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1. Introduction 

A shop cons is t s  of  m -> 1 p rocessors  (or  m a c h m e s ) .  E a c h  of  these  p rocesso r s  p e r f o r m s  a 
d i f fe ren t  task.  T h e r e  a re  n -> 1 jobs .  E a c h  j ob  i has  m tasks .  T h e  p rocess ing  t ime  for  task  
j of  j ob  i is t~., T a s k j  of  j o b  i is to  be  p r o c e s s e d  on  p r o c e s s o r  j ,  1 -< j  -< m. A schedule for 
a processor j is a s e q u e n c e  of  tup les  (l,, st,, .fi,), 1 -< i -< r .  T h e  It a re  j o b  indexes ,  st, is 

the  s tar t  t ime  of  j o b  1,, and  ft, is tts f inish t ime .  J o b  1, ts p roces sed  c o n t i n u o u s l y  o n  

p roces so r  j f r om s~, to  .fir T h e  tup les  m the  schedu le  are  o r d e r e d  such  t h a t  sz~ < ~t  -< 

st,+1, 1 -< i < r. T h e r e  m a y  be  m o r e  t h a n  one  tup le  pe r  j o b  a n d  it  is a s s u m e d  t h a t  l, 4: 

1,+1, 1 _< i < r. I t  is also r e q u i r e d  t h a t  e a c h  j o b  i s p e n d  exact ly  b., t o t a l  t ime  o n  p r o c e s s o r  j .  
A schedule for an m-shop is a set  of  m p r o c e s s o r  schedu les ,  o n e  for  e ach  p r o c e s s o r  in the  
shop .  In add i t i on  these  m p roces so r  s chedu le s  mus t  be  such t h a t  no  j o b  is to  b e  p r o c e s s e d  
s imu l t aneous ly  on  two or  m o r e  p rocesso r s ,  m s h o p  s chedu le  will be  a b b r e v i a t e d  to 
s chedu le  m fu tu re  r e f e r ences .  T h e  finish time of a s chedu le  ts the  la tes t  c o m p l e t i o n  t ime  
of  the  i nd iwdua l  p r o c e s s o r  s chedu les  and  r e p r e s e n t s  the  t ime  at  wh ich  all tasks  h a v e  b e e n  
c o m p l e t e d .  A n  optimal finish time ( O F T )  schedu le  is o n e  which  has  the  leas t  f in ish  t ime  
a m o n g  all s chedu les .  A nonpreemptive schedu le  is o n e  in which  the  ind iv idua l  p r o c e s s o r  
s chedu le  has  at  mos t  o n e  tup le  (i, s , , f )  for  e ach  j o b  i to  be  s chedu led .  F o r  any  p r o c e s s o r j  
this  a l lows for  t,., = 0 and  also r equ i r e s  t ha t  f ,  - s, = t~,,. A s chedu le  in wh ich  n o  
res t r i c t ion  is p l aced  on  the  n u m b e r  of  tup les  pe r  j ob  pe r  p r o c e s s o r  is preemptive. N o t e  
t ha t  all n o n p r e e m p t i v e  schedu les  a re  also p r e e m p t i v e ,  whi le  the  r eve r se  is n o t  t r ue .  

O p e n  s h o p  s chedu le s  d i f fer  f rom flow s h o p  a n d  j o b  s h o p  s chedu le s  [2, 3] in t h a t  in an  
o p e n  shop  no  re s t r i c t ions  are  p laced  o n  the  o r d e r  in which  the  tasks  for  any  j ob  a re  to  be  
p rocessed .  It is easy  to conce ive  of  s i tua t ions  w h e r e  the  tasks  m a k i n g  u p  a j o b  can  be  
p e r f o r m e d  m any  o r d e r ,  e v e n  t h o u g h  it is no t  poss ib le  to ca r ry  o u t  m o r e  t h a n  o n e  task  a t  
any  p a r n c u l a r  t ime .  Fo r  e x a m p l e ,  c o n s i d e r  a large  a u t o m o t w e  ga rage  wi th  spec ia l ized  
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shops. A car  may require the following work: replace exhaust pipes and muffler,  align 
wheels,  and tune up. These three tasks may be carried out in any order .  However ,  since 
the exhaust system, al ignment,  and tune-up shops are in different buildings, it is not  
possible to perform two tasks simultaneously.  In this part icular  example preemption may 
not  be desirable.  Open  shop scheduling is also interesting from the theoretical  stand- 
point.  I t  is well known that determining opt imal  preemptive  and nonpreempt ive  sched- 
ules for the flow shop and job  shop is NP-complete .  Removing the ordering constraint  
from these two shop problems yields the seemingly simpler open shop. As  our results will 
show, removing the order ing constraints allows us to efficiently solve the preemptive  
scheduling problem but  not  the nonpreempt lve  one.  

In this paper  we shall investigate O F T  schedules for the open shop. It is clear that 
when m = 1, O F T  schedules can be trivially obtained.  We shall therefore restrict 
ourselves to the case m > 1. First,  in Section 2 we show that preempt ive  and nonpreemp-  
tive O F T  schedules can be obtained in l inear time when in = 2. This contrasts  with 
Johnson 's  O(n log n)  algori thm [3, p. 89] for the 2-processor flow shop. When m > 2, 
O F T  preemptive schedules can still be obta ined in polynomial  time (Section 3). 

For  nonpreempt ive  scheduling, however,  the problem of finding O F T  schedules when 
m > 2 is NP-complete .  These results may be compared  to slmdar results obta ined for 
flow shop and job  shop O F T  scheduling. In [4, 5] it is shown that the problem of finding 
nonpreempt ive  O F T  schedules for the flow shop when m > 2 and for the job  shop when 
rn > 1 are NP-complete .  In [5] it is also shown that the problem of finding preempt ive  
O F T  schedules for the 3-processor flow shop and 2-processor job  shop are NP-complete .  
Thus, as far as the complexity of finish time scheduling is concerned,  open shops are 
easier  to schedule when a preemptive schedule is desired.  

2. OFT Scheduling for m = 2 

In this section a l inear time algorithm to obtam nonpreempt ive  and preemptive  OFT 
schedules for the case of two processors is presented.  For  notat ional  simplicity we denote  
tl,,, the task time on processor 1, by a, and tz,, by b,, 1 -< i -< n. Informally the algori thm 
proceeds by dividing the jobs into two groups A and B. The jobs  in A have a, ~ b,, while 
those in B have as < b,. The schedule is built  from the "midd le , "  with jobs from A added  
on at the right and those from B at the left. The schedule from the jobs  in A is such that 
there is no idle t ime on processor 1 (except at the end) ,  and for each job  m A it is possible 
to start its execution on processor 2 immediate ly  following its complet ion on processor 1. 
The part  of the schedule made up with jobs  in B is such that the only idle time on 
processor 2 is at the beginning. In addit ion the processing of a job on processor 1 can be 
started such that its processing on processor 2 can be carried out  immediately after 
complet ion on processor  1. Finally some finishing touches involving only the first and last 
jobs  in the schedule are made.  This guarantees  an opt imal  schedule.  

Line 

1 Algorithm OPEN_.~HOP 
/ / this  algorithm finds a minimum fimsh time nonpreempttve schedule for the open shop problem 

with task times (at; b,), 1 _< : ..~ n / /  
//initialize variables: a0, b0 represent a dummy Job 

T~ = sum of task times assigned to processor :, 1 .~ : _< 2 
l = index of leftmost job m schedule 
r = index of nghtmost .lob m schedule 
S, = sequence for processor t, 1 <- t _< 2// 

2 T~-T2~--ao,~-bo~--l~---r~-O, S~--null 
//schedule the n .lobs 

3 for  I ~ -  1 to  n d o  
4 Ti~--Ti+al, T2~---Tz+b~ 
5 if  at ~ b, t h e n  [ i f  at _> b~ t h e n  

[ / /put  r on right, II means string concatenahon// 
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6 s , - s  lit, r , -  q 
else 

[ ~  put t on right 
7 s ~ s IL ,]] 
8 else [if bl -> at then 

[ ~  put I on left 
9 S~--I  IIS; l~--t] 

else 
[ / / p u t  z on l e f t / /  

10 S ~-- i II SI] 
11 end 

finishing touch 
12 if  Ti - al  < T2 -- br then [Sl ~ S I[ r [[ 1; S2 ~ I l[ S 1[ r] 
J3 else IS, , -  I II s II r; $2 ~ r Ill I~S] 
14 delete all occurrences of job 0 from $1 and $2 

an optimal schedule is obtained by processing jobs on processor i in the order specified by S .  I -~ i -< 2. 
The exact schedule may be determined using Theorem 2.1 

15 return 
16 end OPEN__SHOP 

Example 2.1. Consider the open shop problem with six jobs having task times as 
below: 

Processor 
Job 

1 2 3 4 5 6 

1 10 7 3 1 12 6 
2 6 9 8 2 7 6 

Initially I = r = 0 and S = ~ .  The following table gives the values of S, r, I at the end of 
each iteration of the for loop 3-12.  

End of 
S r 1 

iteration 

1 0 1 0 
2 00 1 2 
3 200 1 3 
4 4200 1 3 
5 42001 5 3 
6 420016 5 3 

We have S = 420016, r = 5, 1 = 3, T~ = 39, and T2 = 38. Since T~ - a3 > T2 - b s ,  w e  
get S~ = 34200165 and $2 = 53420016. Deleting all occurrences of the O's, we get $1 = 
342165 and $2 = 534216. Processing by these permutations gives the Gant t  chart: 

processor 1 

processor 2 

3 4 1l 21 27 39 
. . . . . .  , 

a a  a4  a2  a l  a e  a~ 

I 
b5 ba b4 i bz b~ b0 

7 15 17 26 32 38 

The following two lemmas will be useful in proving the correctness of algorithm 
OPEN__SHOP. 

LEMMA 2.1. Let the set o f  jobs being scheduled be such that a, -> b,, I -< i -< n, and let 
D be the permutation obtained after deleting the O's from S in line 14 of  algorithm 
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O P E N _ _ S H O P  and concatenating r to the right. The jobs 1 - n may be scheduled in the 
order such that: 

(i) there is no idle time on processor l except following the completion o f  the last task 
on this processor; 

(ii) for  every job  i, its processor 1 task is completed before the start o f  its processor 2 
task; 

(iii) for  the last job r, the difference ~ between the completion time o f  task 1 and the 
start time o f  task 2 is zero. 

PROOF. The proof is by mduction on n. The lemma is clearly true for n = 1. Assume 
that the lemma is true for l ~ n < k. We shall show that it is also true for n = k. Let the k 
jobs be J~, • • • , Jk and let r' be the value of r at the beginning of the Iteration of the for 
loop of hnes 3-11 when i = n. From the algorithm it is clear that the permutat ion D' 
obtained at line 14 when the k - 1 jobs Jl ,  " ' "  , Jk-1 are to be scheduled is of the form 
D"r'. Moreover D = D"r'k or D = D"kr'.  From the induction hypothesis it follows that 
the jobs J~, • • • , Jk-i can be scheduled according to the permutat ion D"r' so as to satisfy 
(0-(i i i)  of the lemma, i.e. these k - 1 jobs may be scheduled as in Ftgure 1. Let i be the 
job immediately preceding r '  m D ' .  In case k = 2, let i = 0 with a0 = b0 = 0. 

I f A k  >-- br, then D = D ' k  and it is clear that the job k can be added on to the schedule 
of Figure 1, at the right end, so that (i)-(iii) of the lemma hold. 

If Ak < br, then D = D"kr'. Now lob r' is moved a~ units to the right so that ak can be 
accommodated between i and r ' ,  satisfying (i). Let f l  be the finish time of a, andfz >-fl be 
the finish time of b~. The finish time ofak is then fl  + ak <f~ + at, as a~, >- b~,. By (lU) the 
start time ofbr, has to bef~ + ak + a~,. Also we know, from the induction hypothesis, that 

f~ + a~, - fz = A' >-- 0, 1.e.fl + at, ->f2. The earliest that bk may be scheduled is max{f~ + 
ak, f2} < f~ + at,. This imphes that there is enough time between the start time of b~, and 
the earhest start time of b~ to complete the processing of bk [] 

LEMMA 2.2. Let the set o f  jobs being scheduled be such that a, < b,, 1 -< i -< n, and let 
C be the permutation obtained after deleting the O's f rom S in line 12 o f  algorithm 
OPEN_._SHOP and concatenating I to the left. The jobs may be scheduled in the order C 
such that: 

(i) there is no idle time on processor 2 except at the beginning; 
(ii) for  every task i, its processor 1 task is completed before the start o f  its processor 2 

task; 
(iii) for  the first job l, the difference A between the completion time o f  task 1 and the 

start time o f  task 2 is zero. 
PROOF. The proof is simtlar to that of Lemma 2.1. [] 
LEMMA 2.3. Let (a,  b~) be the processing times for  job i on processors 1 and 2 

respectively, 1 -< i -< n. Let ]* be the finish time o f  an optimal finish time preemptive 
schedule. Then, f *  _> max{max,{a~ + b~}, T~, Tz} where T1 = ~ ~ a~ and T2 = ~ ~ b,. 

PROOF. Obvtous. [] 
We are now ready to prove the correctness of Algorithm OPEN__SHOP.  
THEOREM 2.1. Algorithm O P E N _ _ S H O P  generates optimal finish ttme schedules. 

f l  

7 / / /  - -  
//A 

~e b -~ 
l 

-B. A 

f2 
FIG 1 Scheduhng  by D '  = D"r' Shaded  region indicate task 

processing Last job  is r' A' >_ 0 
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PROOf. Let J1,' " • • , Jn be the set of jobs being scheduled. Let A be the subset with 
a, -> b, and let B be the remaining jobs. It is easy to verify that the theorem is true when 
either A or B is empty. So assume A and B to be nonempty sets. Let S be as defined by 
the algorithm after completing the loop of lines 5-11.  Let E be the permutation obtained 
after deleting the O's from l II s II r. Then E = CD where C consists solely of jobs in B, 
and D consists solely of jobs in A.  From Lemmas 2.1 and 2.2 it follows that the jobs m A 
and B may be scheduled in the orders D and C to obtain schedules as m Figure 2. In the 
schedules of Figure 2 the processor 1 tasks for C and the processor 2 tasks for D have to 
be scheduled such that all the idle time appears either at the end or at the beginning. It is 
easy to see that this can be done. For example, the schedule of Figure 2(b) is simply 
obtained from Figure 1 by shifting processor 2 tasks to the right to eliminate interior idle 
time on P2. 

Let T1 = ~ ~ a, and T~ = ~ ~ b,. The schedule for the entire set of jobs is obtained by 
merging the two schedules of Figure 2 together so that either (a) the blocks on P1 meet 
f i r s t - th i s  happens when (a2-c~1) -</31; or (b) the blocks on P2 meet f i r s t - t h i s  happens 
when ( a 2 - a l )  > ill" 

Let us consider these two cases separately. 
Case (a) c~2 - c~ <- 131. This happens when T1 - at -> T2 - br. In this case line 13 of 

the algorithm results in the tasks on P1 being processed m the order CD while those on 
P2 are processed in the order rCD', where D'  is D with r deleted. The section c~0-a2 of 
Figure 2(a) is now shifted right untd it meets with fll-fl2 of Figure 2(b). Task br is moved 
to the leftmost point. The finish time of the schedule obtained becomes max{aT + b~,T~, 
T2}, which by Lemma 2.3 is optimal. 

Case (b) az - C~l > fl~. This happens when T~ - oft < T2 - br. In this case line 12 of 
the algorithm results in the tasks on P1 being processed m the order C'DI, where C' is C 
with I deleted. Tasks on P2 are processed in the order CD. The schedule is obtained by 
processing tasks on P2 with no idle time starting at time 0. Tasks on P1 are processed 
with no idle time (except at the end) in the order C'D. Task az is started as early as 
possible following C' D. The finish time is seen to be max{al + bz, Ti, T2}, which by 
Lemma 2.3 is optimal. 

This completes the proof. [] 
COROLLARY 2.1. Algorithm O PEN__SHO P generates optimal preemptive schedules for 

m = 2 .  
PROOF. By Lemma 2.3 the finish time is the same for both preemptwe and non- 

preemptive optimal schedules when m = 2. [] 
LEmMA 2.4. The ame complexity of algorithm OPEN__SHOP is O(n). 
PROOF. The for loop of lines 3-11 is iterated n times. Each iteration takes a fixed 

amount  of time. The remainder of the algorithm takes a constant amount of Ume Hence 
the complexity is O(n). [] 

3 Preemptive OFT Scheduhng m > 2 

In this section we present two algorithms for optimal preemptive scheduling. The first of 
these is intuitwely simple and so only an informal description of it is given. This 
algorithm makes use of basic concepts from the theory of maximal matchmgs in bipartite 

] --~ ~--idle 
I i I t~ 

.~ I-. F"////A 1[ on P1 

"" 
t j i I 

I I I 
0 ~0 al ct2 

(a) 

Fie 2 

I 
I 

, 
idle 
t ime ] I 
on P2---~ ~ I 

0 81 132 

(b) 
Partial schedules obtained for sets B and A, respectwely. 
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graphs [6] and has a t ime complexity of  O(r 2) where r is the number  of nonzero tasks. 
The second algori thm is a ref inement over  the first and has a slightly bet ter  computing 
time, i.e. O(r (min{r, m 2} + m log n)) where m is the number of processors, n the number  
of jobs,  and r the number  of nonzero tasks. It is assumed that r -> n and r -> m. Hence 
when r > m z and m > log n, the computing time of the second algorithm becomes 
O(rm2), which is better  than O(r2). However ,  when m > r / log  n the first algorithm has a 
better  asymptotic time than the second (this happens,  for instance, when each job has 
at most k nonzero tasks and m > kn/ log  n). 

Before describing these algorithms, we review some terminology and fundamental  
results concerning bipart i te  graphs. The following definitions and Proposit ion 3.1 are 
reproduced from [6]. 

Definition 3.1. Let G = (X t_J Y, E) be a bipart i te  graph with vertex set X t3 Y and 
edge set E. (If ( i , / )  is an edge in E then either i E X and j  E Y or i E Y a n d j  E X.) A set I 
C_ E is a matching if no vertex v E X LJ Y is incident with more than one edge in I. A 
matching of  maximum cardinali ty is called a maximum matching. A matching is called a 
complete matching of X into Y if the cardinali ty (size) of I equals the number  of vertices 
in X. 

Defimtion 3.2. Let  I be a matching. A vertex v is free relative to I if it is incident 
with no edge in 1 A path (without repeated  vertices) p = (vl, v2)(v2, v3) • • • (V2k-1,  V2k) is 
called an augmenting path if its endpoints  vl and v2k are both free and its edges are 
alternately in E - I and in I .  

PROPOSmON 3.1. I is a maximum matching i f f  there is no augmenting path relative to 
I. 

When a matching ! is augmented by an augmenting path P the resulting matching l '  is 
( 1 0  P) - (! fq P). The cardinahty of 1' is 1 + cardinali ty (/). Note that the matching 1' 
still matches all vertices that were in the matching I (however,  two new vertices vl and v2k 
are added on).  

PROPOSITION 3 2 l f  G = ({Xt_JY},E) is a bipartite graph, I E I = e, I X I = n, and I Y t 
= m,  n ~ m ,  then an augmenting path relative to I starting at some free vertex i can be 
found in time O(min{m2,e}). 

PROOV. See Appendix .  
Given a set o f n  jobs  with task times t,.,, 1 -< t -< n and 1 -< j -< m,  for an m-processor  

open shop, we define the following quantit ies:  

T, = ~ t,,, = total  t ime needed on processor j ,  1 -< j _< m,  
l_<~_<n 

L , =  ~ t~.,= length of  j o b t ,  1 < - - i -<n ,  and 
l_<~_<m 

r = number  of  nonzero tasks. 

F rom a simple extension of Lemma 2.3 to m processors,  we know that every preemptive 
schedule must have a finish time that is at least 

cz = max,.s{T,, L,}. (3.1) 

We will in fact show that the opt imal  preemptive schedule always has a finish time of a .  
In the first algori thm starting from the given open shop problem we construct a 

bipartite graph with 2(n + m) vertices, n + m of these are labeled Jt, . . .  , Jn+m to 
represent  the n jobs  together  with m fictitious jobs  that we shall introduce.  The 
remaining vertices are labeled M1, • • • , Mn+m to represent  the m processors together  
with n fictitious processors.  The bipart i te graph G will contain undirected weighted edges 
between J and M type vertices. The weight w(J,, Me) of an edge ( J ,  M,) will represent  the 
amount  of  processing time job i requires on p rocessor / .  The weight of  a node p(J,) or 
p(M~) is the sum of the weights of  the edges incident to this node.  To begin with, the 
following edges with nonzero weight are included in G: 

E1 = {(J, Me) lt~,~ ~ 0, 1 - < i - - < n ,  1 - < i - < m } .  (3.2) 
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For  all edges  (J,, M~) E El  we de f ine  w(J , ,  Me) = G,,. N o w  a set  o f  edges  E2 connec t i ng  

J1, • • • , J .  to M,.+~, • • • , M,.+n are  a d d e d  in such a way t ha tp ( J , )  = a ,  1 -< i -< n .  

E2 = {(J,, m,,,+,) ] a - L, ¢ 0, 1 --< i <-- n}. (3.3) 

For  all edges  (J,, M,.+,) E E2 we def ine  w(J, ,  Mm+,) = a - L,.  A set  o f  edges  E3 is 
included to connect  M i ,  • • • , Mm to J .+l ,  • • • , J.+m m such a way that  p(Ms)  = a ,  1 <- j 

- - m .  

E3 = {(J,,+. M,)I  o~ - Ts • 0, 1 -< 1 < m}. (3.4) 

For  all edges  (J,,+, Ms) @ E3 we def ine  w ( J , , ,  Ms) = a - Ts. Finally edges  connec t ing  

J,,+~, • • • , J,,+,, to M,,,+~, • • • , M,,+,, are a d d e d  to make  the weight  o f  each  of  these  
veruces  a .  This  set  o f  edges  E4 is o f  size at mos t  n + m as each  (J,, M e) edge  in t roduced  

brings the weight  of  e i ther  J, o r  Me to a .  O n e  may easily verify that  E4 can be so 

cons t ruc ted .  
The  bipartite graph  G ( X ,  Y. E) is then  ({J~, - - .  , J,+m}, {Mj, . . .  , Mn+m}, 

Eat_JEzLJE3UE,).  X is the set of  vertices represen t ing  jobs ,  while Y is the set  represen t ing  

processors .  

We il lustrate thin cons t ruc t ion  ~ t h  an example .  

E x a m p l e  3.1 Le t  m = 3 and n = 4. The  task t imes are de f ined  by the matr ix:  

lob  ~ 1 2 3 4 T 

processor 1 [10 20 0 ~ ]  30 
2 10 0 20 30 
3 10 0 0 20 30 
L 30 20 20 20 

T h e r e f o r e  a = 30 The bipar t i te  g raph  ob ta ined  using the above  cons t ruc t ion  is shown  in 
F i g u r e 3  The  edge  s e t E 3 i s e m p t y a s T ~ = p ( M ~ )  = ~,  l _< j -< m .  [] 

Having  cons t ruc ted  the b ipa ru te  g raph  G f rom the o p e n  shop p r o b l e m  as desc r ibed  

ea rhe r ,  we obta in  a comple t e  match ing  of  X = {Jl, • • • , J,,+,,,} into Y = {M~, • • • M,+m}. 
Let  this match ing  be e~, e2, • • • , e,+,,,. Let/.L = min,  . . . . .  +,,, {w(e,)}. The  iobs inc ident  to 

st O ~  ~0 Ml 20j 

J2 ~--'F~'"~"~"~ ~ M2 

20 
J 3 ~ - ~  ~~0 M3 

2 2 . o  M4 

lO 

l0 

J7 ~ M7 
2O 

FIe. 3 Bipartite graph for Example 3 1 

~6,-~.~- ~ ' ~  ~ ~ M6 
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the edges et ,  • • • , en+m are scheduled on their  respective processors for a t ime period of  
Ix, and the weight of  the edges e~, • • • , e,,+m is decreased by Ix. This results in the 
delet ion of  at least one edge (i.e. the weight of  at  least one edge becomes zero).  By 
scheduling a job  on its respective processor we mean that if (J~, Mj) is one of the edges in 
the match,  then job  i is processed on processor . / for  Ix units of t ime. If]  > m,  then job  i Is 
not processed in that  interval.  If i > n,  then p rocessor j  is idle in that time interval.  This 
process is repeated  until all edges are deleted.  Assuming that  at each i teration a matching 
of  size n + m can be found, all n + m processors are kept  busy at all t imes (ei ther  
processing real or  fictitious jobs).  The total processing time needed is ~ + m  p(M~) = 
(n + m)cx. Hence the finish time of the schedule is (n + m)a/(n  + m) = a and the schedule 
is optimal.  Since each time a complete match is found one edge is deleted,  complete 
matchings have to be found at most O(r) t imes (recall that  r is the number  of  nonzero 
tasks and that r -> n and r -> m) .  Hence the maximum number  of preemptions  per  
processor is O(r). The first complete  matching can be found in time O(r(n + m) '5) [6]. 
Subsequent  matches require finding augmenting paths ,  each of which can be de te rmined  
in time O(r) (Proposi t ion 3.2 with e - O(r)). Since a total  of O(r) such paths may be 
needed,  the total  computing time for the process becomes O(r2). 

Example 3.2. Let  us try out  the informal computat ional  process described above on 
the bipart i te  graph of Example  3.1. The following complete  matchings are obta ined (this 
is not a unique set of matchings): 

(a) {(11, M2),(J2, M1),(J3, Me),(J4, M3),(Js, M4),(J6, Ms),(JT, MT)}, r = 10; 
(b) {(J~, Mi),(Jz, Ms),(J3, M2),(J4, M3),(Js, M4),(J6, Me),(JT, MT)}, r = 10; 
(c) {(J~, M3),(J2, M~),(J3, M2),(J4, gT),(Js,  M4),(J6, Ms),(JT, M6)}, r = 10. 

This yields the following schedule: 

10 t0 10 

M1 

M2 

M3 

M4 

M5 

M6 

M7 

J2 J1 ./2 

J1 J3 J3 

J4 J4 Jt 

./5 J5 ./5 

J6 ./2 ./6 

13 J6 ./7 

J7 J7 ./4 

Delet ing the fictitious jobs and 
processors,  the following preemptive 
schedule is obta ined:  

10 10 10 

J2 Jl J2 

J1 J3 J3 

J4 J4 J1 

M1 

M2 

M3 

The schedule requires only one preempt ion ,  i .e.  on M1. Since the edge set E3 was 
empty ,  there is no idle time on any of  the processors.  In general ,  however,  this will not  
be the case, and the delet ion of  the fictitious jobs  will leave some idle time on the 
processors.  [] 

The success of  the algorithm rests in the existence of  a complete  matching at each 
i teration.  The next three lemmas prove that a complete  match always exists. The vertices 
of the graph are divided into two disjoint, sets X = {Ji, • • • , J,,+,n} and Y = {Mj, • • . ,  
Mn+m}. 

LEMMA 3.1. A t  each iteration the wezght o f  every vertex in the bipartite graph ts equal. 
PROOF. By construction,  tMs is certainly true for the first i teration, i .e. p(M,) = p(J,) 

= ct, 1 _< i - <  n + m. Af ter  a complete  match is found the weight o f n  + m edges 
decreases by r. The 2(n + m) vertices of G are each incident to exactly one edge in the 
matching. Hence the weight of each vertex decreases by r. Consequently all vertices have 
the same weight at all t imes. [] 

LEMMA 3.2 (Hall ' s  theorem).  In a bipartite graph a complete matching o f  vertex set 
Y into vertex set X exists i f  and only i f  I A I -< I R(A) I for every subset A o f  Y, where R(A) 
denotes the set o f  vertices m X that are adlacent to the vertices in A.  

PROOF. See Liu [9, p. 282, Th. 11.1] or Berge [1, p. 134]. 
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LEMMA 3.3. The conditions o f  Lemma 3.2 are valid for  every bipartite graph with 
vertices o f  equal weight. 

PROOF. Let at be the weight of a vertex. Let A be any subset of Y. Then the sum of 
the weights of vertices in A is at [ A 1. The corresponding sum for R(A)  is ot ] R(A)  [. 
Since this sum includes all edges inctdent to A, we have at I A I -< at ] R(A)  [ and so ] A [ 
_< ] R(A)1, as at > 0. [] 

The second algorithm is based upon a computational refinement of the algorithm 
described above. Once again a bipartite graph is constructed. This graph consists of the 
two vertex sets X = {J~, • • • , Jn+m} and Y = {M1, • • • , Mm}. The edge set is Eit.JE3 (cf. 
eqs. (3.2) and (3.4)), i.e. the fictitious processors of the earlier construction are 
dispensed with. Now, we look for complete matchings of Y into X. While before any 
complete match of Y into X was acceptable, now we have to be careful about the 
matching that is chosen. To see this, note that if initially the matching {(J2, M~),(J3, 
M~),(J4, M3)} is chosen for the job set of Example 3.1, then there is no complete 
matching at the next iteration and consequently no schedule with finish time a can be 
obtained following this choice of a matching. To assist in proper choice of a complete 
matching we make use of an add~tmnal vector S called the slack vector. For every job i, 
its slack time is defined to be the difference between the amount  of time remaining in the 
schedule and the amount  of processing left for that job. If the slack time for a job 
becomes zero, then it is essential that the job be processed continuously up to the 
completion of the schedule at at as otherwise the schedule length will be greater than a .  
When the slack time for a job becomes zero, the job is said to have become crittcal. 

Example 3.3. Consider the three-processor open shop problem with four jobs and 
the following task times: 

Job 
Processor T 

1 2 3 4 

1 10 8 5 3 26 
2 6 7 9 9 31 
3 7 8 3 3 21 

L 23 23 17 15 a = maxl~{T,, L~} = 31 

Addition of the jobs Js, JG, and Jr introduces three more columns into the above table: 

Initially, the slack times are SLACK( i )  = at - L, and we have S L A C K  = (8, 8, 4, 6, 26, 
31, 21). No job is critical. 

We first state the algorithm and then prove its correctness. For convenience, the array 
S in Algorithm P will represent the latest time a job may start so that its processing may 
be complete by at. Thus SLACK( i )  = S, - current time. A job therefore becomes crit,cal 
when S, = current time. Algorithm P does not require that weights be assigned to the 
edges in eqs. (3.2) and (3.4). This weight assignment wdl, however, be used later to 
show that the algorithm works. 

Algorithm P 

// obtain an optimal preemptive schedule for the m processor open shop with n jobs and processing time 
tj.,, 1-< i-< n, l -<j-< m// 

// compute length, or, of optimal schedule// 
1 T j ~  ~l'-itj.i, 1 --<! --< m 
2 L , ~  ~%tj.,, I --<i-<n 
3 a ,-- max,.~{Tj, L,} 

//create fictltmus jobs and compute slack vector// 
4 tj.,,+~---a- T~, I_<j_<m 
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5 S , ~ - a - L , ,  I_<i_<n 
6 S,j+j~-T,, I-<j-<m 
7 n~ . -n+m 

//compute initial complete matching of Y = {Mr, • • " , M=} into X = {Jr, . . .  , J,,+m}. This match is 
obtained as a set, 1, of edges (j, 0 matching M, to J,// 

8 I ~- INITIAL_MATCHING, TIME ~ 0 //current time// 
9 loop 

l0 I *- index of job not in matching having least slack time 
11 (p, q) ~ task and job in matching with least remaining processing time 
12 A , -  mln{tp.~, St - TIME}//max time for which I can be used// 

//schedule 1 for A time units// 
13 if A > 0 then [print (A, I ) ,  

t,, ,-- t~., - A for (/, t)El 
S, ~-- S, + A for all ..lobs t e l  
TIME ~ TIME + A 
i f  T I M E  = a then stop] 

14 delete from 1 all pairs (i, j) such that t~., = 0 
//complete matching I including all critical .lobs// 

15 if there is a critical job not in I then 
[delete from I all pairs (./, t) such that i is noncritical 

16 repeat 
17 let Jt be a critical job not in 1 
18 augment 1 using an augmenting path starting at J~ 
19 until there is no crttmcal .lob not m 1 
20 reintroduce into / all pairs (/, t) that were deleted in hne 15 and such that M~ is still free] 

//complete the match// 
21 while size of / ~ m do 
22 let Mj be a processor not in the matching I 
23 augment I using an augmenting path starting at Mj 
24 end 
25 forever 
26 end of Algorithm P 

In o r d e r  to prove  the co r r ec tnes s  of  A l g o r i t h m  P we have to show the  fol lowing:  

(i) T h e r e  exists an initial c o m p l e t e  ma tch ing  in line 8. 
(ii) The  match ing  I can be a u g m e n t e d  so as to mc lude  the c rmca l  lob  Jt in lme 18. 

(iii) A u g m e n t i n g  to a comp le t e  ma tch  including all critical jobs  can always be car r ied  

out  as r equ i r ed  in l ines 2 1 - 2 4 .  
The  fo l lowmg th ree  l e m m a s  show tha t  these  t h ree  r e q u i r e m e n t s  can always be met .  a 

is as de f ined  in line 3 of  the a lgor i thm.  

LEMMA 3.4.  There exists a complete matching o f  Y into X in hne 8 
PROOF. Le t  A be any subse t  o f  ver t ices  m Y. The  weight  o f  each  ver tex  m A is o~. The  

weight  o f  any ver tex  in X ts less than  or  equa l  to ot by de f tmt ion  of  or. Since the  weigh t  o f  
R(A) is g rea te r  than  or  equal  to the weight  o f  A ,  it fol lows tha t  ot I A 1 -< ot] R(A) I and  so  

] A [ <_ [ R(A) I. The  resul t  now fol lows f rom L e m m a  3.2.  [] 
LEMMA 3.5. 1n line 18 there exists an augmentmg path relative to I starting at Jr. 
PROOF. C ons ide r  the  b ipar t i te  g raph  G' f o r m e d  by the  ver t ices  X '  and  Y, w h e r e  X '  

consis ts  of  all ver t ices  r e p r e s e n t i n g  jobs  in the ma tch ing  1 and  the  ver tex  J~. All  edges  
connec t ing  X'  and Y in the original  g raph  are  inc luded m G'. By the de le t ion  o f  line 15 it 

fol lows that  all ver t ices  in X' are critical.  H e n c e  the i r  weight  ts cz - t ff t t s  the value of  
TIME when  the loop  of  hnes  16 -19  ts b e m g  execu ted .  Since ot - t is the  total  r ema in ing  
t ime on all the  p rocesso r s ,  the weight  o f  ver t ices  in Y in the  g raph  G' is less than  or  equa l  
to cz - t .  Us ing  the same a r g u m e n t  as in L e m m a  3.4 ,  it fol lows that  the re  is a c o m p l e t e  
match  of  X'  in to  Y H e n c e  1 ts not  a m a x i m u m  match ing  in G' H e n c e  t h e r e  ts an 

augmen t ing  pa th  relat ive to 1 b e g m m n g  at Jr. [] 
LEMMA 3.6 There is always an augmenting path relative to I beginning at M~ tn line 

23. 
PROOF. At  any t ime t the b ipar t i te  g raph  f o r m e d  by ver t ices  X = {Jl, " • " , J~+m} and 

Y' = {M, ] M~ is in the ma tch ing  1} {Mj} have the fol lowing p rope r t i e s :  (a) the weight  o f  
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vertices in Y' is ct - t, and (b) the weight of vertices in X is less than or equal to a - t (as 
no vertex can have a slack time less than 0, see lines 11-13). Hence the conditions of the 
proof of Lemma 3.4 hold and there is a complete matching of Y' into X. By Proposition 
3.1 there must be an augmenting path relative to I beginning at the free vertex M e. 

Note that the complete matching obtained at the end of the while loop 21-24 must 
contain all the critical jobs, as the initial matching ! contained all of them and augment- 
ing paths only add on vertices to an existing matching. 

Since all processors are kept busy at all times and the total amount  of processing as ma ,  
the finish time of the schedule generated by Algorithm P is a.  This schedule is therefore 
optimal. [] 

All that remains now is to analyze the complexity of Algorithm P. In carrying out this 
analysis we shall need a bound on the number of jobs that can become critical. Lemma 
3.7 provides this bound, and Lemma 3.8 analyzes the algorithm 

LEMMA 3.7. The number o f  critical lobs at any time is less than or equal to m. 
PROOF. Since all processors are kept busy at all times, at follows that at any time t the 

total amount of processing remaining as m(ct - t). If at time t there are more than m 
critical jobs, then the processing remaining for all these critical jobs is greater than or 
equal to (m + 1)(a - t) > m (ct - t), which is a contradiction. Since once a job becomes 
critical, at stays critical until the end of the schedule, the total number of jobs that can 
become critical is also less than or equal to m. 

LEMMA 3.8. The asymptottc ttme complextty o f  Algor:thm P is O(r(min{r, m ~} + m 
log n)), where n is the number o f  lobs, m the number o f  processors, and r the number o f  
nonzero tasks, r is assumed to be greater than or equal to max{n, m}. 

PROOF. Lines 1-7 take time O(r) if the task tames are maintained using hnked lasts 
(see 17]). Line 8 can be carried out in time O(rm 5) (see [6]). If the slack times are set up 
as a balanced search tree or heap [7], then each execution of line 10 takes time O(m log 
n). At each iteration of the "loop forever" loop (lines 9-25),  either a critical job as 
created or a task is completed (sce lines 10-13). Hence by Lemma 3.7, the maximum 
number of iterations of this loop is r + m = O(r). The total contribution of line 10 is 
therefore O(rm log n). The contrabution from lines 11-12 and 14 is O(rm). In line 13 the 
change in S, requires deletion and insertion of m values from the balanced search tree. 
This requires a time of O(m log n). The total contribution of line 13 is therefore O(rm log 
n). Line 15 has the same contribution. The total computing time for Algorithm P ~s 
therefore O(rm log n + total time from lines 16-24). Over the entire algorithm the loop 
of lines 16-19 as iterated at most m times. By Proposition 3.2 an augmenting path can be 
found in time O(min{r, m2}). The total time for this loop is therefore O{min{r, m2}m + m 
log n}. The maximum number  of augmenting paths needed in the loop of lines 21-24 is 
m + r (as one path is needed each time a critical job is found). The computing time of 
Algorithm P then becomes O(min{r, m z} (m + r) + rm log n) = O(r(min{r, m z} + m log 
n)). [] 

4. Complextty o f  Nonpreemptive Scheduling for m > 2 

Having presented a very efficient algorithm to obtain an O F F  schedule for m = 2 
(preemptive and nonpreemptive) and a reasonably efficient algorithm to obtain an OFT 
preemptive schedule for all m > 2, the next question that arises is: Is there a similarly 
efficient algorithm for the case of nonpreemptive schedules when m > 2? We answer this 
question by showing that this problem is NP-complete [8] even when we restrict 
ourselves to the case when the job set consists of only one job with three nonzero task 
times while all other jobs have only one nonzero task time. This, then, implies that 
obtaining a polynomial time algorithm for m > 2 is as difficult as doing the same for all 
the other NP-complete problems. An even stronger result can be obtained when m > 3. 
Since NP-complete problems are normally stated as language recognition problems, we 
restate the O F F  problem as such a problem. 
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L O F T .  Given an open shop with m > 2 processors, a deadline ¢, and a set of n j o b s  

with processing times L,,, 1 -< ] _< m,  1 -< i -< n ,  is there a nonpreemptive schedule with 
finish time less than or equal to r ~ 

In proving LOFT NP-complete, we shall make use of the following NP-complete 
problem [8]. 

P A R T I T I O N .  A multiset S = {al, • • • , a,,} is said to have a partition iff there exists a 
subset, u,  of the indices 1 - n such that ~,~u a, = (~',L~ a,)/2.  The partition problem is 
that of determining for an arbitrary multiset S whether it has a partition. The a, may be 
assumed integer. 

THEOREM 4.1. L O F T ,  for  any f ixed m -> 3, ts NP-comple te .  
PROOf. It is easy to show that L O F t ,  for any fixed m --> 3, can be recognized in 

nondeterministic polynomial time by a Turing machine. The Turing machine just guesses 
the optimal permutation on each of the processors and verifies that the finish time is less 
than or equal to ~-. The remainder of the proof is presented in Lemma 4 1. It is sufficient 
to prove this part for the case m = 3. 

LEMMA 4.1. I f  L O F T  w t t h m  = 3 ts po lynomia l  sovable, then so is P A R T I T I O N .  
PROOF. From the partition problem S = {a,, az, • • • , a,} construct the following open 

shop problem, OS, with 3n + 1 jobs, m = 3 machines, and all jobs with one nonzero task 
except for one with three tasks: 

t l ,  z = a,, t2 a = t3., = 0, for 1 --< t <-- n, 
t2., = a,, tl,, = t3,, = 0, f o r n  + l--<t ~< 2n, 
t 3 , ,=a , ,  h , ,= t2 , ,  = 0, fo r2n  + 1 <--t--  3n, 
t~,~.+, = tz,s.+l = t~.s.+lm = T / 2 ,  

where T = ~ ]  a, and z = 3T/2 .  
We now show that the above open shop problem has a schedule with finish time less 

than or equal to 3 T / 2  iff S has a partition. 
(a) If S has a partition u then there is a schedule with finish time 3T /2 .  One such 

schedule is shown in Figure 4. 
(b) If S has no partition, then all schedules for OS must have a finish time greater than 

3T/2 .  
This is shown by contradiction. Assume that there is a schedule for OS with finish time 

less than or equal to 3 T / 2  Since tL3.+ ~ = t2.3.+, = t3,z.+~ = T / 2 ,  it follows that in this 
schedule job 3n + 1 must be being processed at all times. Since the schedule is 
nonpreemptive,  there must be a processor I such that L.3.+~ begins at time T / 2  and 
finishes at T. For this processor there is a set of job~ with t~,,, ( j  - 1)n + 1 <- i <- in  and 
~t~-..+~ t,,, = T. Since S has no partition, it follows that all the T / 2  units of time preced- 
ing tj,3.+, on processor I cannot be used. Hence more than T / 2  are needed after time T 
to complete the remaining tasks. Hence the finish time must be greater than 3T /2 .  
This contradicts our assumption regarding the schedule. There is therefore no 
schedule with finish time less than or equal to ¢ = 3 T / 2  when S has no partition. [] 

Note that the proof of Lemma 4.1 actually shows that a very simple subcase of LOFT,  

P1 

P2 

P3 

T/2 T 3T/Z 

{tl,ilieu} t l ,  3n+l 1 {tl,ili~u} ' ] 

{t2,mln, + I < • < 2n} t2,3n+l i 

{t3,il2n + 1 < i < 3n} i t3,3n+l 

T/2 

{tl,i[ 
tl,n+l iEi~n} tl, n+2 

i 
{tZ,ml~eu} 1{=2,±l ±tu} 

t4,n+2 

t3,n+l 

T/2 + ~ TT+ e 

Fm 4. Opt imal  schedule when S has a par tmon FIG 5 Optima! schedule when S has a partition 
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i.e.  when only one  job  has three  nonze ro  tasks and the remain ing  have  at mos t  one  
nonzero  task, is NP-comple t e .  When  m > 3 the p roo f  of  L e m m a  4.1 can be s t r eng thened  
to the case when each job  has at most  two tasks. 

LEMMA 4.2.  I f  L O F T  ts po lynomial  solvable for  m > 3 (using only two tasks per job) ,  
then so is P A R T I T I O N  

PROOF From the par t i t ion p rob lem S = {al, a2, " ' "  , a,,} the fol lowing open  shop 
p rob lem,  OS ,  with n + 2 jobs ,  m = 4 machines ,  and all jobs  having at mos t  two nonzero  
tasks is const ructed .  

t~., = e /n ,  t2., = a,, t3,, = t4., = 0 for 1 -< i -< n,  
tl.,+j = T /2 ,  t e . , ,  = t4.n+l = 0, t3,n+l = T / 2  + ¢, 
t~,,~+~ = T /2 ,  t2.,,+2 = t3.,,+2 = 0, t4,,,+z = T / 2  + e, 

w h e r e T =  ~ ' a , , r =  T + • , a n d 0 < • <  1. 
We show that  the above open  shop p rob lem has a schedule  with fimsh t ime < T + • iff 

S has a par t i t ion.  
(a) If S has a par t i t ion u,  then there  is a schedule  with finish t ime T + e. F igure  5 

presents  such a schedule .  
(b) If S has no par t i t ion,  then all schedules  for  OS  must  have a finish t ime grea te r  than 

T + • .  
This  is shown by contradic t ion.  Assume  that  there  is a schedule  for  OS  with finish t ime 

less than or  equal  to T + • .  Since jobs  n + 1 -nd  n + 2 need  a total  t ime T + • they must  
be scheduled all the t ime,  and this will leave processor  1 free in the t ime interval  [T/2 ,  
T / 2  + e]. This is just enough  t ime to process  the n tasks t~.,, 1 -< t -< n. This means  that  
all tasks t2, that  start  their  processing before  t ime T / 2  must  t e rmina te  before  t ime T / 2  + 
• , as otherwise  for some job  j ,  t~.j and t2,j would  be processed at the same t ime.  Le t  u be 
the set of jobs  that  comple te  processing on processor  2 before  t ime T / 2  + •. T h e n  
~,~ut2,, -< T / 2  < T / 2  + • as the a, are integer .  This implies that  tasks with total  length 
grea te r  than or  equal  to T / 2  is left for  processing after  t ime T/2.  If  the schedule  is to fin- 
ish at t ime T + • it must  be the case that  ~,~ut2,, = T/2 ,  i .e.  S has a part iUon.  This  
contradicts  the assumpt ion.  Hence  when  S has no par t i t ion there  is no schedule  
with finish t ime less than or  equa l  to ~ = T + • .  

L e m m a  4.2 leaves open  the status of  th ree -processor  scheduhng with two tasks per  
job. 

Appendix  

PROPOSITION 3.2.  I f  G = ({XUY}, E) is a bipartite graph, I E } = e, I X I = n,  and 
I Y ] = m ,  n >- m ,  then an augmentmg path relative to I starting at some free vertex i can be 
found  m time O(mtn{m 2, e}). 

PROOf. We prove  this by exhibi t ing an augment ing  path  a lgor i thm with a comput ing  
t ime of  O(min{m 2, e}). This a lgor i thm assumes that  the bipar t i te  graph G is r ep resen ted  
by its ad jaency hsts. (It  is also assumed that  the ver tex  set is indexed  1 th rough  n + m 
with X = {vt, v2, "" • , v,,} and Y = {v,,+~, • . .  , vn+m}). T h r e e  one -d imens iona l  arrays 
FREE(1  :n + m),  M A R K ( I : n  + m),  and M A T C H ( I : n  + m) are  made  use of.  A t  entry to 
the augment ing  path a lgor i thm we have  FREE(i)  = M A R K ( t )  = O, 1 -< t _< n + m .  The  
initial values of  M A T C H ( i ) ,  1 -< t _< n + m ,  are not  impor tan t .  In addi t ion,  a F I F O  
queue ,  Q U E U E ,  is made  use of. The  s ta tement  Q U E U E  ~ p adds p to the end of  the 
queue  while p ~ Q U E U E  dele tes  an e l emen t  f rom the front  of  the queue  and assigns it 
to p .  A lgo r i t hm A U G  works  by genera t ing  an augment ing  t ree  wlth the free ver tex  i as 
root  and at level 1. The  t ree is gene ra t ed  level  by level .  Edges  connect ing  levels q and 
q + 1 for q odd are edges not  In I .  The  remain ing  edges are  in I .  Thus ,  the path  f rom the 
root  to any node  is a valid initial s egment  for an augment ing  path.  Lines  7 - 2 2  genera te  
the next  level  when  the next  level is even .  Lines 24 -28  do this for the case when  the next  
level is odd.  We use the same strategy as in [6] and look for a shortes t  augment ing  path.  
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Hence if a node has already been added to the tree it is not reconsidered at a later time. 
Once a node is included in the tree its M A R K  bit is set to 1. Lines 14-18 reset all M A R K  
and FREE bits changed by the algorithm. Hence M A R K  and FREE have to be initialized 
to zero only for the first use of this algorithm. 

Let us analyze the computing time of  this algorithm. Since m = I Y I -< I X I, the 
number of  edges in I is at most m.  The time for hnes 1-4 is therefore O(m). Each 
iteration of  the loop of lines 10-21 takes O(1) amount of  time except when a free vertex 
is reached. At this time O(m) ume is spent in lines 12-17. This happens at most once for 
the whole algorithm. For any v e r t e x / t h e  maximum number of iterations of thts loop is 
m. This ts so as at most m of  the vertices adjacent tOl may be in the matching I and hence 
not free. Letr ,  be the number of nodes on the ith odd level of the augmenting tree. Then 
the overall contribution of  lines 7-22 is at most O(~mr ,  + m) = O(m2). ~r,  -< m as 
there are at most m vertices in I and no vertex gets into the tree more than once. Since 
each edge in G is examined at most once, another bound is O(e). Hence the time for lines 
7-22 is O(min{m 2, e}). The number of  nodes on an odd level is equal to the number on 
the preceding even level as the connecting edges are taken from I .  The total contribution 
from lines 24-28 is therefore O(~ri)  = O(m). From this we conclude that an augmenting 
path (if it exists) may be found in time O(mm{m 2, e}) when e >- m. [] 

The loops of lines 1-4 and 13-16 may be speeded slightly by realizmg that it is 
sufficient to initialize FREE(j)  to 1 only if j t s  in I and ! will be on an even level. 
Similarly, MATCH(j )  need be initialized only for those j in I that can be on odd 
levels of the augmenting tree. 

Line Algorithm AUG(t,/) 

1 for each edge (l, k) m I do 
2 FREE(I) ~-- FREE(k) ~ 1 //not free// 
3 MATCH( i )~ - -k ;MATCH(k) . . - j  
4 end 
5 QUEUE ~ 'i0~'//oo Js end of level marker//, MATCH(:) ~ 0 
6 loop 
7 loop 
8 j ~ Q U E U E / / t a k e  off a vertex from front of queue// 
9 i f j  = oo then exi t / /end of level// 

10 for each vertex p adjacent t o j  do 
11 If FREE(p) = 0 then [//augmenting path found// 
12 trace path from root to p 

this ts the augmenting path 
//reset FREE and MARK//  

13 for each edge (l, k) m I do 
14 FREE(/) ~ FREE(k) ~- 0 
15 MARK(/ )  ~ MARK(k)  ~ 0 
16 end 
17 return] 
18 if MATCH(j) -~ p and MARK(p) = 0 then [//p not m tree// 
19 QUEUE ~ p//add p to tree// 
20 MARK(p) ~- j] 
21 end 
22 forever 
23 QUEUE ~ ~ / / e n d  of level// 

//next level edges must be from 1// 
24 loop 
25 j ~ QUEUE 
26 i f j  = ~ then exit 
27 QUEUE ~ MA TCH(l) 
28 forever 
29 if QUEUE empty then [stop/ /no augmenting path//] 
30 QUEUE ~ oo//end of level// 
31 forever 
32 end AUG 
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