P-Complete Approximation Problems

SARTAJ SAHNI AND TEOFILO GONZALEZ

Unaversity of Minnesota, Minneapolis, Minnesota

ABSTRACT For P-complete problems such as traveling salesperson, cycle covers, 0-1 integer program-
ming, multicommodity network flows, quadratic assignment, etc , 1t 1s shown that the approximation
problem 1s also P-complete In contrast with these results, a hnear time approximation algerithm for the
clustering problem is presented

KEY WORDS AND PHRASES P-complete, approximation algorithm, polynomial complexity, k-max cut,
traveling salesperson, cycle covers, multicommodity network flows, quadratic assignment, integer
programming, general partitions, 2-min cluster, generalhzed assignment

CR CATEGORIES 5 23,5 25,5 32, 540

1. Introduction

Our notion of P-complete (polynomial-complete) corresponds to the one used in [19]. A
problem, L, will be said to be P-complete iff the following holds: L can be solved in
polynomial deterministic time 1iff the class of nondeterministic polynomial time
languages is the same as deterministic polynomial time languages (i.e. P = NP).
Knuth {14] suggests the terminology NP-complete (nondeterministic polynomial-
complete). However, his notion of “completeness” is that of Karp [13]. Since the
equivalence or nonequivalence of the two notions 18 not known, we will use the term
NP-complete for problems that can be shown complete with Karp’s definition and P-
complete for those which require the definition of [19]. The reader unfamiliar with P-
complete problems is referred to [13 and 19]. All problems that are NP-complete (i e.
complete under Karp’s definitions) are also P-complete [4 and 19]. The reverse is
unknown. Since 1t appears that P # NP, the P-complete problems probably have no
polynomial solution Many of these problems, especially the optimization problems,
are of practical significance Often, as 1n the case of the knapsack problem [20],
approximate solutions (1.e. feasible solutions that are guaranteed to be “reasonably”
close to the optimal) would be acceptable so long as they can be obtained “quickly”
(e.g. by an O(n*) algorithm for small). Johnson [11] and Sahni [20] have studied
some P-complete problems with respect to obtaining “good” (1.e. polynomial) approxi-
mate algorithms. Formally we define an e-approximate algorithm as follows.
Definution. An algorithm will be said to be an ¢-approximate algorithm for a
problem P, iff either (i) P, 1s a maximization problem and for every instance of P,

|(F* - F)/F*|<¢ 0<e<]l,

Copyright © 1976, Association for Computing Machinery, Inc General permission to republish, but not
for profit, all or part of this material 1s granted provided that ACM’s copyright notice 1s given and that
reference 1s made to the publication, to 1ts date of 1ssue, and to the fact that reprinting privileges were
granted by permission of the Association for Computing Machinery

An earlier version of some of the results in this paper was presented at the 15th IEEE Symposium on
Switching and Automata Theory, 1974

Thus research was supported in part by the National Science Foundation under Grant DCR 74-10081
Authors’ present addresses S Sahni, Department of Computer Science, 114 Lind Hall, Unmiversity of
Minnesota, Minneapolis, MN 55455, T Gonzalez, Department of Information and Computing Sciences,
University of Oklahoma, Norman, OK 73069

Journal of the Association for Computing Machinery, Vol 23, No 3, July 1976, pp 555-565

556 S. SAHNI AND T. GONZALEZ

or (ii) P, is a minimization problem and for every instance of P,,
| F* - F)/F*| <€, €>0,

where F* is the optimal solution (assumed greater than 0) and F' is the approximate
solution obtained. O

Additional results on approximation algorithms for P-complete problems may be
found in [2, 6, 8-10, 16, 18]. Some of these algorithms obtain e-approximate solutions
only for certain values of € (i.e. € = k for some k). For example, Graham’s heuristic to

1
sequence jobs on m identical processors is e-approximate for e = §(1 — 1/m). Other

approximation algorithms [9, 10, 18, 20] obtain e-approximations for any € > 0. An
example is the O(n/e* + n log n) algorithm of Ibarra and Kim [10] for the 0/1
knapsack problem. General techniques for obtaining e-approximate solutions for all €
are presented by Sahni [18) and Horowitz and Sahni [19]. The techniques are
applicable to certain types of P-complete problems.

In this paper we shall look at some “natural” P-complete problems and show that
the corresponding approximation problems are also P-complete One can easily
construct “nonnatural” problems with this property. For example, consider the prob-
lem: Given a graph G, €, 0 < ¢ < 1, and integer k, find that k-vertex subgraph G’
which minimizes AG’) = 1 if G’ is a clique and AG’) = 1 + 2¢ otherwise.

For this problem 1t is easy to see that if G has a clique of size £ then all e-
approximate solutions have AG) = 1. If G has no such clique then AG) = 1 + 2e.
Hence from the e-approximate solutions one can determine if G has a clique of size %,
and so the approximation problem is P-complete for all €. It is interesting that this
should be true for naturally occurring problems. Garey and Johnson [6] show that
obtaining e-approximate solutions to the chromatic number problem is P-complete for
all e < 1. The problems we shall consider are: traveling salesperson, cycle covers, 0/1
integer programming, multicommodity network flows, quadratic assignment, gen-
eral partitions, k-min cluster, and generalized assignment. For these problems 1t will
be shown that the e-approximation problem 1s P-complete for all values of €. (One
should note that in the case of a maximization problem e is restricted to 0 < e < 1 as
all feasible solutions are 1 — approximate.)

2. P-Complete Approximation Problems

In this section we look at some P-complete problems and show that they have a
polynomial time approximate algorithm iff P = NP. This would then imply that1f P +
NP, any polynomal time approximation algorithm for these problems, heuristic or
otherwise, must produce arbitrarily bad approximations on some inputs. The prob-
lems we look at are:

(i) Traveling salesperson: Given an undirected (directed) complete graph G(N, A)
and a weighting function w : A — Z, find an optimal tour (1.e. an optimal Hamilton-
ian cycle). The optimality criteria we shall consider are:

(a) Minimize tour length (i.e. find the shortest Hamiltonian cycle).

(b) Minimize mean arrival time at vertices. The arrival time 1s measured relative
to a given start vertex ¢, and the weights are interpreted as the time needed to go from
vertex i to vertexj. If 1y, 25, - -+ , 1y, iny; = 1, 18 a tour (1.e. Hamiltonian cycle), then the
arrival time Y, at vertex i, is

h—1
Yi= 2 wy, te), 1<k=n+l.
=1
The mean arrival time Y is then

nt1 n

Y =Q1/n) gl Y= 1/m Y (n+1 - pwh, 1,+).

=1

The objective is to find a tour ¢;, - , 1,, ¢, that minimizes Y (see [3, p. 56])

P-Complete Approximation Problems 557

(c) Minimize variance of arrival times. Leti,, 15, -+ , in, Ins1 = i; be a tour. Let Y,
and Y be as defined 1n (b) We wish to obtain a tour that minimizes the quantity o =
(Un) 2 (YF = Y.

(ii) Undirected edge disjoint cycle cover: Given an undirected graph G(N, A), find
the minimum number of edge disjoint cycles needed to cover all the vertices of N (i.e.
minimum number of cycles such that each vertex of G is on at least one cycle).

(i11) Directed edge disjoint cycle cover: Same as (1i) except that G is now a directed
graph.

(1v) Undirected vertex disjoint cycle cover: This problem is the same as (ii) except
that now the cycles are constrained to be vertex disjoint.

(v) Directed vertex digjoint cycle cover: Same as (iv) except that G is now a directed
graph.

(vi) 0-1 integer programming with one constraint.

(vi1) Multicommodity network flows: We are given a transportation network [19]
with source s, and sink s,. The arcs of the network are labeled corresponding to the
commodities that can be transported along them. Such a network is said to have a
flow f iff f units of each commodity can be transported from source to sink. The
problem here is to maximize f.

(viii) Quadratic assignment [5, p. 18]

n m

minimize fix) = X X ¢, dystoio
1,9=1 k=1
) k#l

m
subject to (a) 2 ax=1 l=i=n,
h=1

n
(b) le,kzl, lskgm’

(© x,,=0,1 forally, &,
where ¢, d, =0,1<:,7=n, 1<k l=m.

One situation in which this problem arises is that of optimally locating m plants atn
possible sites. Thusx,, = 1 iff plant % 1s to be located at site . Condition (a) states that
at most 1 plant can be located at any particular site. Condition (b) requires that every
plant be assigned to exactly 1 site. If ¢, , represents the cost of transporting 1 unit of
goods from site: to site j, and d; is the amount of goods to be transported from plant &
to plant/, then fix) represents the cost of transporting all the goods between plants.

(ix) k-general partition [15]: We are given a connected undirected graph G(N, A),
an edge weighting function f: A — Z, a vertex weighting function w : N — Z, a
positive number W, and an integer £ = 2. The problem 1s to obtain % disjoint sets
S, -+, S, such that:

(a) CJ S, = N,
1=1

byS, NS, =¢ fori #;,
(c)z w(j)) =W fort=:=<k, and

JES,

A
(d) 2 E Au, v) is maximized.
=1 {u,v}€4
uEes,
Partitioning problems of this type are encountered in the assignment of logic blocks
to circuit cards in computer hardware design and in the assignment of computer
information to physical blocks of storage [15].

558 S. SAHNI AND T GONZALEZ

(x) k-min cluster (for 2 = 3). This is the document clustering problem with the
minimization criteria. Given an undirected graph G(N, A) and a weighting function
w : A — Z (the nonnegative integers), find % disjoint sets S,, -+ , S; such that

k
US =N; §iNnS,=¢ for:#y
=1

and

k
> > wlu,v) is minimized.
1=1 {u,v}EA

uL‘ES,

(x1) Generalized assignment [17]:

mimimize 2 2 Ci 3%,
€l)ed

subject to 2 rox, < b, forall €],

JeS

E x,, = 1 for all jE,

1€l
x,, =0, 1.

In this formulationI = (1, 2, -+ , m)1s a set of agent indices,J = (1,2, --- ,n)isa
set, of task indices, c,, is the cost when agent : is assigned task j, r,, is the resource
required by agent i to perform taskj, and b, > 0 is the amount of resource available to
agent i. The decision variable is 1 if agent : is assigned to task j, and is 0 otherwise.
This problem arises in the following situations: assigning software development tasks
to programmers, assigning jobs to computer networks, scheduling variable length
television commercials, etc.

In order to prove some of our results we shall use the following known P-complete
problems:

(a) Hamiltonian cycle: Given an undirected (directed) graph G(N, A), does it have a
cycle containing each vertex exactly once [13]?

(b) Multicommodity flows: Given the transportation network of (vii) above, does 1t
have a flow of f = 1 [19]?

(c) k-graph colorability (for £ = 3). Given an undirected graph G(V, A), do there

exist disjoint subsets S;, ---, Si such that U, S, = N and if {z, /}€A then vertices ¢
andj are in different sets [7]?
(d) k-partition (for & = 2): Given n integersr,, r,, --- , 1, are there digjoint subsets

I,1, -+, I,suchthat U, I, ={1,2, ---, nfand D), i = Den 7, 2=1<k?
TueoREM 2.1. The e-approximation problem for (1)-(x1) above 1s P-complete.
Proor For each of the problems (1)-(x1), 1t is easy to see that 1f P = NP then the e-

approximation problem is polynomially solvable (as the exact solutions would then be

obtainable 1n polynomal time). Consequently we concern ourselves only with show-
ing that if there 1s a polynomial time approximation algorithm for any of the

problems listed above then P = NP. Our approach is to separate feasible solutions to a

given problem in such a way that from a knowledge of the approximate solution one

can solve exactly a known P-complete problem
(i-a) Hamiltonman cycle a e-approximate traveling salesperson (mimimum length

criteria): Let G(V, A) be any graph. Construct the graph G,(V, E) such thatV = N

and E = {(u, v) | u, vEV}. Define the weighting function w : E — Z to be

1if (u,v)EA,
k otherwise.

wiu, v} = {

Let n = | N |. For k > 1, the traveling salesperson problem on G, has a solution of

P-Complete Approximation Problems 559

length n 1ff G has a Hamiltonian cycle. Otherwise, all solutions to G, have length
greater than or equal to 2 + n — 1. If we choose £ = (1 + ¢)n, then the only solutions
approximating a solution with value n (if there was a Hamiltonian cycle in G,) also
have length n. Consequently, if the e-approximate solution has length less than or
equal to (1 + €)n, then it must be of length n. If it has length greater than (1 + e)n,
then G has no Hamiltonian cycle.

(1-b) Hamiltonian cycle a e-approximate traveling salesperson (minimum mean
arrival time criteria): We construct G,(V, E) as in (1-a) above Let the starting vertex
1, equal 1. It is easy to see that G, has a tour with mean arrival time less than or equal
to (n + 1)/2 1ff G has a Hamiltonian cycle. If G has no Hamiltonian cycle then all
tours in G, have mean arrival time greater than or equal to k/n + (n — 1)/2.
Choosing £ > (1 + e)n(n + 1)/2 sufficiently separates these two solutions. The only
solutions approximating n(n + 1)/2 also have value n{n + 1)/2. Consequently if the e-
approximate solution has a value less than or equal to (1 + €)(n + 1)/2, then it
must be of value (n + 1)/2 and G has a Hamiltonian cycle. If the value is greater than
(1 + e)(n + 1)/2, G has no Hamiltonian cycle

(i-c) Hamiltonian cycle a e-approximate traveling salesperson (minimum variance
criteria). From the undirected graph G(N, A) we obtain the undirected graph G,(N,,
A,) with

leNu{a;B,%S}, Al:AU{(r: a)’(a5 ﬁ),(ﬁ,‘)’),(%ls)} U{(B,Z)"“I(T,Z)EA},

where r is some arbitrary vertex in N. This construction is shown in Figure 1. From
the construction 1t is evident that G, has a Hamiltonian cycle iff G has such a cycle.
From the graph G, we obtain the traveling salesperson problem G,(N,, A,) with N, =
Ny, Ay = {(,,)) | 15/, 1,JEN,}, and weighting function w . A, — Z defined by

fu, v} = 1if(u,v) € A,
W U= 1k if (u) € A,

Lemma 2.1 obtains lower bounds on the variance (o) of an optimal tour for G,.

LemMMa 2.1 Fork > [(1 + e)(n)(n — D(n + 1)/31"*and € > 0, the complete graph G »
has a tour, with starting vertex B, with a varwance o < (n — 1)(n + 1)/12, iff G, has a
Hamiltonian cycle. If G, has no Hamultonian cycle, then the optimal tour for G, has o
>{(1+en—n+1)/12:n=| N, |

Proor If G, has a Hamiltonian cycle, then this cycle is a valid tour in G,. All
edges on this tour have weight 1 and mean arrival time = ¥ = (n + 1)/2,

o=1/n) I -YP=(1/n) It 2 -1 .
= %(217,2 +3n + 1 — Z(n + 12 =(n — Dn + /12
If G, has no Hamiltonian cycle, then every tour in G, must include at least one edge

with weight equal to k. Let the optimal tour be 8 =15, 15, - -+ , 1, tnr1 = B. We have
three cases:

Fic 1 Construction of G, from G Broken hnes indicate edges in G, which are not m G

560 S. SAHNI AND T. GONZALEZ

Casel. w(B,i,) =1, w(, 1,.,) = k for somey, 1 <j = n: For this case we haveY, =
landY, 2k +n - 1.0V =%/2+ 1, then|Y, -V |2 k/2. HY <£/2 + 1, then
| Your — Y | = &/2. In either case we have

o= (k/2%/n = k¥/4n) > (1 + e)(n — 1)(n + 1)/12
fork > [+ en(n — D(n + /312,

Case 2. w(B, 1;) = k and all other edges have weight = 1: Since all other edges on
the tour.have weight 1, it follows thatz, = aori, = v as («, 8) and (y, B) are the only
two edges in A, incident to 8 and having weight 1 Without loss of generality we may
assume i, = a. Since vy is a vertex on the tour, the tour enters y via some edge (u, y)
and leaves via another edge (y, v), u # vandv # B. Alsou + Basw(fB, 1) =k + 1.
From the construction of G, 1t 1s clear that the only edges in A, incident to y with
weight 1 are (8, v) and (y,). (y, 8) is the only edge satisfying the requirements on u
and v. Hence the second edge on the tour incident to v must have weight = k. Hence
there is no tour in G, with w(g, 1;) = k and all other edges having a weight of 1.

Case3. w(B, 1) = kandw(i, t,+,) = kforsomej,1<j=n:NowY,=kandY,,, =
2k+n-2.1Y =3k/2, then|Y,~ Y | = k/2. IfY <3k/2,then| Y, - Y | = k/2.
Hence o > (1 + e}(n — 1)}(n + 1)/12 (see case 1).

This takes care of all possibilities when G, has no Hamiltonian cycle. O

The reduction of (i-c) now follows from arguments similar to those of (i-a) and (i-b).

(ii)-(v) The proofs for (ii)-(v) are similar. We outline the proof for (iv).

(iv) Undirected Hamiltonian cycle a e-approximate disjoint cycle cover: Given an
undirected graph G(N, A), construct % copies G,(N,, A,) of this graph. Pick a vertex
vEN. Let ', u?, -+, u be the vertices adjacent tov in G (i.e. (¥, V)EA,1 =< = d).
Define H,(V,, E,) to be the graph with

h k
V,=UN, and E, = U A, U{(t,v,4) |1 =1 <k} U{uiv)}
=1 =1

Clearly, if G has a Hamiltonian cycle then, for somej, H, has a cycle cover containing
exactly one cycle (as for somey, (v, ©°) are adjacent 1n the Hamiltonian cycle and using
the images of the edges of this cycle in the subgraphs G, (except for the images of the
edge (v, &), together with the edges {(u}, v,+y) | 1 =1 < k} U {(z}, v,}}, one obtains a
Hamiltonian cycle for £,). If G has no Hamiltonian cycle, then the subgraphs G, each
require at least two disjoint cycles to cover thewr nodes. Consequently the disjoint
cycle cover for; contains at least & + 1 cycles, 1 = =< k. For any €, one may choose a
suitable 2 such that from the approximate solutions to H,, 1 = j =< k, one can decide
whether or not G has a Hamiltonian cycle (i.e. choose 2 > (1 + €)).

Note that the above proof also works for the case of edge disjoint cycle covers, since
G has an edge disjoint cycle cover of size 1 iff it has a Hamiltonian cycle.

(vi) Just consider the reduction: 2-partition « e-approximate 0-1 integer program-
ming, i e.

minimize 1+ &(m — >r8)
subject to Y13, = m,

5 =0orl,

m = 3r/2.

The minimum equals 1 iff there is a subset with sum equal to m; otherwise the
minimum is greater than or equal to 1 + k.

(vii) Multicommodity flows a e-approximate multicommodity flows: In [19] it was
shown that multicommeodity flows with f = 1 was P-complete Given a multicommod-
ity network N as 1n [19] we construct k copies of it and put them in parallel. Another
network with a flow f = 1 is also coupled to the network as in Figure 2.

Clearly the multicommodity network of Figure 2 has a flow of £ + 1 1ff N has a flow

P-Complete Approximation Problems 561

of 1. If N does not have a flow of 1, then the maximum flow in the network of Figure 2
is 1. Hence the approximation problem for multicommodity flows is P-complete.

(viii) Hamiltonian cycle « e-approximate quadratic assignment: Let G(IV, A) be
an undirected graph with m = | N |. The following quadratic assignment problem
(QAP) is constructed from G-

n=m,
e =11 ifj=:t+landi<m orif i1=mandj=1 1<y, =n,
" 0 otherwise ’ ’

f1ifk,DeEA,
diey = {w otherwise}’ 1=k i=m.

The total cost, f(y), of an assignment, vy, of plants to locations is 3%, ¢, ,dyuvins
J = (t mod m) + 1, when y(:) is the index of the plant assigned to location:. If G has
a Hamiltonian cycle 1y, 15, * -+, 1,, i1, then the assignment y (j) = i, has a cost f(y) = m.
In case G has no Hamiltonian cycle, then at least one of the values d,u, v« mod m+n
must be » and so the cost becomes greater than or equal to m + » — 1. Choosing © >
(1 + e)m results in optimal solutions with a value of m if G has a Hamiltonian cycle
and value greater than (1 + e)m if G has no Hamiltonian cycle. Thus from an e-
approximate solution it can be determined whether or not G has a Hamiltonian cycle.
(ix) k-partition a e-approximate k-general partition: We prove this for £ = 2. The
proof is similar for other values of k. From the 2-partition problem the following 2-
general partition problem is constructed (see also Figure 3):

network with
multicommod-

ity flow=1

Source Sink

— copies

Fic 2 Reduction for e-approximate multicommodity flows

n+ 2

T/2

Fic 3 Reduction for e-approximate k-general partition Numbers 1n vertices represent vertex weights,
numbers on edges represent edge weights

562 S. SAHNI AND T. GONZALEZ

N={1’2)“' 7n+2}’
A={g,pll=sisnyg=n+1U{n+1 n+ 2}
_)r if(u,v) €EAandl =u = n,
f(u,v)—{l (w,v)=(n+1,n+2),

l<j7=n,

1) = T =)
w(j) {T/2 J2n+1,whereT E‘:r,,

W=T.

Clearly there is a solution of value greater than or equal to nr/2 iff the multiset
{r., - - -, ra} has a partition. If there is no partition of this multiset, then the solution
value is 1. A suitable choice for r yields the desired result.

(x) I-chromatic number « e-approximate l-min cluster, for all/ = 3: Let G(N, A) be
an undirected graph. The following /-min cluster problem G,(NV,, A,) is constructed:

Nl = N’

A = {u,v) | u # v and u,v € Ny},
)1 if(uv) €A,

w(u,v) =

k otherwise.

If G is l-colorable, then the /-min cluster problem has a solution with value less than
n* If G 1s not l-colorable, then the minimum solution value is greater than or equal to
k. Choosing k > (1 + €)n? yields the desired result.

(x1) 2-partition « e-approximate generalized assignment: From the partition prob-

lem S = {a,, a,, - * -, a,}, construct the following generalized assignment problem:
Cra = € = 1; C3,, = ks forl =1 = n,
Fia =Ty, =Tr;, =a, forl =1 =<n,
by=b,=T/2,b;,=T, whereT = Ya,
Clearly there is a solution of value n iff the multiset {a,, a., - - -, a,} has a partition.

If there is no partition of this multiset, then the solution value is greater than k.
Choosing k£ > (1 + €)n yields the desired result.
This completes the proof of the theorem. O

3. Concluswns

In this paper we have shown that many combinatorial problems are, in a sense, much
more difficult than mere P-completeness would imply. If P # NP, not only can you not
find optimal solutions in polynomial time, you cannot even guarantee coming close.
Thus some P-complete problems may be harder than others.

In addition to the problems studied here, many others may have this property. Any
P-complete problem for which no good heuristic is known is a candidate. In particu-
lar, no good heuristics are known for such important problems as maximum cliques,
Job shop and flow shop sequencing, etc. Results concerning such problems would be of
much interest.

As with P-completeness, however, one must be wary of concluding that similar
problems behave in similar ways. For instance, although the general one-constraint
0-1 integer programming problem apparently does not have polynomial time e-
approximate algorithms for any € > 0, the knapsack problem, which 1s a special case,
can be e-approximated in linear time for all € > 0 {10]. For another example, consider
obtaining e-approximate solutions for the k-min cluster problem. We have shown this
to be P-complete for all € > 0. If instead of trying to minimize the number of edges
within the clusters we try to maximize the number of edges between clusters, we get
what is apparently an equivalent problem—the optimal solutions are the same.
However, as can be shown (see Appendix) for this “2Z-max cut” problem, there exists a

P-Complete Approximation Problems 563

simple linear time e-approximate algorithm for all € = 1/k. Finally, consider the
traveling salesperson problem with minimum tour length criteria. Qur results show
that the approximation problem is P-complete. However, Rosenkrantz, Stearns, and
Lewis [16] have shown that when the edge weights satisfy the triangular inequality,
e-approximate solutions may be obtained in polynomial time for certain values of €.

Appendix

Here we study the clustering problem of [12]. A set of n documents is represented by a
weighted undirected complete graph G. The vertices are labeled 1 through n with
vertex i corresponding to document ¢, and the weight of the edge (@, j), w(, y) is a
measure of the dissimilarity of the documents i, j. The objective is to partition the set
of n documents into % disjoint clusters (groups) such that the total dissimilarity
among clusters (i.e. > w(i,y) fori,; in different clusters) is maximized. Sometimes we
may be interested in obtaining n/k clusters for some constant integer k2. We first
define these two problems formally.

(a) k-max cut (& = 2)': Given an undirected graph G = (N, A), find k disjoint sets,
S,1=<i:=k,suchthat kUL, S,=N and 2 wiy,v}is maximized.

s,
ves,
1<)

(b) [n/k }max cut: Same as (a) with k& replaced by [n/k].

Using the proof techniques of Karp [13], one may easily show that these two
problems are P-complete.

We now present an approximation algorithm for the k-max cut and [n/k }-max cut
problems. Consider the algorithm MAXCUT below. (Intuitively, this algorithm
begins by placing one vertex of G into each of the [sets S,, 1 < 1 = [; the remaining
n — [vertices are examined one at a time. Examination of a vertex, j, involves
determining the set S,, 1 =1 =, for which Y ,,cs, w{m, j} is minimal. Vertex is then
inserted/assigned to this set.) A similar algorithm for this problem appears in [12].

Algornthm MAXCUT({, G)

comment. ! - number of disjoint sets, S,, into which the vertices, N = (1, 2, , n), of the graph
G(N, A) are to be partitioned, SOL the value of the vertex partitioning obtamed, w{t, s} weight of
the edge {1. j}; SET(1) the set to which vertex : has been assigned (SET(:) = 0 for all vertices not yet
assigned to a set), WT'() used to compute ¥ e, wim, j}, 1 <1< {

This algorithm assumes that the graph G(V, A) 1s presented as n lists v,, v,, -+, v, Each listy,
contains all the edges, {1, j} € A, that are adjacent to vertex : No assumption is made on the order mn
which these edges appear 1n the list end comment.

Step I [Imtialize]
If{ = n then do
SOL « Z wi,j}
{uae 4
SET(1) «<1,1=1=n
stop
end
else do
WT() «0,1=1=<1
SET(1) «—1,1=1=<1
SET() «<0,l +1=1=n
SOL <« X wi,jb

{aed
1se<yst

Jel+1
end

! The k-max cut problem 1s also a generalization of the “grouping of ordering data” problem studied 1n
{1] [1] restricts the set S, to be sequential,1e 1f:,7 € S,;and:1 <j,then: + 1,7 + 2, J—1€8;, 1]
presents an O (kn?) dynamic programmng algorithm for this

564 S. SAHNI AND T. GONZALEZ

Step 2 [process edge list of vertex ;1
for each edge {7, m} on the edge list of vertex do
if SET(m) # 0 then WT'(SET (m)) « WT'SET (m)} + w{y, m};
end
d; « degree of vertexj = # of edges adjacent to vertex

Step 3 [find the set for which 2 w{;, m} 1s mimmal)
mE‘.l
look at WT'(a), 1 = a = min{d, + 1, [} and determine : such that WT'(z) 1s mmnimal in this range (Note

that ifd, + 1 <[then at least one of WT'(@), 1 = @ = d, + 1, must be 0 and mmmimal Ford, + 1 =1 all
WT(a) are looked at and the mimnimal found.)

Step 4 [assign vertex J to set S,]
SET(3) <«
Step 5 [update SOL and reset WT']
for each edge {j, m} € A for which SET(m) + 0 do
if SET(m) # 1 then SOL < SOL + w{;, m}
WT(SET(m)) « 0
end
Step 6 [next vertexly «j + 1
ifj = n then go to step 2
else terminate algorithm
end MAXCUT

LemMma Al. The time complexity of algorithm MAXCUT is O(+ n + e)on a
random access machine (n s the number of vertices, e the number of edges, and l the
number of groups into which the vertices are to be partitioned).

Proor.

Step Time per execution Total time
1 On +e+1) O +e+ 1)
2 o) Ofe)
3 0, +1) O + n)
4 o) o)
5 oW, Ofe)
6 o) O(n)

Hence the total time is equal to O(n + ¢ +).

Lemma A2. Algorithm MAXCUT 1s a 1/k-approximate algorithm for the k-max
cut problem.

Proor. Ifn <k, then MAXCUT generates the optimal solution value. So assume
n > k. Define the internal weight of the set S, to be Y.<y uves, w{u, v}. Then the total

internal weight (TIW) equals Y%, internal weight (S,). The external weight (EW)
equals X<, ues,ves,02 Wk, v}. In step 4, when vertex ; is assigned to set ¢, either
WT@) = 0 (corresponding to d, < 1) or WT'() = Y cn=r WT(m)/k, i.e. if the total
internal weight increases by WT'(z), then the external weight increases by at least
(k —)WT(). Consequently, at termination TIW < EW/(k — 1) (note that SOL =
EW). But the optimal value of the solution is less than or equal to TIW + EW. Let F*
be the optimal. EW = SOL is the approximation obtained by MAXCUT. The worst
case occurs when TIW approaches EW/(k — 1). Hence |(F* — SOL)/F* < 1/k. D

From Lemma A2 it follows that Algorithm MAXCUT is a k/n-approximate algo-
rithm for the n/k-max cut problem. While approximately optimal clusters may be
found in linear time using the maximization criteria, one of the results of this paper is
that finding approximately optimal clusters under the minimization criteria is P-
complete.

ACKNOWLEDGMENTS. Organizational changes suggested by the referees have im-
proved the readability of this paper. In particular, the concluding section (Section 3)

P-Complete Approximation Problems 565

was contributed by one of the referees. We would like to thank the referees for their
interest and helpful comments

REFERENCES
1 Bopin, L D. A graph theoretic approach to the grouping of ordering data. Networks 2 (1972), 307-
310
2 Bruno, J, Corrman, E G, anp Seti, R Scheduling independent tasks to reduce mean fimsh-
ing-time Comm ACM 17,7 (July 1974), 382-387.
3 Conway, R W., MaxweLL, N.L , AND MiLLEr, L W Theory of Scheduling Addison-Wesley,
Reading, Mass , 1967
4 Cook,S A The complexity of theorem-proving procedures Conf. Record of Third ACM Symp on
Theory of Computing, 1970, pp 151-158.
5 GARFINKEL, R S., AND NEMHAUSER, G L Integer Programming Wiley, New York, 1972
6 Garey, MR, anp Jounson, DS The complexity of near-optimal graph coloring. J ACM 23, 1
(Jan 1976), 43-69
7 Garey, MR, Jounson, DS, anp StockMEYER, L J Some simplified NP-complete problems
Theoretical Comput Sci (to appear)
8 GranaMm, RL Bounds on multiprocessing timing anomalies SIAM J Appl Math 17,2 (March
1969), 416-429
9 Horowrrz, B, anp Sauni, S Exact and approximate algorithms for scheduling nonidentical
processors J ACM 23, 2 (April 1976), 317-327
10 IBarra, O H, anp KiM, CE Fast approximation algorithms for the knapsack and sum of subset
problems. J ACM 22, 4 (Oct. 1975), 463-468.
11 Jounson, D Approximation algorithms for combinatorial problems. J Comput. Syst Scis 9, 3
(Dec 1974), 256-278
12 Jounson, D.B, anp Laruente, J M A controlled single pass classification algorithm with
application to multilevel clustering Scientific Rep #ISR-18, Information Science and Retrieval,
Cornell U, Tthaca, N Y , Oct 1970, pp XI-1-XII-37
13 Karp, RM Reducibibty among combinatorial problems In Complexity of Computer Computa-
tions, RE Miller and J W Thatcher, Eds , Plenum Press, N Y , 1972, pp 85-104
14 Knuth, DE. A terminological proposal ACM SIGACT News 6, 1 (Jan 1974), 12-18
15 Lukes, J A Combinatonal solution to the partitioning of general graphs IBM J Res and
Develop 19, 2 (March 1975), 170-180
16 RoSENKRANTZ, D J , StEARNS, R E , AND LEwis, PM Approximate algorithms for the travelling
salesperson problem 15th Annual IEEE Symp on Switching and Automata Theory, 1974, pp 33-
42
17 Ross, GT, anp SoLanp, RM A branch and bound algorithm for the generalized assignment
problem Math Programmung 8 (1975), 91-103
18 Sanni, 8. Algonthms for scheduhing independent tasks J ACM 23, 1 (Jan 1976), 116-127
19 Saun1, S Computationally related problems. SIAM J Comput 3, 4 (Dec 1974), pp 262-279
20 SaHNI, S Approximate algorithms for the 0/1 knapsack problem J ACM 22,1 (Jan 1975), 115-

124

RECEIVED JULY 1975, REVISED JANUARY 1976

Journal of the Association for Computing Machinery, Vol 23, No 3, July 1976

