.a3) for each j, L <3< 3r, set

T3n4s,3 T T3ndi,drtnti L

' ak) for j, 1<j<é6r+mn, set
T3rtgntl,j - L°

a5) set all otber s to zero.

Flgure 2. l shows the matrlx R= (r,.).

CO is the incidence matrix of the graph G,

entry (i, j) is equal to 1 if and only if vy

is incident upon ej. Ik represents the

identity matrix of size k. Row x consists

. of a sequence of consecutive l's.

We will prove that G is 3-colorable if,
and only if, R can be expressed as R = AB,
where A and B are p Xm and m X g
matrices with 0, 1 entries (recall that

= 3r + 6n).

“1) Suppose that G. is 3-colorable and let

{Sl, 8,s SB} be the corresponding partition of

" the nodes of G. Let A and B be the fol-

lowing matrices.

/
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Figure 2.1
T r: T n T r r
n GO 0 0 In 0 0
0
n 0 GO 0 In 0 0
0 0
n 0 0 G0 In 0
0
T Ir 0 0 0 Ir 0
r| O Ir 0 0 0 Ir 0
T ] 0 Ir 0 0 0 Ir
n|l 0|0 |0 0 |G [0 }'0
n 0 0 0 0 0 GO 0
n 0 0 0 o] o] Q GO
B
Figure 2.2
Row y of A is constructed as follows:
n n n T r r n n
S
Sl S2 S3 (S5, (Sl, (Sl’ Sl 2 3

- sisting of 1's.

" Proof of lemma 1:
~ equivalent to

’viESZ

“precisely one of yl[il

" U matrix B are bj

;completes the proof that, if G

where

. bl) for all viESk, yi(k - Dn + i] =

y3r + (k- Do +i] =1,

b2)- for all edges ej igcident upon a
vertex in S2 and a vertex in 83,
set y{3n + 3]l =1,

b3) for all edges ej incident upon a
vertex in Sl and a vertex in S3,
set y[B3n+r+ il =1,

b4) for all edges ej incident upon a

vertex in Sl and a vertex in 52’
set y[3n + 2r + j] = 1.

To prove that R = AB, it is clear that we only

have to verify that yB = x whose proof is

given by the following lemma.

Lemma 1: Let y and B be as defined in
figure 2.2 and let x be a row vector con-
Then we have yB = x.

The equation yB = x is

m

I yb., =1, for all j=1,-2,...,
PR

6ér+n.

} )
We distinguish several cases.

Case 1:* 1 < j < r.

Let ej = {Vi’,vk}' It is‘gasy to see

- from tﬁe construction of * B that

bij = b,kj = b3n+j,j =1 and bij =0 otherwise.

.. Either one of v, or v belongs to S, or

"and Vi ES, (say). 1In the first case,

or y[k] is equal to 1
and. - y{3n + j] = 0; -in the second case,
y[3n + j] =1 and y[i] = y[k] = 0. 1In either

. case (#*) is satisfied.

Case 2:

LT +1<3<3x or 3r+n+l<ge
6r + n. '

The proof is similar to that of case 1.

3r +1 < j<3r+n.

Case 3:

* The only nonzero elements in row j  of

., b . ., and
,3r+) ° Tndj,3rH]

.- -Dn+il=1
b2n+j,3r+j 1f vjesk, then y[(k-1)n+i]
and  y[(k'-n+3l#1 for all k'#k. Thus

m. >:

I yb., =1y O

2=1 2.32. A .

Proof bf Theorem 2.3 éontinue&:' The above lemma
is. 3-colorable,

R=AB, where A and B are éx(3r+6n)

(3r+ 6n) xq matrices with 0, 1 entries.

then
and’




2) Suppose that R=AB w1th m= 3r+6n. We

will prove that G 1is 3-colorable. The main . % [} o ¥y
" proof is contained in the following lemma. :
Lemma 2: Let R be as given in figure 2.1 and :
let A and 3B be any tve pXm and mXxq B oy ° o
" matrices of 0's and.l's such that . R= AB. Then C n T
A and B -must be of the. form glven in. .o X o °© Y.
figure 2.2. . : N .
U proof of 'lemm'é"'Z‘:' bﬂ'e"act\‘laily pfoVé'that' if )
" R= AB, ‘where "R is -the Same a8 "R without the- Xy o o vy
3 2r
last row (i.e., row x) and A tand B’ are * o ° )
(p-1)xm and mXq matrices, then A= 2n+l orel
_ wies 4 o QB Loiredo Bl : .
B = R. The proof Maﬁﬁé—u on thawehareater— -
 Errden- glven ﬁ theorem 2.1. R . .
= o o
" The -bipartite graph G(R) correspondlncr ‘to- R - ) *3n Var
is given in figure 2.3 where there are two types 3041 ] o Yo
"of edges: ) . .
ay edges which represent the incidence )
.matrix and which exist among the following sets ) % é ' y
;of nodes: . ) 3n+r 3rin
: : : o o
} {xl, iy xn} and {yl, S yr} . AR 3l ) Y3r+ntl
{Xn+l’ vy x2n} and {yr-l—l’ ey yzr} s E . .
{x Y ey } and {y s s ¥ } . .
{Zn+1 3 azn :l{y 307 Eyptor O © Yirin
> s 3 revy - .
3n+3§+1 4n+3 3r+n+l » X3n430+l o © Yirtntl
ot > . e I o ) :
Dty yapigs o0 Fsray) 304 {y4r+n+l’. s _ .
ySr—Pn} i o RO 30431 © Ysr4n
- . o o : ° .
T T L. *3n+3r4l Y5 rintl
y6r+n}' . .
Note that, for example, an edge between Xs and . o .
: Z4nt3r °© © Yerin
y.,1<i<n,l<3<r, exlsts:.fandonly ;
i - T - Fnt3rtl ©
'if the node vy of G is incident upon e..- B -
b) edges which represent In or I_ and :
which exist among the following set of nodes: X4y .0
o
Doy s %} and {ygpp0 s Yapgbs F5ntdrtl
{x 410t Xop } and {y31’+l""’y3r+n}’ - .
{x2n+l"“’x } and {Y3 +1;-->,y3r+n} X é
. 6
{X3n+l’ ? x3n+r} and {yl’ see Vo ¥, o
{x3n+r+l’ Tt X3n+2r} and {yr+l’ v yzr} > : Figure 2.3
{x ) eees X } and {y . .
3n+21}:+l 3nt3r 2r+l’ ’ : Notlce that G(R) has only two Eypes of com-
Y30 .+ “plete subgraphs l I% and K_ 7> where 1,
. L. 7
{X3n+l’ e X3n+r} and {y3x_-+n+1’ T B > 1. The statement of the lemma can be re-
Yy +n} > .. formulated as follows: G(R) has only one
{ T } 4 { " decomposition of length 3r+ fn . and this de-
X1’ 777 Eang2rt 2P T ppan+1® ©7 2 composition is obtained by faking each g and
y5r+n} ’ . constructing the complete subgfaph consisting |
: ____g_______d_ t upon. Xy. - The main ide
‘ {x3n+2r+l’ > x3n+2r} and {y5r+n+l’ , of all edges incideat up a
v } "Note that ' K - i the complete graph based on
6r+n” " ) . m,n j
m nodés among the % s and n nodes among the

1
. S.
yJ




of the proof is to show that any decomposition
of G(R) whlch contains complete subgraphs of
the type r 9 r>1, has length greater than
. , .

3r+ 6n. We now prove this fact.
Consider any decomposition D of G(R) . of

length 3r+6n and suppose it- contains o com--
1,’ r>1. -Each -

plete subgraphs of the type

such K 1 has one vertex among the yJ - say
. T, . .
yj . Therefore « can be expressed as

T
o=a,+o,+a,ta, ta.+o, +ta where o

1 72 3 4775776 7.
the number of K

. -is
i .
r,1

longing to the 1t set of nodes which form’
‘the v.'s. : ;
We now remove the edges corresponding to

the above Kr 1 subgraphs and try to determine
b

the number of the V xi's nodes whose degreeé are

monzero. Removing the first a,+o,+a “sub— T

: ) 1 72 3.
1graphs destroys no xi's. 1f we mext remove

; oy ’
'ithe i o, subgraphs, then, at most, min(T, -

o1
a4)+min(—52-,‘c14)+min(-—2~;, o) of the x;'s
will disappear completely (Lemma 3.2);
Deleting the next Qg subgraphs can cause at_'
: o
zmost min(OLS, OLl) +—22 x; modes to disappear. -
Similarly, taking out the remaining subgraphs
‘can result in the removal of at most min(aG,

: g ] a, .

'fozz) +T'+ mn(u7, as) +7 x5 nodes. v

It follows that the maximum number of x.

‘nodes which could disappear is given by

o i (2 % ] -
u=min(5, 04)+mln(7, a4)+mn(-2-, @)+

(15 u6
mln(ocs, al) + + mln(o,6, az) +5 +

a
7
Pt 2
Three cases arise: -
(1) ué_>_l. Using the fact that

k. +k .
B SR |
3 and min( 1 kz)f_kl or

k2 , we obtain the following

min(ot7 , O

min(ky, ky) <

a a o a.+to a
1 2 3 571 5
P G-I S AV N 4
L e i e A
a,+a o a.+a o
62,6 7753
( W Yro + (5 )+

< + = -
U_Otl Ot2+a3+oc5+a6+a7 o-0a

4

But since all the remaining subgraphs of 7 are

of the type K; ,, then 7 must have at least
3

M

subgraphs with: 'jr be-. ..

6n+3r- (a- OLA) such complete subgraphs.
Therefore, the length of 7 is at least
o+ (bn+3r—- (o OLL})) =6n+ 3r+ u4> 6n+ 3r

which contradicts the assumption that the lemgth
of % is 6n+ 3r.

(ii) o =0 and al+a2+a3>l. In this

case,
o

5 . 6
u= min(ots, l) + - +m1n(u6, onz) +—2— +

o
2
o
mjm(cx7, 3) + = 2
‘o

S0y O

1
Thus u_<_a5+a +o_ +—= "+ 5+ 5 -

67T T T2

It is easy to check that u_<_cxl+ a2+a3+a5+

0L6+0L7— 1 and the proof carries as before.

(iii) oc4=0 and al+u2+a3=0. It is
o +0L6+(17
2
‘similar to the previous cases.

clear that u< and the proof is

Therefore any decomposition of G(R) which
contains subgraphs of the type K 1 r>1,

bas to be of length greater than 6n+ 3r. O

Proof of Theorem 2.3 continued: We now know
that for any A and B such that R=AB,

both A and B. must be of the form given in
figure 2.2. Note that yow y of A has mot

“been speclfied. Define the following three

sets of nodes in G:
D, = {v; ly[J]—l}
DZ—{vJ]y[n+J]—l}
={v.ly[2n+3]—l}.

These sets are palrw:Lse disjoint because

lf V€D, N D, , say, then multiplying y by

K

..the (3r+ k)th column of B produces a sum of

2 which is not correct. Moreover, these sets

exhaust all the nodes of & by the fact that

s
pul
1 .
1 : A
on 5 ‘
o
ylol=1x 1 ... 11
0
o -
1o
1o

We now prove that no edgr‘ has\ltw/two nodes in
one set Ds. Suppose e —{v , VR‘} is such

/
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- Arithmetic Expressions with Algebraic’

. Karp, R. M., "Reducibility among Combina-

/ \

J. D. Ullman, "The Design and Analysis of \ / vt;_hat 4 3 .
Computer Algorithms," Addison Wesley, M, ‘ v, and vy a;:!e in D,. Multiplying ¥y
1974, S ) N . oy by the ((k—l)r*—j)t colum of B results in a
Aho, A. V., and S. C. Johnson, "Optimal - nunber greater than one since . y[(k- Dn+il=
Code Generation of Expression Trees,' \ y[(k-1)n+2]=1. It follows that the above
JACM 23, 3(July 1976), 488-501. partition- of vertices defines a 3-coloration for
sho, A‘.‘ V., S. C. Johnsor, and J. D. Ul- . - G and the proof. of the theorem is complete. - [J
lman, "Code Generation for Expressions Co : ) . T PV
with Common Subexpressions," JACM 24, - 3. Comp16x1ty Qf Related Problems _ -

.]A_(Jan' 1977), pp. 146-160. : . : Another context where these fesﬁlts"are:
Aho, A. V., and J. D. Ullman, "The ‘Theory - relevant is that of computing a set of bilinear
of Parsing, Translation of Compiling, forms in algebraic complexity ([BD], [BM}, [J]
Vol. IT: Compiling," Prentice-Hall, (W]). ©Note that it is not known whether the - ’
Englewood Cliffs, NJ, 1973. general problem with integer constants is de~ '
Anderson, J. P., "A Note on Some Compil- cidable [M]. Let 'R be a commutative ring‘. and
ing Algorithms,” Comm. ACM 7, (Maxch . let K ER such that 0,1eK. Suppose  x= (x,,
1964), 149-150. x <7 and ye ' IR

- A. Borodin and I. Munro, "Computational 20 0t Fp and |y (Yl> s wevs Yq) ..are two
Complexity of Algebraic and Numeric Prob- / columm vectors of indeterminateé; we have to
lems," American Elsevier Publishing | _-—, .compute m bilinear forms: - A
Company, 1975. = \ / ‘i\//\

Breuer, M. A., "Generation of Optimal : ;\i 2/‘ % T R :
Code for Expression via Factorizationm," | , i J:I k=1 OLijk ijk— x Giy , 1=1,2, ...

Comm. ACM 12, 6(June 1969), 33-340. a,
R. W. Brockett and D. Dobkin, '"On the : i i
oy where G, is a pXq matrix with elements in

K.

tions 207-235 (1978)- \ ; .
Bruno,l\glz L., and 1({ Se?chi, "code Gener-— A ;—}fg—‘:}—'l} Gl‘_’en a bl.l:u}ez}r form B oaver

ation for a One-Register Machine,” JACM ={0, 1} and given a positive integer 6, the
23, 3(July 1976), 502-510. | problem of determining whether or not B cam be
: i computed with & multiplications isNP-complete

Forms," Linear Alpebra and Tts Applica- : .

Dovmey, P. J., and R. Sethi, "Yariations §

,on the Common Subexpression Problem" . We have the following immediate corollary.
. unpublished manuscript. : : .C 11 . L. . ) : ‘
Garey, M. R. and D. S Johnson, 'Com— Corollary: Given a set of bilinear forms
, M. R. . S. ) _ .

puters and Imtractability, A Guide to n}gw } {Bi}?zl over {0, 1} and given a positive
“the Theory of NP-completeness,' Freemang- . . ) :

and Compazy 1979. P ’ 7 integer §, tl'.le problem of determining whether

T. Gonzalez’and J. Ja'Ja', "Evaluation of or not these bilinear forms can be computed with

§ multiplications is NP-complete. [l

._ldentities," Technical Report 78-13, . The above results rely heavily on the fact
Department of Computer Science, The =~~~ . that the constant set is {0, 1} € Z. A much
Pennsylvania State University, August 1978. moré interesting case is when the constant set

. ..¥. Harary, "Graph Theory," Addison— consists of {0, 1, -1} as in most of the pub-
Wesley, Reading, MA 1969. ' ) lished algorithms ([St]). Finding the corres-

-J. Ja'Ja', "On the Algebraic Complexity ponding complexity seems to be harder in this
of Classes of Bilinear Forms,” Ph.D. case; however, we could not extend the above
thesis, Harvard University, September 1977. proofs to cover this case. It is worth mention-
Johnson, D. B., W. Miller, B. Minnihan, . ing that, for a given single bilinear form
and C. Wrathall, "Reducibility Among B= I r..X.y., r..=0, 1, the introduction oj
Floating-Point Graphs," Tech. Rep., Dept. i,3 o H
of Math., U. of California (Santa ) subtraction can reduce the number of mﬁltiplica-
Barbara), 1978. . ) L tions.

As we have seen in section 2, the multipli-

torial Problems." In Complexityof Comput- - ‘ cative complexity of a single bilinear arithmeti
_ er Computations, R. E. Miller and J. W. 3 » expression is related to the length of a de-
- Thatcher, Eds., Plenum Press, New York o composition of the associated bipartite graph
1972, pp. 85-104. ’ . G(B). 1In view of Theorem 2.3, we have the fol-
E. L.-Lawler, "Combinatorial Optimization: lowing immediate result.

{1 -

2]

Networks and Matroids,' Holt, Rinehart
‘and Winston, 1976. o

Y. Matijasevic, "Ehumerable Sets are
Diaphantine,” (Russian), Dokl. Acad: .
Nawk, $SSRT191°+(1970), PP- 279-282. ...

Thec')re.:m 3:2: Given a bipartite graph G and a
positive integer k, the problem of determinin

whether G has a decomposition of length k i
NP-complete.
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