
Open Shop Scheduling to Minimize Finish Time

TEOFILO GONZALEZ AND SARTAJ SAHNI

University of Minnesota, Mmneapohs, Mmnesota

ABSTRACT A linear time algorithm to obtain a minimum finish time schedule for the two-processor open shop
together with a polynomial time algorithm to obtain a minimum finish time preemptive schedule for open shops
with more than two processors are obtained It Is also shown that the problem of obtaining mimmum fimsh time
nonpreemptlve schedules when the open shop has more than two processors is NP-complete.

KEY WORDS AND PHRASES. open shop, preemptive and nonpreemptlve schedules, finish time, polynomial
complexity, NP-complete

CR CATEGORIES 4 32, 5 39

1. Introduction

A shop cons is t s of m -> 1 p rocessors (or m a c h m e s) . E a c h of these p rocesso r s p e r f o r m s a
d i f fe ren t task. T h e r e a re n -> 1 jobs . E a c h j ob i has m tasks . T h e p rocess ing t ime for task
j of j ob i is t~., T a s k j of j o b i is to be p r o c e s s e d on p r o c e s s o r j , 1 -< j -< m. A schedule for
a processor j is a s e q u e n c e of tup les (l,, st,, .fi,), 1 -< i -< r . T h e It a re j o b indexes , st, is

the s tar t t ime of j o b 1,, and ft, is tts f inish t ime . J o b 1, ts p roces sed c o n t i n u o u s l y o n

p roces so r j f r om s~, to .fir T h e tup les m the schedu le are o r d e r e d such t h a t sz~ < ~t -<

st,+1, 1 -< i < r. T h e r e m a y be m o r e t h a n one tup le pe r j o b a n d it is a s s u m e d t h a t l, 4:

1,+1, 1 _< i < r. I t is also r e q u i r e d t h a t e a c h j o b i s p e n d exact ly b., t o t a l t ime o n p r o c e s s o r j .
A schedule for an m-shop is a set of m p r o c e s s o r schedu les , o n e for e ach p r o c e s s o r in the
shop . In add i t i on these m p roces so r s chedu le s mus t be such t h a t no j o b is to b e p r o c e s s e d
s imu l t aneous ly on two or m o r e p rocesso r s , m s h o p s chedu le will be a b b r e v i a t e d to
s chedu le m fu tu re r e f e r ences . T h e finish time of a s chedu le ts the la tes t c o m p l e t i o n t ime
of the i nd iwdua l p r o c e s s o r s chedu les and r e p r e s e n t s the t ime at wh ich all tasks h a v e b e e n
c o m p l e t e d . A n optimal finish time (O F T) schedu le is o n e which has the leas t f in ish t ime
a m o n g all s chedu les . A nonpreemptive schedu le is o n e in which the ind iv idua l p r o c e s s o r
s chedu le has at mos t o n e tup le (i, s , , f) for e ach j o b i to be s chedu led . F o r any p r o c e s s o r j
this a l lows for t,., = 0 and also r equ i r e s t ha t f , - s, = t~,,. A s chedu le in wh ich n o
res t r i c t ion is p l aced on the n u m b e r of tup les pe r j ob pe r p r o c e s s o r is preemptive. N o t e
t ha t all n o n p r e e m p t i v e schedu les a re also p r e e m p t i v e , whi le the r eve r se is n o t t r ue .

O p e n s h o p s chedu le s d i f fer f rom flow s h o p a n d j o b s h o p s chedu le s [2, 3] in t h a t in an
o p e n shop no re s t r i c t ions are p laced o n the o r d e r in which the tasks for any j ob a re to be
p rocessed . It is easy to conce ive of s i tua t ions w h e r e the tasks m a k i n g u p a j o b can be
p e r f o r m e d m any o r d e r , e v e n t h o u g h it is no t poss ib le to ca r ry o u t m o r e t h a n o n e task a t
any p a r n c u l a r t ime . Fo r e x a m p l e , c o n s i d e r a large a u t o m o t w e ga rage wi th spec ia l ized

Copyright © 1976, Assooatlon for Computing Machinery, lnc General permission to repubhsh, but not for
profit, all or part of this material is granted provided that ACM's copyng_ht notice is given and that reference is
made to the publication, to its date of issue, and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machinery.
This research was supported in part by the National Science Foundation under Grant DCR 74-10081 and by
Umverslty of Minnesota Graduate School Research Grant 468-0100-4909-06
Authors' present addresses" T Gonzalez, Computer Science Department, The Pennsylvania State Umverslty,
Umvermty Park, PA 16802, S. Sahm, Department of Computer Science, 114 Lind Hall, University of Minnesota,
Mmneapohs, MN 55455

Journal of the Assooauon for Computing Machinery, Vol 23, No 4, October 1976, pp 665-679

666 T. GONZALEZ AND S. SAHNI

shops. A car may require the following work: replace exhaust pipes and muffler, align
wheels, and tune up. These three tasks may be carried out in any order . However , since
the exhaust system, al ignment, and tune-up shops are in different buildings, it is not
possible to perform two tasks simultaneously. In this part icular example preemption may
not be desirable. Open shop scheduling is also interesting from the theoretical stand-
point. I t is well known that determining opt imal preemptive and nonpreempt ive sched-
ules for the flow shop and job shop is NP-complete . Removing the ordering constraint
from these two shop problems yields the seemingly simpler open shop. As our results will
show, removing the order ing constraints allows us to efficiently solve the preemptive
scheduling problem but not the nonpreempt lve one.

In this paper we shall investigate O F T schedules for the open shop. It is clear that
when m = 1, O F T schedules can be trivially obtained. We shall therefore restrict
ourselves to the case m > 1. First, in Section 2 we show that preempt ive and nonpreemp-
tive O F T schedules can be obtained in l inear time when in = 2. This contrasts with
Johnson 's O(n log n) algori thm [3, p. 89] for the 2-processor flow shop. When m > 2,
O F T preemptive schedules can still be obta ined in polynomial time (Section 3).

For nonpreempt ive scheduling, however, the problem of finding O F T schedules when
m > 2 is NP-complete . These results may be compared to slmdar results obta ined for
flow shop and job shop O F T scheduling. In [4, 5] it is shown that the problem of finding
nonpreempt ive O F T schedules for the flow shop when m > 2 and for the job shop when
rn > 1 are NP-complete . In [5] it is also shown that the problem of finding preempt ive
O F T schedules for the 3-processor flow shop and 2-processor job shop are NP-complete .
Thus, as far as the complexity of finish time scheduling is concerned, open shops are
easier to schedule when a preemptive schedule is desired.

2. OFT Scheduling for m = 2

In this section a l inear time algorithm to obtam nonpreempt ive and preemptive OFT
schedules for the case of two processors is presented. For notat ional simplicity we denote
tl,,, the task time on processor 1, by a, and tz,, by b,, 1 -< i -< n. Informally the algori thm
proceeds by dividing the jobs into two groups A and B. The jobs in A have a, ~ b,, while
those in B have as < b,. The schedule is built from the "midd le , " with jobs from A added
on at the right and those from B at the left. The schedule from the jobs in A is such that
there is no idle t ime on processor 1 (except at the end) , and for each job m A it is possible
to start its execution on processor 2 immediate ly following its complet ion on processor 1.
The part of the schedule made up with jobs in B is such that the only idle time on
processor 2 is at the beginning. In addit ion the processing of a job on processor 1 can be
started such that its processing on processor 2 can be carried out immediately after
complet ion on processor 1. Finally some finishing touches involving only the first and last
jobs in the schedule are made. This guarantees an opt imal schedule.

Line

1 Algorithm OPEN_.~HOP
/ / this algorithm finds a minimum fimsh time nonpreempttve schedule for the open shop problem

with task times (at; b,), 1 _< : ..~ n / /
//initialize variables: a0, b0 represent a dummy Job

T~ = sum of task times assigned to processor :, 1 .~ : _< 2
l = index of leftmost job m schedule
r = index of nghtmost .lob m schedule
S, = sequence for processor t, 1 <- t _< 2//

2 T~-T2~--ao,~-bo~--l~---r~-O, S~--null
//schedule the n .lobs

3 for I ~ - 1 to n d o
4 Ti~--Ti+al, T2~---Tz+b~
5 if at ~ b, t h e n [i f at _> b~ t h e n

[/ /put r on right, II means string concatenahon//

Open Shop Scheduling to Minimize Finish Time 667

6 s , - s lit, r , - q
else

[~ put t on right
7 s ~ s IL ,]]
8 else [if bl -> at then

[~ put I on left
9 S~--I IIS; l~--t]

else
[/ / p u t z on l e f t / /

10 S ~-- i II SI]
11 end

finishing touch
12 if Ti - al < T2 -- br then [Sl ~ S I[r [[1; S2 ~ I l[S 1[r]
J3 else IS, , - I II s II r; $2 ~ r Ill I~S]
14 delete all occurrences of job 0 from $1 and $2

an optimal schedule is obtained by processing jobs on processor i in the order specified by S . I -~ i -< 2.
The exact schedule may be determined using Theorem 2.1

15 return
16 end OPEN__SHOP

Example 2.1. Consider the open shop problem with six jobs having task times as
below:

Processor
Job

1 2 3 4 5 6

1 10 7 3 1 12 6
2 6 9 8 2 7 6

Initially I = r = 0 and S = ~ . The following table gives the values of S, r, I at the end of
each iteration of the for loop 3-12.

End of
S r 1

iteration

1 0 1 0
2 00 1 2
3 200 1 3
4 4200 1 3
5 42001 5 3
6 420016 5 3

We have S = 420016, r = 5, 1 = 3, T~ = 39, and T2 = 38. Since T~ - a3 > T2 - b s , w e
get S~ = 34200165 and $2 = 53420016. Deleting all occurrences of the O's, we get $1 =
342165 and $2 = 534216. Processing by these permutations gives the Gant t chart:

processor 1

processor 2

3 4 1l 21 27 39
. ,

a a a4 a2 a l a e a~

I
b5 ba b4 i bz b~ b0

7 15 17 26 32 38

The following two lemmas will be useful in proving the correctness of algorithm
OPEN__SHOP.

LEMMA 2.1. Let the set o f jobs being scheduled be such that a, -> b,, I -< i -< n, and let
D be the permutation obtained after deleting the O's from S in line 14 of algorithm

668 T. G O N Z A L E Z AND S. SAHNI

O P E N _ _ S H O P and concatenating r to the right. The jobs 1 - n may be scheduled in the
order such that:

(i) there is no idle time on processor l except following the completion o f the last task
on this processor;

(ii) for every job i, its processor 1 task is completed before the start o f its processor 2
task;

(iii) for the last job r, the difference ~ between the completion time o f task 1 and the
start time o f task 2 is zero.

PROOF. The proof is by mduction on n. The lemma is clearly true for n = 1. Assume
that the lemma is true for l ~ n < k. We shall show that it is also true for n = k. Let the k
jobs be J~, • • • , Jk and let r' be the value of r at the beginning of the Iteration of the for
loop of hnes 3-11 when i = n. From the algorithm it is clear that the permutat ion D'
obtained at line 14 when the k - 1 jobs Jl , " ' " , Jk-1 are to be scheduled is of the form
D"r'. Moreover D = D"r'k or D = D"kr'. From the induction hypothesis it follows that
the jobs J~, • • • , Jk-i can be scheduled according to the permutat ion D"r' so as to satisfy
(0-(i i i) of the lemma, i.e. these k - 1 jobs may be scheduled as in Ftgure 1. Let i be the
job immediately preceding r ' m D ' . In case k = 2, let i = 0 with a0 = b0 = 0.

I f A k >-- br, then D = D ' k and it is clear that the job k can be added on to the schedule
of Figure 1, at the right end, so that (i)-(iii) of the lemma hold.

If Ak < br, then D = D"kr'. Now lob r' is moved a~ units to the right so that ak can be
accommodated between i and r ' , satisfying (i). Let f l be the finish time of a, andfz >-fl be
the finish time of b~. The finish time ofak is then fl + ak <f~ + at, as a~, >- b~,. By (lU) the
start time ofbr, has to bef~ + ak + a~,. Also we know, from the induction hypothesis, that

f~ + a~, - fz = A' >-- 0, 1.e.fl + at, ->f2. The earliest that bk may be scheduled is max{f~ +
ak, f2} < f~ + at,. This imphes that there is enough time between the start time of b~, and
the earhest start time of b~ to complete the processing of bk []

LEMMA 2.2. Let the set o f jobs being scheduled be such that a, < b,, 1 -< i -< n, and let
C be the permutation obtained after deleting the O's f rom S in line 12 o f algorithm
OPEN_._SHOP and concatenating I to the left. The jobs may be scheduled in the order C
such that:

(i) there is no idle time on processor 2 except at the beginning;
(ii) for every task i, its processor 1 task is completed before the start o f its processor 2

task;
(iii) for the first job l, the difference A between the completion time o f task 1 and the

start time o f task 2 is zero.
PROOF. The proof is simtlar to that of Lemma 2.1. []
LEMMA 2.3. Let (a, b~) be the processing times for job i on processors 1 and 2

respectively, 1 -< i -< n. Let]* be the finish time o f an optimal finish time preemptive
schedule. Then, f * _> max{max,{a~ + b~}, T~, Tz} where T1 = ~ ~ a~ and T2 = ~ ~ b,.

PROOF. Obvtous. []
We are now ready to prove the correctness of Algorithm OPEN__SHOP.
THEOREM 2.1. Algorithm O P E N _ _ S H O P generates optimal finish ttme schedules.

f l

7 / / / - -
//A

~e b -~
l

-B. A

f2
FIG 1 Scheduhng by D ' = D"r' Shaded region indicate task

processing Last job is r' A' >_ 0

Open Shop Scheduling to Minimize Finish Time 669

PROOf. Let J1,' " • • , Jn be the set of jobs being scheduled. Let A be the subset with
a, -> b, and let B be the remaining jobs. It is easy to verify that the theorem is true when
either A or B is empty. So assume A and B to be nonempty sets. Let S be as defined by
the algorithm after completing the loop of lines 5-11. Let E be the permutation obtained
after deleting the O's from l II s II r. Then E = CD where C consists solely of jobs in B,
and D consists solely of jobs in A. From Lemmas 2.1 and 2.2 it follows that the jobs m A
and B may be scheduled in the orders D and C to obtain schedules as m Figure 2. In the
schedules of Figure 2 the processor 1 tasks for C and the processor 2 tasks for D have to
be scheduled such that all the idle time appears either at the end or at the beginning. It is
easy to see that this can be done. For example, the schedule of Figure 2(b) is simply
obtained from Figure 1 by shifting processor 2 tasks to the right to eliminate interior idle
time on P2.

Let T1 = ~ ~ a, and T~ = ~ ~ b,. The schedule for the entire set of jobs is obtained by
merging the two schedules of Figure 2 together so that either (a) the blocks on P1 meet
f i r s t - th i s happens when (a2-c~1) -</31; or (b) the blocks on P2 meet f i r s t - t h i s happens
when (a 2 - a l) > ill"

Let us consider these two cases separately.
Case (a) c~2 - c~ <- 131. This happens when T1 - at -> T2 - br. In this case line 13 of

the algorithm results in the tasks on P1 being processed m the order CD while those on
P2 are processed in the order rCD', where D' is D with r deleted. The section c~0-a2 of
Figure 2(a) is now shifted right untd it meets with fll-fl2 of Figure 2(b). Task br is moved
to the leftmost point. The finish time of the schedule obtained becomes max{aT + b~,T~,
T2}, which by Lemma 2.3 is optimal.

Case (b) az - C~l > fl~. This happens when T~ - oft < T2 - br. In this case line 12 of
the algorithm results in the tasks on P1 being processed m the order C'DI, where C' is C
with I deleted. Tasks on P2 are processed in the order CD. The schedule is obtained by
processing tasks on P2 with no idle time starting at time 0. Tasks on P1 are processed
with no idle time (except at the end) in the order C'D. Task az is started as early as
possible following C' D. The finish time is seen to be max{al + bz, Ti, T2}, which by
Lemma 2.3 is optimal.

This completes the proof. []
COROLLARY 2.1. Algorithm O PEN__SHO P generates optimal preemptive schedules for

m = 2 .
PROOF. By Lemma 2.3 the finish time is the same for both preemptwe and non-

preemptive optimal schedules when m = 2. []
LEmMA 2.4. The ame complexity of algorithm OPEN__SHOP is O(n).
PROOF. The for loop of lines 3-11 is iterated n times. Each iteration takes a fixed

amount of time. The remainder of the algorithm takes a constant amount of Ume Hence
the complexity is O(n). []

3 Preemptive OFT Scheduhng m > 2

In this section we present two algorithms for optimal preemptive scheduling. The first of
these is intuitwely simple and so only an informal description of it is given. This
algorithm makes use of basic concepts from the theory of maximal matchmgs in bipartite

] --~ ~--idle
I i I t~

.~ I-. F"////A 1[on P1

""
t j i I

I I I
0 ~0 al ct2

(a)

Fie 2

I
I

,
idle
t ime] I
on P2---~ ~ I

0 81 132

(b)
Partial schedules obtained for sets B and A, respectwely.

6 7 0 T. G O N Z A L E Z AND S. SAHNI

graphs [6] and has a t ime complexity of O(r 2) where r is the number of nonzero tasks.
The second algori thm is a ref inement over the first and has a slightly bet ter computing
time, i.e. O(r (min{r, m 2} + m log n)) where m is the number of processors, n the number
of jobs, and r the number of nonzero tasks. It is assumed that r -> n and r -> m. Hence
when r > m z and m > log n, the computing time of the second algorithm becomes
O(rm2), which is better than O(r2). However , when m > r / log n the first algorithm has a
better asymptotic time than the second (this happens, for instance, when each job has
at most k nonzero tasks and m > kn/ log n).

Before describing these algorithms, we review some terminology and fundamental
results concerning bipart i te graphs. The following definitions and Proposit ion 3.1 are
reproduced from [6].

Definition 3.1. Let G = (X t_J Y, E) be a bipart i te graph with vertex set X t3 Y and
edge set E. (If (i , /) is an edge in E then either i E X and j E Y or i E Y a n d j E X.) A set I
C_ E is a matching if no vertex v E X LJ Y is incident with more than one edge in I. A
matching of maximum cardinali ty is called a maximum matching. A matching is called a
complete matching of X into Y if the cardinali ty (size) of I equals the number of vertices
in X.

Defimtion 3.2. Let I be a matching. A vertex v is free relative to I if it is incident
with no edge in 1 A path (without repeated vertices) p = (vl, v2)(v2, v3) • • • (V2k-1, V2k) is
called an augmenting path if its endpoints vl and v2k are both free and its edges are
alternately in E - I and in I .

PROPOSmON 3.1. I is a maximum matching i f f there is no augmenting path relative to
I.

When a matching ! is augmented by an augmenting path P the resulting matching l ' is
(1 0 P) - (! fq P). The cardinahty of 1' is 1 + cardinali ty (/). Note that the matching 1'
still matches all vertices that were in the matching I (however, two new vertices vl and v2k
are added on).

PROPOSITION 3 2 l f G = ({Xt_JY},E) is a bipartite graph, I E I = e, I X I = n, and I Y t
= m, n ~ m , then an augmenting path relative to I starting at some free vertex i can be
found in time O(min{m2,e}).

PROOV. See Appendix .
Given a set o f n jobs with task times t,.,, 1 -< t -< n and 1 -< j -< m, for an m-processor

open shop, we define the following quantit ies:

T, = ~ t,,, = total t ime needed on processor j , 1 -< j _< m,
l_<~_<n

L , = ~ t~.,= length of j o b t , 1 < - - i -<n , and
l_<~_<m

r = number of nonzero tasks.

F rom a simple extension of Lemma 2.3 to m processors, we know that every preemptive
schedule must have a finish time that is at least

cz = max,.s{T,, L,}. (3.1)

We will in fact show that the opt imal preemptive schedule always has a finish time of a .
In the first algori thm starting from the given open shop problem we construct a

bipartite graph with 2(n + m) vertices, n + m of these are labeled Jt, . . . , Jn+m to
represent the n jobs together with m fictitious jobs that we shall introduce. The
remaining vertices are labeled M1, • • • , Mn+m to represent the m processors together
with n fictitious processors. The bipart i te graph G will contain undirected weighted edges
between J and M type vertices. The weight w(J,, Me) of an edge (J , M,) will represent the
amount of processing time job i requires on p rocessor / . The weight of a node p(J,) or
p(M~) is the sum of the weights of the edges incident to this node. To begin with, the
following edges with nonzero weight are included in G:

E1 = {(J, Me) lt~,~ ~ 0, 1 - < i - - < n , 1 - < i - < m } . (3.2)

O p e n S h o p S c h e d u l i n g to M i m m i z e F i m s h T i m e 671

For all edges (J,, M~) E El we de f ine w(J , , Me) = G,,. N o w a set o f edges E2 connec t i ng

J1, • • • , J . to M,.+~, • • • , M,.+n are a d d e d in such a way t ha tp (J ,) = a , 1 -< i -< n .

E2 = {(J,, m,,,+,)] a - L, ¢ 0, 1 --< i <-- n}. (3.3)

For all edges (J,, M,.+,) E E2 we def ine w(J, , Mm+,) = a - L,. A set o f edges E3 is
included to connect M i , • • • , Mm to J .+l , • • • , J.+m m such a way that p(Ms) = a , 1 <- j

- - m .

E3 = {(J,,+. M,)I o~ - Ts • 0, 1 -< 1 < m}. (3.4)

For all edges (J,,+, Ms) @ E3 we def ine w (J , , , Ms) = a - Ts. Finally edges connec t ing

J,,+~, • • • , J,,+,, to M,,,+~, • • • , M,,+,, are a d d e d to make the weight o f each of these
veruces a . This set o f edges E4 is o f size at mos t n + m as each (J,, M e) edge in t roduced

brings the weight of e i ther J, o r Me to a . O n e may easily verify that E4 can be so

cons t ruc ted .
The bipartite graph G (X , Y. E) is then ({J~, - - . , J,+m}, {Mj, . . . , Mn+m},

Eat_JEzLJE3UE,). X is the set of vertices represen t ing jobs , while Y is the set represen t ing

processors .

We il lustrate thin cons t ruc t ion ~ t h an example .

E x a m p l e 3.1 Le t m = 3 and n = 4. The task t imes are de f ined by the matr ix:

lob ~ 1 2 3 4 T

processor 1 [10 20 0 ~] 30
2 10 0 20 30
3 10 0 0 20 30
L 30 20 20 20

T h e r e f o r e a = 30 The bipar t i te g raph ob ta ined using the above cons t ruc t ion is shown in
F i g u r e 3 The edge s e t E 3 i s e m p t y a s T ~ = p (M ~) = ~, l _< j -< m . []

Having cons t ruc ted the b ipa ru te g raph G f rom the o p e n shop p r o b l e m as desc r ibed

ea rhe r , we obta in a comple t e match ing of X = {Jl, • • • , J,,+,,,} into Y = {M~, • • • M,+m}.
Let this match ing be e~, e2, • • • , e,+,,,. Let/.L = min, +,,, {w(e,)}. The iobs inc ident to

st O ~ ~0 Ml 20j

J2 ~--'F~'"~"~"~ ~ M2

20
J 3 ~ - ~ ~~0 M3

2 2 . o M4

lO

l0

J7 ~ M7
2O

FIe. 3 Bipartite graph for Example 3 1

~6,-~.~- ~ ' ~ ~ ~ M6

672 T. GONZALEZ AND S. SAHN!

the edges et , • • • , en+m are scheduled on their respective processors for a t ime period of
Ix, and the weight of the edges e~, • • • , e,,+m is decreased by Ix. This results in the
delet ion of at least one edge (i.e. the weight of at least one edge becomes zero). By
scheduling a job on its respective processor we mean that if (J~, Mj) is one of the edges in
the match, then job i is processed on processor . / for Ix units of t ime. If] > m, then job i Is
not processed in that interval. If i > n, then p rocessor j is idle in that time interval. This
process is repeated until all edges are deleted. Assuming that at each i teration a matching
of size n + m can be found, all n + m processors are kept busy at all t imes (ei ther
processing real or fictitious jobs). The total processing time needed is ~ + m p(M~) =
(n + m)cx. Hence the finish time of the schedule is (n + m)a/(n + m) = a and the schedule
is optimal. Since each time a complete match is found one edge is deleted, complete
matchings have to be found at most O(r) t imes (recall that r is the number of nonzero
tasks and that r -> n and r -> m) . Hence the maximum number of preemptions per
processor is O(r). The first complete matching can be found in time O(r(n + m) '5) [6].
Subsequent matches require finding augmenting paths , each of which can be de te rmined
in time O(r) (Proposi t ion 3.2 with e - O(r)). Since a total of O(r) such paths may be
needed, the total computing time for the process becomes O(r2).

Example 3.2. Let us try out the informal computat ional process described above on
the bipart i te graph of Example 3.1. The following complete matchings are obta ined (this
is not a unique set of matchings):

(a) {(11, M2),(J2, M1),(J3, Me),(J4, M3),(Js, M4),(J6, Ms),(JT, MT)}, r = 10;
(b) {(J~, Mi),(Jz, Ms),(J3, M2),(J4, M3),(Js, M4),(J6, Me),(JT, MT)}, r = 10;
(c) {(J~, M3),(J2, M~),(J3, M2),(J4, gT),(Js, M4),(J6, Ms),(JT, M6)}, r = 10.

This yields the following schedule:

10 t0 10

M1

M2

M3

M4

M5

M6

M7

J2 J1 ./2

J1 J3 J3

J4 J4 Jt

./5 J5 ./5

J6 ./2 ./6

13 J6 ./7

J7 J7 ./4

Delet ing the fictitious jobs and
processors, the following preemptive
schedule is obta ined:

10 10 10

J2 Jl J2

J1 J3 J3

J4 J4 J1

M1

M2

M3

The schedule requires only one preempt ion , i .e. on M1. Since the edge set E3 was
empty , there is no idle time on any of the processors. In general , however, this will not
be the case, and the delet ion of the fictitious jobs will leave some idle time on the
processors. []

The success of the algorithm rests in the existence of a complete matching at each
i teration. The next three lemmas prove that a complete match always exists. The vertices
of the graph are divided into two disjoint, sets X = {Ji, • • • , J,,+,n} and Y = {Mj, • • . ,
Mn+m}.

LEMMA 3.1. A t each iteration the wezght o f every vertex in the bipartite graph ts equal.
PROOF. By construction, tMs is certainly true for the first i teration, i .e. p(M,) = p(J,)

= ct, 1 _< i - < n + m. Af ter a complete match is found the weight o f n + m edges
decreases by r. The 2(n + m) vertices of G are each incident to exactly one edge in the
matching. Hence the weight of each vertex decreases by r. Consequently all vertices have
the same weight at all t imes. []

LEMMA 3.2 (Hall ' s theorem). In a bipartite graph a complete matching o f vertex set
Y into vertex set X exists i f and only i f I A I -< I R(A) I for every subset A o f Y, where R(A)
denotes the set o f vertices m X that are adlacent to the vertices in A.

PROOF. See Liu [9, p. 282, Th. 11.1] or Berge [1, p. 134].

Open Shop Scheduling to Minimize Finish Time 673

LEMMA 3.3. The conditions o f Lemma 3.2 are valid for every bipartite graph with
vertices o f equal weight.

PROOF. Let at be the weight of a vertex. Let A be any subset of Y. Then the sum of
the weights of vertices in A is at [A 1. The corresponding sum for R(A) is ot] R(A) [.
Since this sum includes all edges inctdent to A, we have at I A I -< at] R(A) [and so] A [
_<] R(A)1, as at > 0. []

The second algorithm is based upon a computational refinement of the algorithm
described above. Once again a bipartite graph is constructed. This graph consists of the
two vertex sets X = {J~, • • • , Jn+m} and Y = {M1, • • • , Mm}. The edge set is Eit.JE3 (cf.
eqs. (3.2) and (3.4)), i.e. the fictitious processors of the earlier construction are
dispensed with. Now, we look for complete matchings of Y into X. While before any
complete match of Y into X was acceptable, now we have to be careful about the
matching that is chosen. To see this, note that if initially the matching {(J2, M~),(J3,
M~),(J4, M3)} is chosen for the job set of Example 3.1, then there is no complete
matching at the next iteration and consequently no schedule with finish time a can be
obtained following this choice of a matching. To assist in proper choice of a complete
matching we make use of an add~tmnal vector S called the slack vector. For every job i,
its slack time is defined to be the difference between the amount of time remaining in the
schedule and the amount of processing left for that job. If the slack time for a job
becomes zero, then it is essential that the job be processed continuously up to the
completion of the schedule at at as otherwise the schedule length will be greater than a .
When the slack time for a job becomes zero, the job is said to have become crittcal.

Example 3.3. Consider the three-processor open shop problem with four jobs and
the following task times:

Job
Processor T

1 2 3 4

1 10 8 5 3 26
2 6 7 9 9 31
3 7 8 3 3 21

L 23 23 17 15 a = maxl~{T,, L~} = 31

Addition of the jobs Js, JG, and Jr introduces three more columns into the above table:

Initially, the slack times are SLACK(i) = at - L, and we have S L A C K = (8, 8, 4, 6, 26,
31, 21). No job is critical.

We first state the algorithm and then prove its correctness. For convenience, the array
S in Algorithm P will represent the latest time a job may start so that its processing may
be complete by at. Thus SLACK(i) = S, - current time. A job therefore becomes crit,cal
when S, = current time. Algorithm P does not require that weights be assigned to the
edges in eqs. (3.2) and (3.4). This weight assignment wdl, however, be used later to
show that the algorithm works.

Algorithm P

// obtain an optimal preemptive schedule for the m processor open shop with n jobs and processing time
tj.,, 1-< i-< n, l -<j-< m//

// compute length, or, of optimal schedule//
1 T j ~ ~l'-itj.i, 1 --<! --< m
2 L , ~ ~%tj.,, I --<i-<n
3 a ,-- max,.~{Tj, L,}

//create fictltmus jobs and compute slack vector//
4 tj.,,+~---a- T~, I_<j_<m

674 T. GONZALEZ AND S. SAHNI

5 S , ~ - a - L , , I_<i_<n
6 S,j+j~-T,, I-<j-<m
7 n~ . -n+m

//compute initial complete matching of Y = {Mr, • • " , M=} into X = {Jr, . . . , J,,+m}. This match is
obtained as a set, 1, of edges (j, 0 matching M, to J,//

8 I ~- INITIAL_MATCHING, TIME ~ 0 //current time//
9 loop

l0 I *- index of job not in matching having least slack time
11 (p, q) ~ task and job in matching with least remaining processing time
12 A , - mln{tp.~, St - TIME}//max time for which I can be used//

//schedule 1 for A time units//
13 if A > 0 then [print (A, I) ,

t,, ,-- t~., - A for (/, t)El
S, ~-- S, + A for all ..lobs t e l
TIME ~ TIME + A
i f T I M E = a then stop]

14 delete from 1 all pairs (i, j) such that t~., = 0
//complete matching I including all critical .lobs//

15 if there is a critical job not in I then
[delete from I all pairs (./, t) such that i is noncritical

16 repeat
17 let Jt be a critical job not in 1
18 augment 1 using an augmenting path starting at J~
19 until there is no crttmcal .lob not m 1
20 reintroduce into / all pairs (/, t) that were deleted in hne 15 and such that M~ is still free]

//complete the match//
21 while size of / ~ m do
22 let Mj be a processor not in the matching I
23 augment I using an augmenting path starting at Mj
24 end
25 forever
26 end of Algorithm P

In o r d e r to prove the co r r ec tnes s of A l g o r i t h m P we have to show the fol lowing:

(i) T h e r e exists an initial c o m p l e t e ma tch ing in line 8.
(ii) The match ing I can be a u g m e n t e d so as to mc lude the c rmca l lob Jt in lme 18.

(iii) A u g m e n t i n g to a comp le t e ma tch including all critical jobs can always be car r ied

out as r equ i r ed in l ines 2 1 - 2 4 .
The fo l lowmg th ree l e m m a s show tha t these t h ree r e q u i r e m e n t s can always be met . a

is as de f ined in line 3 of the a lgor i thm.

LEMMA 3.4. There exists a complete matching o f Y into X in hne 8
PROOF. Le t A be any subse t o f ver t ices m Y. The weight o f each ver tex m A is o~. The

weight o f any ver tex in X ts less than or equa l to ot by de f tmt ion of or. Since the weigh t o f
R(A) is g rea te r than or equal to the weight o f A , it fol lows tha t ot I A 1 -< ot] R(A) I and so

] A [<_ [R(A) I. The resul t now fol lows f rom L e m m a 3.2. []
LEMMA 3.5. 1n line 18 there exists an augmentmg path relative to I starting at Jr.
PROOF. C ons ide r the b ipar t i te g raph G' f o r m e d by the ver t ices X ' and Y, w h e r e X '

consis ts of all ver t ices r e p r e s e n t i n g jobs in the ma tch ing 1 and the ver tex J~. All edges
connec t ing X' and Y in the original g raph are inc luded m G'. By the de le t ion o f line 15 it

fol lows that all ver t ices in X' are critical. H e n c e the i r weight ts cz - t ff t t s the value of
TIME when the loop of hnes 16 -19 ts b e m g execu ted . Since ot - t is the total r ema in ing
t ime on all the p rocesso r s , the weight o f ver t ices in Y in the g raph G' is less than or equa l
to cz - t . Us ing the same a r g u m e n t as in L e m m a 3.4 , it fol lows that the re is a c o m p l e t e
match of X' in to Y H e n c e 1 ts not a m a x i m u m match ing in G' H e n c e t h e r e ts an

augmen t ing pa th relat ive to 1 b e g m m n g at Jr. []
LEMMA 3.6 There is always an augmenting path relative to I beginning at M~ tn line

23.
PROOF. At any t ime t the b ipar t i te g raph f o r m e d by ver t ices X = {Jl, " • " , J~+m} and

Y' = {M,] M~ is in the ma tch ing 1} {Mj} have the fol lowing p rope r t i e s : (a) the weight o f

Open Shop Scheduhng to Minimtze Finish Ttme 675

vertices in Y' is ct - t, and (b) the weight of vertices in X is less than or equal to a - t (as
no vertex can have a slack time less than 0, see lines 11-13). Hence the conditions of the
proof of Lemma 3.4 hold and there is a complete matching of Y' into X. By Proposition
3.1 there must be an augmenting path relative to I beginning at the free vertex M e.

Note that the complete matching obtained at the end of the while loop 21-24 must
contain all the critical jobs, as the initial matching ! contained all of them and augment-
ing paths only add on vertices to an existing matching.

Since all processors are kept busy at all times and the total amount of processing as ma ,
the finish time of the schedule generated by Algorithm P is a. This schedule is therefore
optimal. []

All that remains now is to analyze the complexity of Algorithm P. In carrying out this
analysis we shall need a bound on the number of jobs that can become critical. Lemma
3.7 provides this bound, and Lemma 3.8 analyzes the algorithm

LEMMA 3.7. The number o f critical lobs at any time is less than or equal to m.
PROOF. Since all processors are kept busy at all times, at follows that at any time t the

total amount of processing remaining as m(ct - t). If at time t there are more than m
critical jobs, then the processing remaining for all these critical jobs is greater than or
equal to (m + 1)(a - t) > m (ct - t), which is a contradiction. Since once a job becomes
critical, at stays critical until the end of the schedule, the total number of jobs that can
become critical is also less than or equal to m.

LEMMA 3.8. The asymptottc ttme complextty o f Algor:thm P is O(r(min{r, m ~} + m
log n)), where n is the number o f lobs, m the number o f processors, and r the number o f
nonzero tasks, r is assumed to be greater than or equal to max{n, m}.

PROOF. Lines 1-7 take time O(r) if the task tames are maintained using hnked lasts
(see 17]). Line 8 can be carried out in time O(rm 5) (see [6]). If the slack times are set up
as a balanced search tree or heap [7], then each execution of line 10 takes time O(m log
n). At each iteration of the "loop forever" loop (lines 9-25), either a critical job as
created or a task is completed (sce lines 10-13). Hence by Lemma 3.7, the maximum
number of iterations of this loop is r + m = O(r). The total contribution of line 10 is
therefore O(rm log n). The contrabution from lines 11-12 and 14 is O(rm). In line 13 the
change in S, requires deletion and insertion of m values from the balanced search tree.
This requires a time of O(m log n). The total contribution of line 13 is therefore O(rm log
n). Line 15 has the same contribution. The total computing time for Algorithm P ~s
therefore O(rm log n + total time from lines 16-24). Over the entire algorithm the loop
of lines 16-19 as iterated at most m times. By Proposition 3.2 an augmenting path can be
found in time O(min{r, m2}). The total time for this loop is therefore O{min{r, m2}m + m
log n}. The maximum number of augmenting paths needed in the loop of lines 21-24 is
m + r (as one path is needed each time a critical job is found). The computing time of
Algorithm P then becomes O(min{r, m z} (m + r) + rm log n) = O(r(min{r, m z} + m log
n)). []

4. Complextty o f Nonpreemptive Scheduling for m > 2

Having presented a very efficient algorithm to obtain an O F F schedule for m = 2
(preemptive and nonpreemptive) and a reasonably efficient algorithm to obtain an OFT
preemptive schedule for all m > 2, the next question that arises is: Is there a similarly
efficient algorithm for the case of nonpreemptive schedules when m > 2? We answer this
question by showing that this problem is NP-complete [8] even when we restrict
ourselves to the case when the job set consists of only one job with three nonzero task
times while all other jobs have only one nonzero task time. This, then, implies that
obtaining a polynomial time algorithm for m > 2 is as difficult as doing the same for all
the other NP-complete problems. An even stronger result can be obtained when m > 3.
Since NP-complete problems are normally stated as language recognition problems, we
restate the O F F problem as such a problem.

676 T. GONZALEZ AND S. SAHNI

L O F T . Given an open shop with m > 2 processors, a deadline ¢, and a set of n j o b s

with processing times L,,, 1 -<] _< m, 1 -< i -< n , is there a nonpreemptive schedule with
finish time less than or equal to r ~

In proving LOFT NP-complete, we shall make use of the following NP-complete
problem [8].

P A R T I T I O N . A multiset S = {al, • • • , a,,} is said to have a partition iff there exists a
subset, u, of the indices 1 - n such that ~,~u a, = (~',L~ a,)/2. The partition problem is
that of determining for an arbitrary multiset S whether it has a partition. The a, may be
assumed integer.

THEOREM 4.1. L O F T , for any f ixed m -> 3, ts NP-comple te .
PROOf. It is easy to show that L O F t , for any fixed m --> 3, can be recognized in

nondeterministic polynomial time by a Turing machine. The Turing machine just guesses
the optimal permutation on each of the processors and verifies that the finish time is less
than or equal to ~-. The remainder of the proof is presented in Lemma 4 1. It is sufficient
to prove this part for the case m = 3.

LEMMA 4.1. I f L O F T w t t h m = 3 ts po lynomia l sovable, then so is P A R T I T I O N .
PROOF. From the partition problem S = {a,, az, • • • , a,} construct the following open

shop problem, OS, with 3n + 1 jobs, m = 3 machines, and all jobs with one nonzero task
except for one with three tasks:

t l , z = a,, t2 a = t3., = 0, for 1 --< t <-- n,
t2., = a,, tl,, = t3,, = 0, f o r n + l--<t ~< 2n,
t 3 , ,=a , , h , ,= t2 , , = 0, fo r2n + 1 <--t-- 3n,
t~,~.+, = tz,s.+l = t~.s.+lm = T / 2 ,

where T = ~] a, and z = 3T/2 .
We now show that the above open shop problem has a schedule with finish time less

than or equal to 3 T / 2 iff S has a partition.
(a) If S has a partition u then there is a schedule with finish time 3T /2 . One such

schedule is shown in Figure 4.
(b) If S has no partition, then all schedules for OS must have a finish time greater than

3T/2 .
This is shown by contradiction. Assume that there is a schedule for OS with finish time

less than or equal to 3 T / 2 Since tL3.+ ~ = t2.3.+, = t3,z.+~ = T / 2 , it follows that in this
schedule job 3n + 1 must be being processed at all times. Since the schedule is
nonpreemptive, there must be a processor I such that L.3.+~ begins at time T / 2 and
finishes at T. For this processor there is a set of job~ with t~,,, (j - 1)n + 1 <- i <- in and
~t~-..+~ t,,, = T. Since S has no partition, it follows that all the T / 2 units of time preced-
ing tj,3.+, on processor I cannot be used. Hence more than T / 2 are needed after time T
to complete the remaining tasks. Hence the finish time must be greater than 3T /2 .
This contradicts our assumption regarding the schedule. There is therefore no
schedule with finish time less than or equal to ¢ = 3 T / 2 when S has no partition. []

Note that the proof of Lemma 4.1 actually shows that a very simple subcase of LOFT,

P1

P2

P3

T/2 T 3T/Z

{tl,ilieu} t l , 3n+l 1 {tl,ili~u} ']

{t2,mln, + I < • < 2n} t2,3n+l i

{t3,il2n + 1 < i < 3n} i t3,3n+l

T/2

{tl,i[
tl,n+l iEi~n} tl, n+2

i
{tZ,ml~eu} 1{=2,±l ±tu}

t4,n+2

t3,n+l

T/2 + ~ TT+ e

Fm 4. Opt imal schedule when S has a par tmon FIG 5 Optima! schedule when S has a partition

Open Shop Scheduhng to Mmlmtze Finish Ttme 677

i.e. when only one job has three nonze ro tasks and the remain ing have at mos t one
nonzero task, is NP-comple t e . When m > 3 the p roo f of L e m m a 4.1 can be s t r eng thened
to the case when each job has at most two tasks.

LEMMA 4.2. I f L O F T ts po lynomial solvable for m > 3 (using only two tasks per job) ,
then so is P A R T I T I O N

PROOF From the par t i t ion p rob lem S = {al, a2, " ' " , a,,} the fol lowing open shop
p rob lem, OS , with n + 2 jobs , m = 4 machines , and all jobs having at mos t two nonzero
tasks is const ructed .

t~., = e /n , t2., = a,, t3,, = t4., = 0 for 1 -< i -< n,
tl.,+j = T /2 , t e . , , = t4.n+l = 0, t3,n+l = T / 2 + ¢,
t~,,~+~ = T /2 , t2.,,+2 = t3.,,+2 = 0, t4,,,+z = T / 2 + e,

w h e r e T = ~ ' a , , r = T + • , a n d 0 < • < 1.
We show that the above open shop p rob lem has a schedule with fimsh t ime < T + • iff

S has a par t i t ion.
(a) If S has a par t i t ion u, then there is a schedule with finish t ime T + e. F igure 5

presents such a schedule .
(b) If S has no par t i t ion, then all schedules for OS must have a finish t ime grea te r than

T + • .
This is shown by contradic t ion. Assume that there is a schedule for OS with finish t ime

less than or equal to T + • . Since jobs n + 1 -nd n + 2 need a total t ime T + • they must
be scheduled all the t ime, and this will leave processor 1 free in the t ime interval [T/2 ,
T / 2 + e]. This is just enough t ime to process the n tasks t~.,, 1 -< t -< n. This means that
all tasks t2, that start their processing before t ime T / 2 must t e rmina te before t ime T / 2 +
• , as otherwise for some job j , t~.j and t2,j would be processed at the same t ime. Le t u be
the set of jobs that comple te processing on processor 2 before t ime T / 2 + •. T h e n
~,~ut2,, -< T / 2 < T / 2 + • as the a, are integer . This implies that tasks with total length
grea te r than or equal to T / 2 is left for processing after t ime T/2. If the schedule is to fin-
ish at t ime T + • it must be the case that ~,~ut2,, = T/2 , i .e. S has a part iUon. This
contradicts the assumpt ion. Hence when S has no par t i t ion there is no schedule
with finish t ime less than or equa l to ~ = T + • .

L e m m a 4.2 leaves open the status of th ree -processor scheduhng with two tasks per
job.

Appendix

PROPOSITION 3.2. I f G = ({XUY}, E) is a bipartite graph, I E } = e, I X I = n, and
I Y] = m , n >- m , then an augmentmg path relative to I starting at some free vertex i can be
found m time O(mtn{m 2, e}).

PROOf. We prove this by exhibi t ing an augment ing path a lgor i thm with a comput ing
t ime of O(min{m 2, e}). This a lgor i thm assumes that the bipar t i te graph G is r ep resen ted
by its ad jaency hsts. (It is also assumed that the ver tex set is indexed 1 th rough n + m
with X = {vt, v2, "" • , v,,} and Y = {v,,+~, • . . , vn+m}). T h r e e one -d imens iona l arrays
FREE(1 :n + m), M A R K (I : n + m), and M A T C H (I : n + m) are made use of. A t entry to
the augment ing path a lgor i thm we have FREE(i) = M A R K (t) = O, 1 -< t _< n + m . The
initial values of M A T C H (i) , 1 -< t _< n + m , are not impor tan t . In addi t ion, a F I F O
queue , Q U E U E , is made use of. The s ta tement Q U E U E ~ p adds p to the end of the
queue while p ~ Q U E U E dele tes an e l emen t f rom the front of the queue and assigns it
to p . A lgo r i t hm A U G works by genera t ing an augment ing t ree wlth the free ver tex i as
root and at level 1. The t ree is gene ra t ed level by level . Edges connect ing levels q and
q + 1 for q odd are edges not In I . The remain ing edges are in I . Thus , the path f rom the
root to any node is a valid initial s egment for an augment ing path. Lines 7 - 2 2 genera te
the next level when the next level is even . Lines 24 -28 do this for the case when the next
level is odd. We use the same strategy as in [6] and look for a shortes t augment ing path.

678 T. GONZALEZ AND S. SAHNI

Hence if a node has already been added to the tree it is not reconsidered at a later time.
Once a node is included in the tree its M A R K bit is set to 1. Lines 14-18 reset all M A R K
and FREE bits changed by the algorithm. Hence M A R K and FREE have to be initialized
to zero only for the first use of this algorithm.

Let us analyze the computing time of this algorithm. Since m = I Y I -< I X I, the
number of edges in I is at most m. The time for hnes 1-4 is therefore O(m). Each
iteration of the loop of lines 10-21 takes O(1) amount of time except when a free vertex
is reached. At this time O(m) ume is spent in lines 12-17. This happens at most once for
the whole algorithm. For any v e r t e x / t h e maximum number of iterations of thts loop is
m. This ts so as at most m of the vertices adjacent tOl may be in the matching I and hence
not free. Letr , be the number of nodes on the ith odd level of the augmenting tree. Then
the overall contribution of lines 7-22 is at most O(~mr , + m) = O(m2). ~r, -< m as
there are at most m vertices in I and no vertex gets into the tree more than once. Since
each edge in G is examined at most once, another bound is O(e). Hence the time for lines
7-22 is O(min{m 2, e}). The number of nodes on an odd level is equal to the number on
the preceding even level as the connecting edges are taken from I . The total contribution
from lines 24-28 is therefore O(~ri) = O(m). From this we conclude that an augmenting
path (if it exists) may be found in time O(mm{m 2, e}) when e >- m. []

The loops of lines 1-4 and 13-16 may be speeded slightly by realizmg that it is
sufficient to initialize FREE(j) to 1 only if j t s in I and ! will be on an even level.
Similarly, MATCH(j) need be initialized only for those j in I that can be on odd
levels of the augmenting tree.

Line Algorithm AUG(t,/)

1 for each edge (l, k) m I do
2 FREE(I) ~-- FREE(k) ~ 1 //not free//
3 MATCH(i)~ - -k ;MATCH(k) . . - j
4 end
5 QUEUE ~ 'i0~'//oo Js end of level marker//, MATCH(:) ~ 0
6 loop
7 loop
8 j ~ Q U E U E / / t a k e off a vertex from front of queue//
9 i f j = oo then exi t / /end of level//

10 for each vertex p adjacent t o j do
11 If FREE(p) = 0 then [//augmenting path found//
12 trace path from root to p

this ts the augmenting path
//reset FREE and MARK//

13 for each edge (l, k) m I do
14 FREE(/) ~ FREE(k) ~- 0
15 MARK(/) ~ MARK(k) ~ 0
16 end
17 return]
18 if MATCH(j) -~ p and MARK(p) = 0 then [//p not m tree//
19 QUEUE ~ p//add p to tree//
20 MARK(p) ~- j]
21 end
22 forever
23 QUEUE ~ ~ / / e n d of level//

//next level edges must be from 1//
24 loop
25 j ~ QUEUE
26 i f j = ~ then exit
27 QUEUE ~ MA TCH(l)
28 forever
29 if QUEUE empty then [stop/ /no augmenting path//]
30 QUEUE ~ oo//end of level//
31 forever
32 end AUG

Open Shop Scheduling to Minimize Finish Time 6 7 9

ACKNOWLEDGMENT. Seve ra l o r g a n i z a t i o n a l c h a n g e s s u g g e s t e d by the r e f e r e e h a v e

i m p r o v e d the r e a d a b i l i t y o f th is p a p e r . W e wmh to t h a n k the r e f e r e e fo r th is .

REFERENCES

1 BERGE, C Graphs and Hypergraphs American EIsevzer, New York, 1973, p 134
2 COLEMAN, E G JR Computer and Job Shop Scheduhng Theory Wiley, New York, 1976.
3. CONWAV, R W , MAXWELL, W L , AND MILLER, L W Theory of Scheduhng Addison-Wesley, Read-

rag, Mass, 1968
4 GAREY, M R , JOHNSON, D , AND SETHI, R Complexity of flow shop and job shop scheduling. Tech

Rep 168, Pennsylvama State U , University Park, Pa , June 1975
5 GONZALEZ, T , AND SAHNI, S Flow shop and lop shop schedules Tech Rep. TR 75-14, U of

Minnesota, Minneapolis, Mlnn , July 1975
6. HOPCROFr, J.E , AND KARP, R.M. A n s~2 algorithm for maximum matchlngs in bipartite graphs.

SICOMP 2 (1973), 225-231
7 HOROWlTZ, E., AND SAnto, S Fundamentals of Data Structures Computer Science Press, Los Angeles,

Cahf, 1976
8 KARV, R.M. Reducibility among combinatorial problems. In Complexity of Computer Computations,

R E Miller and J W Thatcher, Eds , Plenum Press, New York, 1972, pp 85-104
9. LIU, C.L. Introduction to Combinatorial Mathematics. McGraw-Hill, New York, 1968.

RECEIVED JUNE 1975; REVISED MARCH 1976

Journal of the Assooatlon for Computing Machinery, Vol 23, No 4, October 1976

