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1. In t roduc t ton  

Our  notion of P-complete (polynomial-complete) corresponds to the one used in  [19]. A 
problem, L, will be satd to be P-complete iff the following holds: L can be solved in  
polynomial  determinis t ic  t ime iff the class of nondeterminis t ic  polynomial  t ime 
languages  is the same as determinis t ic  polynomial  t ime languages  (i.e. P = NP). 
K n u t h  [14] suggests the terminology NP-complete (nondeterminis t ic  po lynomml-  
complete). However, his notion of ~'completeness" is tha t  of Karp  [13]. Since the 
equivalence or nonequivalence of the two notions is not  known,  we will use the term 
NP-complete for problems tha t  can be shown complete with Karp 's  def ini t ion and  P- 
complete for those which require the defini t ion of [19]. The reader un fami l i a r  with P- 
complete problems is referred to [13 and 19]. All problems tha t  are NP-complete (i e. 
complete under  Karp ' s  definitions) are also P-complete [4 and  19]. The reverse is 
unknown.  Since it appears tha t  P ~ NP, the P-complete problems probably have no 
polynomial  solution Many of these problems, especially the optimizat ion problems, 
are of practical significance Often, as m the case of the knapsack problem [20], 
approximate solutions 0.e. feasible solutions tha t  are guaran teed  to be "reasonably" 
close to the optimal) would be acceptable so long as they can be obtained "quickly" 
(e.g. by an  O(n k) algor i thm for small  k). Johnson  [11] and Sahni  [20] have s tudmd 
some P-complete problems with respect to obta in ing  "good" (i.e. polynomial) approxi- 
mate  algorithms. Formal ly  we define an e-approximate a lgor i thm as follows. 

Def in t tmn .  An algor i thm will be said to be an  e-approximate a lgor i thm for a 
problem P,  iff ei ther  ( i)P,  is a maximizat ion  problem and for every ins tance  of P , ,  

I (F* - R ) / F *  I -< ~, 0 < E < 1, 
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or (ii) P~ is a minimization problem and for every instance of P, ,  

[ (F* - F ) /F*  [ _< e, • > 0 ,  

where F* is the optimal solution (assumed greater  than 0) and P is the approximate 
solution obtained. [] 

Additional results on approximation algorithms for P-complete problems may be 
found in [2, 6, 8-10, 16, 18]. Some of these algorithms obtain e-approximate solutions 
only for certain values of•  (i.e. • -> k for some k). For example, Graham's  heuristic to 

1 
sequence jobs on m identmal processors is •-approximate for • ~- 3(1 - l/m). Other 

approximation algorithms [9, 10, 18, 20] obtain •-approximations for any • > 0. An 
example is the O(n/ •  ~ + n log n) algorithm of Ibarra  and Kim [10] for the 0/1 
knapsack problem. General techniques for obtaining e-approximate solutions for all • 
are presented by Sahni [18] and Horowitz and Sahni [19]. The techmques are 
applicable to certain types of P-complete problems. 

In this paper we shall look at some *'natural" P-complete problems and show that  
the corresponding approximation problems are also P-complete One can easily 
construct "nonnatural" problems with this property. For example, consider the prob- 
lem: Given a graph G, •, 0 < e < 1, and integer k, find tha t  k-vertex subgraph G'  
which minimizes fiG') = 1 i f G '  is a clique and/ (G ' )  = 1 + 2• otherwise. 

For this problem it is easy to see tha t  if G has a clique of size k then all •- 
approxmaate solutions have fiG) = 1. If  G has no such clique then f(G) = 1 + 2•. 
Hence from the e-approximate solutions one can determine i fG has a clique of size k, 
and so the approximation problem is P-complete for all •. It  is interesting that  this 
should be true for natural ly  occurring problems. Garey and Johnson [6] show that  
obtaining •-approximate solutions to the chromatic number  problem is P-complete for 
all • < 1. The problems we shall consider are: traveling salesperson, cycle covers, 0/1 
integer programming,  multicommodity network flows, quadratic assignment,  gen- 
eral partitions, k-min cluster, and generalized assignment. For these problems it will 
be shown that  the •-approximation problem is P-complete for all values of •. (One 
should note that  in the case of a maximization problem • is restricted to 0 < • < 1 as 
all feasible solutions are 1 - approximate.) 

2. P-Complete Approximat ion  Problems 

In this section we look at  some P-complete problems and show that  they have a 
polynomial t ime approximate algorithm iffP = NP. This would then imply that  l fP  4~ 
NP, any polynomial t ime approximation algorithm for these problems, heuristm or 
otherwise, must  produce arbitrari ly bad approximations on some inputs. The prob- 
lems we look at  are: 

(i) Traveling salesperson: Given an undirected (directed) complete graph G(N, A)  
and a weighting function w :A ~ Z, find an optimal tour 0.e. an optimal Hamilton- 
ian cycle). The optimality criteria we shall consider are: 

(a) Minimize tour length (i.e. find the shortest Hamiltonian cycle). 
(b) Minimize mean arrival t ime at  vertices. The arrival t ime m measured relative 

to a given start  vertex ~, and the weights are interpreted as the time needed to go from 
vertex i to vertexj .  I f  h, ~2, "'" , ~,,, in+, = ~, is a tour O.e. Hamfltonian cycle), then the 
arrival t ime Yk at  vertex ik is 

Yk = ~ w(t~, tj+,), 1 < k i n  + 1. 
I=1 

The mean arrival t ime Y is then 
n +  I 

Y = ( l /n)  ~ Yk = ( l /n)  (n + 1 -j)w(t~, t~+,). 

The objective is to find a tour ~, . . .  , ~n, z~ tha t  minimizes F (see [3, p. 56]) 
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(c) Minimize variance of arrival times. Let ~, 12, "'" , in, in+l = i~ be a tour. Let Y~ 
and Y be as defined m (b) We wish to obtain a tour that minimizes the quantity o- = 

(l/n) ~ (Y~ - Y)~. 

(ii) Undirected edge disjoint cycle cover: Given an undirected graph G(N, A), find 
the mirumum number of edge disjoint cycles needed to cover all the vertices of N (i.e. 
minimum number of cycles such that each vertex of G is on at least one cycle). 

(iil) Directed edge disjoint cycle cover: Same as 0i) except that G is now a directed 
graph. 

0v) Undirected vertex disjoint cycle cover: This problem is the same as (ii) except 
that  now the cycles are constrained to be vertex disjoint. 

(v) Directed vertex disjoint cycle cover: Same as (iv) except that G is now a directed 
graph. 

(vi) 0-1 integer programming with one constraint. 
(vii) Multicommodity network flows: We are given a transportation network [191 

with source s~ and sink s2. The arcs of the network are labeled corresponding to the 
commodities that can be transported along them. Such a network is said to have a 
flow f iff f units of each commodity can be transported from source to sink. The 
problem here is to maximize f. 

(viii) Quadratic assignment [5, p. 18]: 

minimize fix)= 2 2 c,odkax,,~j,l 
/,3=1 ~,l=1 
~¢J ki's/ 

subject to(a) ~ x,k-< 1, 1-< t-< n, 

(b) ~ x,.k= 1, l < - k - < m ,  
,=1 

(c) x,.k = 0,1 for all l ,  k, 

where c .... d k j - > 0 , 1 ~ -  1, y - < n ,  1 -<k ,  l~- m. 

One sxtuation in which this problem arises is that of optimally locating m plants at n 
posmble sites. Thus x,k = I iffplant k is to be located at site l. Condition (a) states that 
at most i plant can be located at any particular site. Conditmn (b) requires that every 
plant be assigned to exactly 1 site. If c,.~ represents the cost of transporting 1 unit of 
goods from site t to site j ,  and dkd is the amount of goods to be transported from plant k 
to plant l, then fix) represents the cost of transporting all the goods between plants. 

(ix) k-general partition [15]: We are given a connected undirected graph G(N, A), 
an edge weighting function f : A ~ Z, a vertex weighting function w : N ~ Z, a 
positive number W, and an integer k -> 2. The problem is to obtain k disjoint sets 
$1, "'" , S~ such that: 

(a) t./ S, = N ,  

(b) S, N S ~ = +  forL ~d, 

( e ) ~  w(j)--- W f o r l -  ~-<k, and 
JES~ 

( d ) ~  ~] flu, v) is maximized. 
I=1 {U,V}G 4 

Partitioning problems of this type are encountered m the assignment of logic blocks 
to circuit cards in computer hardware design and in the assignment of computer 
information to physical blocks of storage [15]. 
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(x) k-rain cluster (for k -> 3). This is the document clustering problem with the 
minimization criteria. Given an undirected graph G(N, A) and a weighting function 
w : A ~ Z (the nonnegative integers), find k disjoint sets S,, ... , Sk such that 

k 

~=I 

and 

k 

E v) 
I=1 {U,v}EA 

u r~S~ 

(xi) Generalized ass ignment  [17]: 

is minimized.  

minimize ~ ~ c,~x~.~ 
~ I  JEJ 

subject to ~ r,.~x,~ -< b, for all zEI ,  
jes 

x~.s = 1 for a l l j E J ,  
zEl 

x~.j = 0, 1. 

In this f o r m u l a t i o n / =  (1, 2, . . .  , m) is a set of agent  radices, J = (1, 2, . . .  , n) is a 
set of task  indices, c,.~ is the cost when agent  z is assigned task  j ,  r,.s is the resource 
required by agent  i to perform task / ,  and b~ > 0 is the amount  of resource available to 
agent  ~. The decision variable is 1 if agent  ~ is assigned to t a s k / ,  and is 0 otherwise. 
This problem arises in the following situations: assigning software development tasks  
to programmers ,  assigning jobs to computer  networks,  scheduling variable length 
television commercials,  etc. 

In  order to prove some of our  results we shall use the following known P-complete 
problems: 

(a) Hamil tonian  cycle: Given an undirected (directed) graph  G(N, A), does it have  a 
cycle containing each vertex exactly once [13]? 

(b) Mult icommodlty flows: Given the t ransporta t ion network of (vii) above, does it 
have a flow o f f  = 1 [19]? 

(c) k-graph colorabihty (for k >- 3): Given an  undirected graph  G(N, A), do there 
exist disjoint subsets S,,  - . . ,  Sk such tha t  t3~=l S, = N and lf{t,`/}CA then vertices 
a n d j  are in different sets [7]? 

(d) k-part i t ion (for k >- 2): Given n integers r,, r~, ".. , r,,, are there disjoint subsets 
I1, I2, " " ,  Ik such t h a t  t.J~=, I, = {1, 2, ' . ' ,  n} and ~ e l ,  r~ = ~et~ r,, 2 -< l <- k? 

THEOREM 2.1. The e-approx~matmn problem for (~)-(xO above ts P-complete. 
PROOF For each of the problems (i)-(xi), it is easy to see tha t  i f P  = N P  then  the e- 

approximation problem is polynomially solvable (as the exact solutions would then  be 
obtainable in polynomial time). Consequently we concern ourselves only with show- 
ing tha t  if there is a polynomial t ime approximation a lgor i thm for any  of  the 
problems listed above then P = NP.  Our  approach is to separate feasible solutions to a 
given problem in such a way  tha t  from a knowledge of the approximate selutmn one 
can solve exactly a known P-complete problem 

(i-a) Hamil tonlan  cycle a e-approximate t ravel ing salesperson (min imum length  
criteria): Let  G (N, A)  be any  graph. Construct  the graph G,(V,  E) such tha t  V = N 
and E = {(u, v) I u, vEV}. Define the weight ing function w : E ~ Z to be 

w{u, v} = [~ if (u 'v)~A, 
otherwise.  

Let  n = I N I. For k > 1, the t ravel ing salesperson problem on G~ has  a solution of 
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length  n lff G has  a H a m l l t o n i a n  cycle. Otherwise ,  al l  solut ions  to Gi  have  l eng th  
g r e a t e r  t han  or equal  to k + n - 1. I f  we choose k ~- (1 + e)n, t hen  the only solut ions  
app rox ima t ing  a solut ion with value  n 0 f  the re  was a H a m l l t o n i a n  cycle in Gi)  also 
have  l eng th  n. Consequent ly ,  i f  the  t - app rox ima te  solut ion has  l eng th  less t h a n  or 
equal  to (1 + e)n, t hen  i t  m u s t  be of l eng th  n. I f  i t  has  l eng th  g rea te r  t h a n  (1 + e)n, 
then  G has  no H a m i l t o n i a n  cycle. 

0-b) H a m i l t o n i a n  cycle c~ e -approx imate  t r ave l ing  sa lesperson ( m i n i m u m  m e a n  
a r r iva l  t ime criteria)" We construct  Gi(V, E) as in (>a) above Let  the  s t a r t i ng  ver tex  
tl equal  1. I t  is easy to see t ha t  Gj has  a tour  wi th  mean  a r r iva l  t ime  less t h a n  or equal  
to (n + 1)/2 lff G has  a H a m i l t o n i a n  cycle. I f  G has  no H a m i l t o n i a n  cycle then  al l  
tours  in G1 have  m e a n  a r r iva l  t ime  g r ea t e r  t han  or equal  to k/n + (n - 1)/2. 
Choosing k > (1 + e)n(n + 1)/2 suff iciently separa tes  these  two solutions.  The  only 
solut ions app rox ima t ing  n(n + 1)/2 also have  va lue  n(n + 1)/2. Consequent ly  i f  the  e- 
approx ima te  solut ion has  a va lue  less t h a n  or equal  to (1 + e)(n + 1)/2, t hen  i t  
mus t  be of va lue  (n + 1)/2 and G has  a H a m i l t o n i a n  cycle. I f  the  va lue  is g r ea t e r  t h a n  
(1 + E)(n + 1)/2, G has  no H a m i l t o n i a n  cycle 

(i-c) H a m i l t o n i a n  cycle o~ t - app rox ima te  t r a v e h n g  sa lesperson (min imum var iance  
cri teria) .  F rom the undi rec ted  g raph  G(N, A)  we obta in  the  undi rec ted  g raph  Gi(N1, 
Aj)  wi th  

N , = N U { a ,  fl, T, 8}, A l = A U { ( r ,  cO,(a, fl),(fl, T),(~,8)} U { ( & z ) + I ( r , z ) E A } ,  

where  r is some a r b i t r a r y  ver tex  in N .  This  construct ion is shown in F igu re  1. F r o m  
the construct ion i t  is ev ident  t ha t  G~ has  a H a m l l t o n i a n  cycle i f fG  has  such a cycle. 
F rom the g raph  G~ we obta in  the  t r ave l ing  sa lesperson problem G2(N2, A2) wi th  N2 = 
Nl,  A2 = {(t,j) I t#j ,  i , j~N2},  and we igh t ing  function w . A2 --) Z defined by  

w{u, v} = {~ if  (u,v) ~ Al '  
i f (u ,v)  ~ A, .  

L e m m a  2.1 obta ins  lower bounds on the va rmnce  %-) of an  op t imal  tour  for G2. 
LEMMA 2.1 F o r k  > [(1 + e)(n)(n - 1)(n + 1)/3]Jl2and e > O, thecompletegraph G2 

has a tour, w~th starting vertex fl, wzth a vartance o" -< (n - 1)(n + 1)/12, i f f  G~ has a 
Hami l tonian  cycle. I f  Gj has no Hamt l tontan  cycle, then the opttmal tour for G2 has cr 
> (1 + e)(n - 1)(n + 1 ) /12 .n  = I N~ I. 

PaooF If  G~ has  a H a m i l t o n i a n  cycle, t hen  th is  cycle is a va l id  tour  in  G2. Al l  
edges on this  tour  have  weight  1 and  m e a n  a r r iva l  t ime  = Y = (n + 1)/2, 

o- = {l /n)  ~ ?  {~ - y)s  = ( l / n )  ~ t s - y s  
1 1 

= -~ (2n 2 + 3n + 1) -~(n + 1) ~ = (n - 1)(n + 1)/12. 

I fG j  has  no Hamf l ton ian  cycle, then  every  tour  in G2 m u s t  include a t  l eas t  one edge 
wi th  weight  equal  to k. Let  the  op t imal  tour  be ~ = t~, t.~, . . .  , tn, ~,+~ = 13. We have  
th ree  cases: 

<@ 
/ 

/ 

FiG 1 C o n s t r u c t i o n  of  G~ f rom G B r o k e n  l ines  i n d i c a t e  edges  in G,  w h i c h  a r e  n o t  m G 
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Case 1. w(~, i2) = 1, w(~, tj+l) = k for some j ,  1 < j  -< n: For  this case we have Y2 = 
l a n d Y n + l > _ k  + n -  1. I f ~ Z > k / 2 +  1, then I Y 2 - Y I  - > k / 2 . I f Y < k / 2 +  1, then 
I Yn+~ - ~z I >- k/2.  In  either case we have 

o" _> (k /2 )2 /n  = k2/(4n)  > (1 + e)(n - 1)(n + 1)/12 

for k > [(1 + e )n (n  - 1)(n + 1)/3] 1/~. 

Case 2. w(B, t2) = k and all other edges have weight  = 1: Since all other edges on 
the tour, have weight  1, it follows tha t  t,  = a or i, = T as (a, ~) and (% fl) are the only 
two edges inA2 incident to/3 and hav ing  weight  I Without  loss of generah ty  we m a y  
assume i, = a. Since 7 is a vertex on the tour, the tour enters  7 via some edge (u, T) 
and leaves via another  edge (7, v), u ~ v and v ~ ft. Also u 6 fl as w(/~, z2) = k ¢ 1. 
From the construction of G2 it is clear tha t  the only edges in A2 incident to 7 with 
weight  I are (fl, 7) and (7, ~). (7, ~) is the only edge satisfying the requirements  on u 
and v.. Hence the second edge on the tour  incident to 7 mus t  have weight  = k. Hence 
there is no tour in G~ with w(t3, t2) = k and all other  edges hav ing  a weight  of 1. 

Case 3. w(/3, t2) = k and w(b,  b+ 1) = k for some j ,  1 < j  -< n: Now Y2 = k and Y,,+ 1 -> 
2 k + n - 2. I fY  -> 3 k / 2 ,  then I Yz - Y I -> k / 2 .  I f~  z < 3 k / 2 ,  then I Y,, - ~z I -~ k / 2 .  
Hence o" > (1 + E)(n - 1)(n + 1)/12 (see case 1). 

This takes care of  all possibilities when Gi has no Hamil tonian  cycle. [] 
The reduction of  (i-c) now follows from a rguments  similar to those of (i-a) and (i-b). 
(ii)-(v) The proofs for (ii)-(v) are similar. We outline the proof for (iv). 
(iv) Undirected Hami l ton ian  cycle a e-approximate disjoint cycle cover: Given an 

undirected graph G(N,  A) ,  construct  k copies G , ( N ,  A,)  of this graph.  Pick a vertex 
y E N .  Let u 1, u s, . . .  , u d be the vertices adjacent to v in G (i.e. (u', v ) E A ,  1 _< t -< d). 
Define H~(Vj, E~) to be the graph with 

k 

V~= U N~ and E j =  UA~U{(u~,v~+l) l l - < t < k } U { ( u ~ , v l ) } .  

Clearly,  i fG has a Hami l ton ian  cycle then,  for some/ ,  He has  a cycle cover containing 
exactly one cycle (as for some j ,  (v, u') are adJacent m the Hami l tonmn cycle and using 
the images of  the edges of  this cycle in the subgraphs G~ (except for the images of  the 
edge (v, uS), together  with the edges {(u:,  v~+~) I 1 -< t < k} U { ( u / ,  v0}, one obtains a 
Hamil tonian  cycle for E,).  I f G  has no Hami l ton ian  cycle, then  the subgraphs G~ each 
require at  least two disjoint cycles to cover their  nodes. Consequently the disjoint 
cycle cover for . /contains  a t  least k + I cycles, 1 -<j <_ k. For  any  ~, one may  choose a 
suitable k such tha t  from the approximate solutions t o l l ,  1 _<j _< k, one can decide 
whether  or not G has  a Hamil tonian  cycle (i.e. choose k > (1 + e)). 

Note tha t  the above proof also works for the case of edge disJoint cycle covers, since 
G has an  edge disjoint cycle cover of  size 1 iff it has  a Hamil tonian  cycle. 

(vi) J u s t  consider the reduction: 2-partition a e-approximate 0-1 integer program- 
ming,  i e. 

minimize 1 + k ( m  - ~r ,~,)  
subject to ~r,5, -< m, 

8, = 0 or 1, 
m =- ~ r J 2 .  

The min imum equals 1 iff there is a subset with sum equal to m; otherwise the 
m i n i m u m  is greater  t han  or equal to 1 + k. 

(vii) Mult icommodity flows a e-approximate mult icommodity  flows: In  [19] it was 
shown tha t  mul t icommodity  flows with f = 1 was  P-complete Given a mult icommod- 
ity n e t w o r k N  as m [19] we construct  k copies of  it and put  them in parallel. Another  
network with a flow f = 1 is also coupled to the network as m Figure 2. 

Clearly the mult icommodity network of Figure 2 has a flow ofk + 1 1fiN has a flow 
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of 1. I f N  does not have  a flow of 1, then  the m a x i m u m  flow in the ne twork  of F igure  2 
is 1. Hence the approximat ion  problem for mul t icommodi ty  flows is P-complete.  

(viii) Hami l ton ian  cycle a e -apprommate  quadrat ic  ass ignment :  Le t  G (N, A)  be 
an undirected graph  with m = I N I .  The following quadrat ic  ass ignment  p rob lem 
(QAP) is constructed from G: 

n = m ,  
{10 i f T = ~ + l  a n d ~ < m  o r i f  t = m a n d j  = 1 }  l < ~ , j _ ~ n ,  

e~.~ = otherwise  

{loo if (k,l)~A,~ dkl = • _ o t h e r w i s e J '  1 - < k , l - <  m. 

The total  cost, f(~), of an ass ignment ,  ~, of p lants  to locations is ~IL~ c,~d~(~)~o, 
.] = (~ mod m)  + 1, when ~(~) is the index of the  p lant  assigned to location ~. I f G  has  
a Hami l ton ian  cycle t~, 12, " ' " ,  t, ,  i,, then  the ass ignment  ? ( j )  = ij has  a cost f6/) = m. 
In case G has  no Hami l ton i an  cycle, then  a t  least  one of the values  d~>.~(~, mow ,~+,) 
m u s t  be oo and so the  cost becomes grea te r  t h a n  or equal  to m + w - 1. Choosing oo > 
(1 + e)m results  in opt imal  solutions wi th  a value o f m  i fG  has  a Hami l t on i an  cycle 
and value grea te r  t han  (1 + e)m if  G has  no Hami l ton ian  cycle. Thus  f rom an  e- 
approximate  solutmn it can be de termined whe ther  or not G has  a Hami l ton i an  cycle. 

(ix) k-par t i t ion a e-approximate  k-genera l  parti t ion: We prove this for k = 2. The 
proof  is mmHar  for other  values  of k. F rom the 2-parti t ion problem the following 2- 
general  par t i t ion problem is constructed (see also Figure  3): 

Source 

~ network with 
mult icommod-l~ 
ity flow=l I ~ .  

N 

FIG 2 Reduction for e-apprommate mult lcommodity flows 

FIG 3 

n+l n+2 

Reduction for c-approximate k-general parti t ion Numbers  m vertices represent  vertex weights,  
number s  on edges represent  edge weights  
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N = {1,2, ..- , n  + 2}, 
A ={(~,j) l l - < i - < n , . l =  n +  1 } U { ( n +  1, n +  2)}, 

~r  i f (u ,v )  E A  a n d l  -< u <- n, 
f ( u ,  V') [1 (u,v) = ( n +  1, n +  2), 

I t ,  1 -< j _< n, w( j )  = T / 2  j ~- n + 1, w h e r e T =  r,, 

W = T .  

S. S A H N I  AND T. GONZALEZ 

Clearly there is a solution of value greater than or equal to nr/2 iff the multiset 
(5, • • ", r,} has a partition, ff there is no partition of this multiset, then the solution 
value is 1. A suitable choice for r yields the desired result. 

(x) /-chromatic number a •-approximate l-rain cluster, for all I ~- 3: Let G(N,  A )  be 
an undirected graph. The following l-min cluster problem G~(N~, A ~) is constructed: 

N1 = N, 
A1 = {(u,v) I u ¢ v and u,v  ~ N1}, 

w(u,v)  = {1 k i f  (u,v) ~ A ,  
otherwise. 

I fG is/-colorable, then the/-min cluster problem has a solution with value less than 
n 2. I fG is not/-colorable, then the minimum solution value is greater than or equal to 
k. Choosing k > (1 + •)n 2 yields the desired result. 

(x0 2-partition a •-approximate generalized assignment: From the partition prob- 
lem S = {al, a2, • • ", a,~}, construct the following generalized assignment problem: 

cz.~ = cz, = 1, c3,, = k, for i -< t -< n, 
rj,, = r2.~ = r3,~ = a, for 1 -< t -< n, 
bl = b~ = T / 2 ,  b3 = T,  w h e r e T =  ~a,  

Clearly there is a solution of value n iffthe multlset {a~, a2, • • ", an} has a partition. 
If  there is no partition of this multiset, then the solution value is greater than k. 
Choosing k > (1 + •)n yields the desired result. 

This completes the proof of the theorem. [] 

3. C o n c l u s m n s  

In this paper we have shown that many combinatorial problems are, in a sense, much 
more difficult than mere P-completeness would imply. I fP  ~ NP, not only can you not 
find optimal solutions m polynomial time, you cannot even guarantee coming close. 
Thus some P-complete problems may be harder than others. 

In addition to the problems studmd here, many others may have this property. Any 
P-complete problem for which no good heuristic is known is a candidate. In particu- 
lar, no good heuristics are known for such important problems as maximum cliques, 
job shop and flow shop sequencing, etc. Results concerning such problems would be of 
much interest. 

As with P-completeness, however, one must be wary of concluding that similar 
problems behave in similar ways. For instance, although the general one-constraint 
0-1 integer programming problem apparently does not have polynomial time •- 
approximate algorithms for any • > 0, the knapsack problem, which is a special case, 
can be •-approximated in linear time for all  • > 0 [10]. For another example, consider 
obtaining e-approximate solutmns for the k-min cluster problem. We have shown this 
to be P-complete for all • > 0. If  instead of trying to minimize the number of edges 
within the clusters we try to maximize the number of edges between clusters, we get 
what is apparently an equivalent p rob l em- the  optimal solutions are the same. 
However, as can be shown (see Appendix) for this "k -max  cut" problem, there exists a 
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simple linear time e-approximate algorithm for all • -> 1/k. Finally, consider the 
traveling salesperson problem with minimum tour length criteria. Our results show 
that  the approximation problem is P-complete. However, Rosenkrantz, Stearns, and 
Lewis [16] have shown that  when the edge weights satisfy the tr iangular inequality, 
E-approximate solutions may be obtained in polynomial t ime for certain values of•.  

Appendtx 

Here we study the clustering problem of [12]. A set ofn documents is represented by a 
weighted undirected complete graph G. The vertices are labeled 1 through n with 
vertex t corresponding to document t, and the weight of the edge (i, j) ,  w(t, j )  is a 
measure of the dissimilarity of the documents t, j .  The objective is to partition the set 
of n documents into k disjoint clusters (groups) such that  the total dissimilarity 
among clusters (i.e. ~ w (i,g) for i,.] m different clusters) is maximized. Sometimes we 
may be interested in obtaining n/k clusters for some constant integer k. We first 
define these two problems formally. 

(a) k-max cut (k -> 2)1: Given an undirected graph G = (N, A), find k disjoint sets, 

S,, 1 -< t -< k, such that  k t)~=~ S, = N and ~ w{u,v} is maximized. 
{u,v}EA 

u~S~ 
veSj 

(b) [n/k ]-max cut: Same as (a) with k replaced by [n/k ]. 
Using the proof techniques of Karp [13], one may easily show that  these two 

problems are P-complete. 
We now present an approximation algorithm for the k-max cut and [n/k ]-max cut 

problems. Consider the algorithm MAXCUT below. (Intuitively, this algorithm 
begins by placing one vertex of G into each of the l sets S,, 1 -< ~ -< l; the remaining 
n - l vertices are examined one at a time. Examination of a vertex, j ,  involves 
determining the setS,,  1 -< ~ -< l, for which ~mes, w{m, j} is minimal. Vertexj  is then 
inserted/assigned to this set.) A similar algorithm for this problem appears in [12]. 

Algorithm MAXCUT(I, G) 

comment, l number of disjoint sets, S,, into which the vertices, N = (1, 2, , n), of the graph 
G (N, A) are to be partttloned, S O L  the value of the vertex partitioning obtained, w{t,j} wetght of 
the edge {z. j}; SET( l )  the set to which vertex ~ has been assigned (SET(t)  = 0 for all vertices not yet 
assigned to a set), WT( t )  used to compute ~,.es, w { m , j } ,  1 -< z -< l 

This algorithm assumes that  the graph G(N, A) is presented as n lists Vl, v2, - ' ,  vn Each hs t  v, 
contains all the edges, {t, j} E A, that  are adjacent to vertex z No assumption is made on the order m 
which these edges appear in the list end comment. 

Step  i [Initialize] 
If  l>- n t h e n d o  

S O L  ~- ~ w{l,j} 

SET(J)  ~-- ~, 1 ~ ~ -< n 

stop 
end 

else do 
WT( t )  ~--0, 1-< t-< l 
S E T ( t )  ~-- t, 1 -~ t -< l 
S E T ( t )  ~-- O, l + 1-< t -< n 

SOLe ~ w {1,~} 

j ~ - l + l  
end 

The k-max cut problem is also a generalization of the "grouping of ordering data" problem studied in 
[1] [1] restrlcts the set S, to be sequential, l e  l f t , . l ~ S ~ a n d ~ < j ,  t h e n t + l , t + 2 ,  , j - l ~ S z  [1] 
presents an O (kn  2) dynamic programming algorithm for this 
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Step 2 [prOcess edge h s t  of vertex./]  
for  each edge {j, m} on the  edge hs t  of ve r t ex j  do 

if SET(m)  ~ 0 then  WT(SET(m))  ~- WT(SET(m) )  + w{j ,  m}; 
end 

d~ ~-- degree of ve r t ex j  = # of edges adjacent to vertex./ 

Step 3 [find the  set for which ~ w{j,  m} m minimal]  

look a t  WT(a), 1 -< a -< ram{de + 1, l} and determine z such tha t  WT(D Is min imal  in this  range  (Note 
tha t  if d, + 1 ~_ I then  at  least  one ofWT(a) ,  1 <- a ~- d~ + 1, m u s t  be 0 and min imal  For d~ + 1 -> l all 
WT(a) are looked at  and the  min imal  found.) 

Step 4 [assign ve r tex , / to  set  S, ] 
S E T ( j )  <-- 

Step 5 [update SOL and reset  WT] 
for each edge O, m} ~ A for whmh SE T (m)  ~ 0 do 
i f  SET(m)  ¢ ~ then  SOL ~- SOL + wO, m} 
WT(SET(m))  ~- 0 
end 

Step 6 [next vertex]g <--g + 1 
i f j  -< n then  go to step 2 

e |se  te rminate  a lgori thm 
end MAXCUT 

LEMMA A1. The time complexity of  algorithm M A X C U T  is O(l + n + e) on a 
random access machine (n us the number of  vertices, e the number of  edges, and l the 
number of groups unto which the vertwes are to be part, tinned). 

PROOF. 

Step Time per execution Total h m e  

1 O(n + e  + l )  O(n + e  + l )  
2 O(d~) O(e) 
3 O(d~ + 1) O(e + n) 
4 O(1) O(n) 
5 O(d~) O(e) 
6 O(1) O(n) 

Hence the total time is equal to O (n + e + l). 

LEMMA A2. Algorithm M A X C U T  us a 1~k-approximate algorithm for the k-max 
cut problem. 

PROOF. If n --< k, then MAXCUT generates the optimal solution value. So assume 
n > k. Define the internal weight of the setS,  to be ~u<v,~.,es, w{u, v}. Then the total 
internal weight (TIW)  equals ~=1 internal weight (S,). The external weight (EW) 
equals ~ . . . . .  ~s,~esr,~j w{u, v}. In step 4, when ver tex j  is assigned to set u, either 
WT(u) = 0 (corresponding to dj < l) or WT(i) ~- ~ - - k  WT(m)/k,  i.e. if the total 
internal weight increases by WT(~), then the external weight increases by at least 
(k - 1)WT(~). Consequently, at termination T/W < EW/(k  - 1) (note that  SOL = 
EW). But the optimal value of the solution is less than or equal to TIW + EW. Let F* 
be the optimal. E W  = SOL is the approximation obtained by MAXCUT. The worst 
case occurs when TIW approaches EW/(k  - 1). Hence I(F* - SOL)/F*I < 1/k. [] 

From Lemma A2 it follows that  Algorithm MAXCUT is a k/n-approximate algo- 
r i thm for the n/k-max cut problem. While approximately optimal clusters may be 
found in linear time using the maximization criteria, one of the results of this paper is 
that  finding approximately optimal clusters under the minimization criteria is P- 
complete. 
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