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1. Introduction 

Let T be a rectangle and let S be a set of n points that lie on the sides of T. Each 
point in set S has to be connected to another point in S by a wire. The path 
followed by these wires consists of a finite number of horizontal and vertical line 
segments. These line segments are assigned to two different layers. All horizontal 
line segments are assigned to one layer and all the vertical ones are assigned to the 
other layer. Line segments on different layers can be connected at any given point 
z by a wire perpendicular to the layers if both line segments include point z on 
their respective layers (this is normally referred to as a via or contact cut). Every 
pair of distinct and parallel line segments must be at least X > 0 units apart and 
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FIGURE 1 

every line segment must be at least X units from each side of T, except in the region 
where the path joins the point in S it connects. Also, no path is allowed inside of 
rectangle Ton any of the layers (see Figure 1). 

Problem 2-RlM (routing around one module “two terminal” nets) consists of 
specifying paths for all the wires in such a way that the total area is minimized. 
That is, to place T together with all the wires (that must satisfy the restrictions 
imposed above) inside a rectangle (with the same orientation as T) of least possible 
area. This problem has applications in the layout of integrated circuits [5, 81 and 
conforms to a set of design rules for VLSI systems [7]. 

Hashimoto and Stevens [4] present an O(nlogn) algorithm to solve the 2-RlM 
problem for the case when all the points in S lie on one side of T and an Q(n log n) 
lower bound on the worst case time complexity for this problem was established 
in [3]. In [5], an O(n3) algorithm is presented to solve the 2-RlM problem. If more 
than two layers are allowed and wire overlap is permitted, then the problem 
becomes NP-hard [9]. Other generalizations of the 2-RlM problem have been 
shown to be NP-hard [6]. In this paper we present a linear time algorithm to solve 
the 2-RlM problem when the set of terminals is initially sorted. Since sorting the 
terminals can be done in O(nlogn) time, the more general case can be solved in 
O(nlogn) time. 

The first few steps in our procedure are the initial steps in LaPaugh’s algorithm 
[5]. These steps divide the 2-RlM problem into two subproblems and find the 
direction for the paths connecting local terminals (a terminal is said to be local if 
it is to be connected to another terminal located on the same side or on an adjacent 
side of T). After performing these operations it is only required to solve a restricted 
version of the 2-R 1 M problem. In this restricted version of the 2-R 1 M problem all 
the nonlocal terminals appear on the top and bottom sides of T. It is at this point 
that our algorithm will differ from the one given in [5]. 

To simplify the presentation of our results, first we show the existence of an 
optimal solution, D, that satisfies the following properties: 

(a) Balance. The number of paths crossing two predetined vertical half-lines resting 
on the top side of T differs by at most one. 

(b) Minimum height. The height on the top side of T for D (maximum number of 
paths crossing any vertical half-line resting on the top side of T) is minimum 
amongst all optimal solutions that satisfy (a). 

Two suboptimal solutions satisfying (a) are defined. Both of these solutions can 
be easily generated. We show that an optimal solution satisfying (a) and (b) above 
differs from one of these suboptimal solutions by a set of connecting paths that 
can be easily characterized. Our algorithm generates these suboptimal solutions 



812 T. F. GONZALEZ AND S.-L. LEE 

and interchanges the direction of several sets of paths. At least one of these feasible 
solutions is an optimal solution for our problem. 

In Section 2 we present some initial definitions and the steps from LaPaugh’s 
[5] algorithm that our procedure follows. In Section 3 we present a series of lemmas 
that show the existence of an optimal solution that can be generated by a greedy 
method. Our algorithm and complexity issues relating to the 2-RlM problem are 
discussed in Section 4. 

2. Definitions and Problem Transformations 
In this section, we redefine the 2-RlM problem, since our algorithm can be easily 
explained under this new definition. We also define some terms and present the 
steps from LaPaugh’s algorithm that our procedure follows. 

Let T be a rectangular component of size h by w (height by width). There are 2n 
terminals (T, , Tz, . . . , T2,,) on its sides. It is assumed that every pair of terminals 
is at least X > 0 units apart and every terminal is located at least X units from each 
of the corners of T. The function C(i), for 1 5 i 5 2n, indicates that terminal Ti is 
to be connected to terminal Tcci,. If C(i) =j, then C(j) = i, that is, Cis a symmetric 
function. Terminal T, is to be connected to terminal Tccij by a wire that follows a 
path beginning at point Tj and ending at point Tcci,. Each of these paths can be 
partitioned into a finite number of straight line segments. These line segments 
must lie on the same plane as T, but cannot lie on the inside of rectangle T. Each 
line segment must be parallel to a side of T. Perpendicular line segments can 
intersect at any point, but parallel line segments must be at least X units apart. 
Also, all line segments must be at least X units away from every side of rectangle T 
except in the vicinity where a line segment connects a terminal. The Z-RIM 
problem consists of specifying paths for all the interconnections subject to the rules 
memtioned above in such a way that the total area is minimized, that is, place the 
component together with all the interconnnecting paths inside a rectangle (with 
the same orientation as T) of least possible area. 

Label the sides of the component (in the obvious way) left, top, right, and 
bottom. Starting in the bottom-left corner of T, traverse the sides of the rectangle 
clockwise. The ith corner to be visited is labeled S,-, . Assume that terminal Ti is 
the ith terminal visited. The closed interval [x, y], where x and y are the corners of 
T or the terminals Ti, consists of all the points on the sides of T that are visited 
while traversing the sides of T in the clockwise direction starting at point x and 
ending at point y. Note that interval [x, x] includes only one point. Parentheses 
are used instead of square brackets when it is desired to specify an open interval. 
We use [So, S,], [S,, &I, [&, &I, and [$, So] to represent the left, top, right, and 
bottom sides of T, respectively. Terminal Tj is said to belong to side f, S(i) = 1, if 
T, is located on the interval [S,, S(J+~),~~~~J. 

Set D = (d, , d2, . . . , d,,] is said to be an assignment if (d,, C(d;) 1 1 I i 5 n) = 
1192, . * * 3 2nl. Any subset of an assignment is said to be a partial assignment. An 
assignment D indicates the starting point for each path connecting a pair of 
terminals. The direction of all the paths given by D is the clockwise direction. For 
any i E D, the wire that connects terminal Tj to terminal Tccil starts at terminal 7; 
moving perpendicular to side S(i) and then continues in the clockwise direction 
with respect to T until it can be joined to a wire (all of it on the outside of T) 
perpendicular to S(C(i)) that ends at terminal Tcci,. In a partial assignment, the 
starting point for some of the connecting paths might not be specified. The 
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assignment for the layout given by Figure 1 is (3, 5, 8, 9, 10). For any I E D, we 
say that the path connecting terminal Tr crosses point z if z E [Tt, Tc(,,]. 

For any assignment (or partial assignment) D we define the height function Ho 
forx,yE (T,, Tz, . . . . T2n ) U ( So, S, , S,, S3} as follows: 

H&x, y) = maxInumber of paths given by D that cross point z 1 z E [x, ~11. 

We refer to H,,(x, y) as the height of assignment D on the interval [x, y]. For 
example: H,>(&, S,) is 3, Ho( T,, T5) is 2, and H,(&, S,) is 2, for the assignment, 
D, whose layout appears in Figure 1. 

The next two lemmas establish that the 2-RlM problem reduces to the problem 
of finding an assignment D with least (h + (HD( S, , 5’~) + Hn( &, SO)) e X) . (w + 
(H,(&, S1) + HD(S2, S,)) . A) and then in O(nlogn) time (O(n) time if the set of 
terminals is initially sorted) one may obtain an optimal area layout for it. This 
layout is an optimal solution to our problem. The proof of Lemma 2.1 is construc- 
tive. The construction process begins by finding physical routes for the wires on 
each of the four sides of the rectangle separately. This procedure is carried out by 
the algorithm given in [5]. These four layouts are combined to form the final 
layout by making the appropriate wire connections in each of the four corners of 
the rectangle. 

LEMMA 2.1. For every assignment D, there is a rectangle Q of size ho by wQ, 

where 

h, = h + (H,(S,, S,) + H&S, So)) - X 

and 

VdQ = w + (HdSo, s,) + HA&, &)) * A, 

with the property that rectangle T together with the interconnecting paths defined 
by D can be made to fit inside (2. 

PROOF. The proof appears in [6]. Cl 

LEMMA 2.2. For any assignment D, a layout with the area given by 
Lemma 2.1 can be obtained in O(n logn) time (O(n) time if the set of terminals is 
initially sorted). 

PROOF. The proof of this lemma appears in [6]. 0 

In what follows we shall refer to an assignment as an optimal assignment 
when it is the assignment for an optimal area layout. Note that an optimal area 
layout for an optimal assignment can be obtained from the constructive proof for 
Lemma 2.1. 

Terminal Tj is said to be a global terminal if ] S(i) - S(C(i)) 1 = 2, that is, 
terminal T; is global if it is to be connected to a terminal located on the opposite 
side of the rectangle. Terminal T, is said to be local otherwise, that is, if it is to be 
connected to a terminal located on the same side or on an adjacent side of the 
rectangle T. Terminals T2, T8, T4, and Tlo are the only global terminals for 
the problem depicted in Figure 1. For assignment D we define the area function, 
ND), as 

(h + (HD(SI, 5-z) + HdS3, So)) - A) - (w + VMSo, S,) + HdSz, &I) . A), 

that is, the total area required by an optimal layout for T together with all the 
interconnections specified by D. 
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Definition 2.1. Partial assignment D’. Let D’ be the partial assignment in 
which each local terminal is connected by a path that crosses the least number of 
corners of T. 

LEMMA 2.3. There is an optimal assignment, D, such that D’ C D. 

PROOF. The proof appears in [6]. The proof is based on an interchange 
argument. Given any optimal assignment that does not include D’, one constructs 
another assignment that includes D’ (by connecting all local terminals by the paths 
given in 0’) without increasing the total layout area. q 

Lemma 2.3 shows that given any instance of the 2-R 1 M problem there exists an 
optimal assignment in which all local terminals are connected by paths that cross 
at most one corner of T. The 2-RlM problem has been reduced to the problem of 
finding the starting point for the paths connecting the global terminals in the 
presence of the partial assignment D’. The next lemma partitions the 2-RlM 
problem into two separate problems: the problem of finding an optimal assignment 
for the 2-R I M problem in which all global terminals appear on the top and bottom 
sides of T (P,) and the one in which all global terminals appear on the left and 
right sides of T (P2). In both of these subproblems local terminals are connected 
by the paths given by D’. 

LEMMA 2.4. The assignment D, U D2 is an optimal assignment, where Di is an 
optimal assignment for problem Pi (1 5 i 5 2). 

PROOF. The proof of this lemma appears in [6] and is based on the fact that if 
D, U Dz is not an optimal assignment to the original problem, then either D, is 
not an optimal assignment for P, or D2 is not an optimal assignment for Pz. Cl 

3. The Restricted Problem 
In this section we show that given any instance of the restricted 2-RlM problem, 
it is always possible to obtain an optimal assignment by solving one of several 
problems using a greedy method. Hereafter, we restrict our attention to the solution 
of the 2-RlM problem in which all global terminals are located on the top and 
bottom sides of T and all local terminals are connected by the paths specified in 
D’. Note that problem P2, defined in the previous section, can be transformed to 
this one by rotating the rectangle 90 degrees. If the number of global termi- 
nals located on the top side of T is zero, then D ’ is an optimal assignment 
(Lemma 2.3). In what follows we assume that there is at least one global terminal 
located on the top side of T. 

First we define two points, T, and TO. Then we show the existence of an optimal 
assignment in which the global terminals located on the interval [Si, T,] ([TO, $21) 
are connected by paths that cross the left (right) side of T. 

Definition 3. I. (Y and /3. Let 

L = D ’ U (all global terminals are connected by a path crossing the left side of T ); 
l=min(k( HL(Tk, Tk)=HL(SI,S2)andT~E[S,,S2]); 

{ 
I if T, is a local terminal; 

cy = I - 0.5 otherwise; 

R = D’ U (all global terminals are connected by a path crossing the right side of T); 
r=max(kIHR(Tk,T~)=HR(SI,S2)andTkE[S1,S2]l;and 

if 
otherwise. 

T, is a local terminal; 
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Note that CY and p do not always correspond to terminal indices. Sometimes they 
correspond to a terminal index rt 0.5. In what follows we corrupt our notation by 
making reference to T, and To. When T,(Tp) does not correspond to a terminal 
we mean a point located E < h units to the left (right) of terminal T~,I( T~@I). In both 
of these cases such a point is located on the top side of T. We also assume that the 
definition of an interval and the height function have been extended to include T, 
and T,. For the problem given in Figure 1, (Y is 3 and p is 5 (if TX and T5 were 
global terminals then CY = 2.5 and p = 5.5). The values for (Y and /? are integers for 
the problems depicted in Figures 6 and 7. Note that when cz (or p) is an integer it 
corresponds to the index of a local terminal. From the definition of (Y and /? it is 
simple to prove that (Y 5 P. 

Definition 3.2. Partial assignment D”. Let D” = D ’ U (all global terminals 
located on the interval [S, , Ta] connected by a path crossing the left side of T 1 U 
(all global terminals located on the interval [T,, &] connected by a path crossing 
the right side of T] (see Figure 2). 

Definition 3.3. h, and hi3. Let h, = Hg(T,, T,) and ha = H$(TO, To). 

We now show that there is an optimal assignment, D, such that D” G 0. Before 
proving this, we prove the following lemma, which will be useful in the proof of 
subsequent lemmas. 

LEMMA 3.1. Given any assignment D such that D’ !Z D, 

(i) H&S,, Tk) I HD(Tk, &)fir every Tk in [S, TJ, and 
(ii) H,,(&, Tk) L HD(Tk, &)fir every Tk in [T,, &I. 

PROOF. Since the proof for (ii) is similar to the proof for (i), we only prove (i). 
Clearly, if we can prove that HD(Tk, Tk) 5 Ho( T,, T,) for every Tk in [S,, T,], 
then (i) holds. Let Tk be any global terminal located on the interval [S, , T,] and 
let W be the set of indices of the terminals that are connected differently in D and 
L, where L is the assignment in Definition 3.1. Note that all the terminals whose 
index is in W are global since D’ G D and D’ C L. Let W, = W rl (11 T, is in 
[S, , Tk]) and Wz = W n {r 1 T, is in [T,, &I). At this point it is important to 
remember that T, is not a global terminal and thus W, rl Wz = 0. Since each 
terminal whose index is in W is connected by a path that crosses the right side of 
Tin D but not in L, we know that 

HdTk, T/J 5 HdTk, T/c) + I WI I - I W2 I, 

and 

&(T,, T,) 2 HL(T,, T,) + I WI I - I f+'2 1. 
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From the definition of (Y we know that HL(Tk, Tk) 5 HL(T,, T,) for any Tk in 
[Sl, Tfl]. Hence, HD(Tk, Tk) I HD(T,, T,) for any Tk in [S,, T,]. Thus, as 
established before it must be that (i) holds. This completes the proof of the 
lemma. q 

LEMMA 3.2. Let D” be as defined above. There is an optimal assignment, D, 
such that D” G D. 

PROOF. Lemma 2.3 guarantees the existence of at least one optimal assignment 
that includes D’. We show that at least one of such assignments includes D”. The 
proof is by contradiction. Suppose every optimal assignment that includes D’ has 
the property that D” is not a subset of it. Let D be an optimal assignment that 
includes D’ and has the least disagreement (in terms of the number of connecting 
paths) with D”. There are two cases depending on where the disagreement occurs. 

Case 1. There is a terminal, T;, located on the interval [S, , Tm] connected 
differently in D” and D. 

We establish a contradiction by constructing another optimal assignment, A4 = 
(D - {i)) U {C(i)), that includes D’ and has less disagreement with D” than D. 
Since HM(&, So) I HD(S3, So) + 1, D’ c 44, and M has less disagreement 
with D N than D, a contradiction can be obtained by proving that HM(S1, &) 5 
H,(S, , S,) - 1 (see Figure 3). 

Since Ti is connected by a path that crosses the right side of T in D but not in 
A4 and T, is not T, (remember that T, is a global terminal and T, cannot be a 
global terminal), we know that HM(T,, Sz) = H&T,, &) - 1 s HD(SI, SZ) - 1. 
Since D’ C M, then from Lemma 3.1 we know that HM(SI, T,) I H&T,, &). 
Hence, H&S,, &) = H&T,, &) 5 H&S,, S,) - 1. A contradiction. 

Case 2. There is a terminal located on the interval [TO, &] connected differently 
in D” and D. 

A contradiction for this case can be obtained by using a proof similar to the one 
for Case 1. 

This completes the proof of the lemma. q 

Definition 3.4. t. Let t be the number of global terminals located on the interval 
(Tw TD). 

If t = 0 then partial assignment D” is an assignment, that is, we have specified 
the starting point (and by convention, the direction) for the connection of all 
terminals, and by Lemma 3.2 we conclude that D” is an optimal assignment. In 
what follows we assume that t > 0. A lower bound for the height on the top side 
of T for any assignment that includes D” is given by A. 

Definition 3.5. A. Let A = rh, + h, + t)/21. 

From the above definitions one can easily prove the following claim. 
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CLAIM 1. HD(S, , S,) 2 A for any assignment D such that D” C D. 

In what follows we show that there is an optimal assignment that includes D”, 
with height on the top side of T is equal to A or A + 1, and with the property that 
the heights at points T, aud T, differs by at most one. 

LEMMA 3.3. There is an optimal assignment, D, such that 

(a) D” C D;, 
(b) I HdT,, TJ - HdT,, TO> I 5 1, and 
(c) A 5 Ho( S, , Sz) 5 A i- 1. 

PROOF. Using the following claim together with the fact that HD(T,, T,) + 
H,(T,, T@) = h, + hiH + t one can easily prove the existence of an optimal 
assignment D satisfying (a)-(c). Hence, the proof of the lemma follows from the 
proof of the following claim. 

CLAIM. There is an optimal assignment, D, such that 

(i) D” G D, 
(ii) H,(S,, S,) - HD(T,, T,) 5 1, and 

(iii) HD( S, , S,) - HD( T,, TP) I 1. 

PROOF. From Lemma 3.2 we know that there is at least one optimal assignment 
satisfying (i). We now show that one of such assignments also satisfies (ii) and (iii). 
This is shown by contradiction. Suppose all optimal assignments satisfying (i) do 
not satisfy (ii) or (iii). Let D be an optimal assignment such that D” G D and D 
has the smallest height on the top side of T (i.e., least HD(SI , &)) amongst all 
optimal assignments that satisfy (i). There are three cases depending on which of 
the inequalities is violated. 

Case 1. HD(S,, S,) - H,,(T,, T,) 5 1 and HD(SI, S,) - H,(T,, T,) > 1. 

If every global terminal located on the interval (T,, To) is connected by a path 
crossing the right side of Tin assignment D, then from the definition of p one can 
prove that H,(T,, T,) = H&T,, S,). Since D’ G D, then from Lemma 3.1 we 
know H,(S,, T,) 5 HD(T,, &) = HD( TP, TP) = HD(SI , &). But, since (iii) is 
violated we know that HD( T,, Tp) < Hn( Sr , &). Therefore, it must be that there 
is at least one global terminal located on the interval (T,, TB) connected by a path 
crossing the left side of Tin D. Let T, be the rightmost global terminal in (T,, T,) 
connected by a path crossing the left side of T. Let A4 = (D - (C(r))) U (r). If we 
prove that D” G M, M is an optimal assignment and A4 has less height on top side 
of T than D, then there is a contradiction. 

Since T,. E (T,, T,), D” C A4 and only one connecting path differs in M and D, 
we know that HM( & , SO) I Hn( S’, , SO) + 1. Hence, a contradiction can be obtained 
by proving that H&S,, S2) 5 HD( S, , &) - 1. From Figure 4 it is simple to observe 
that 

HAAS,, Td = HASI, Td - 1 5 HdS,, Sd - 1, for every Tk E [S,, T,). 

Consequently, we only need to prove that HM( T,, &) 5 HD( S, , S,) - 1. 
Since all global terminals in [T,, &] are connected by paths that cross the right 

side of Tin M, a proof similar to the one for Lemma 3.1 can be used to show that 
HM( T,, &) = HM( T,, To). Clearly, HM( T,, Tp) = H,( T,, T6) + 1. From these two 
equations and the inequality being violated in the conditions of Case 1, we know 
that HM( T,, &) I H,( S, , &) - 1, and as established before there is a contradiction. 
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FIGURE 4 

Case2. HD(SI, &) - H&T,, Ta) > 1 and HD(SI, S2) - HD(T,, To> 5 1. 

Since the proof for this case is similar to the one for Case 1, it will be omitted. 

Case 3. HD( S1, &) - HD( T,, T,) > 1 and HD( SI , 5’2) - HD( To, To) > 1. 

Let T,(T,) be the leftmost (rightmost) global terminal located on the interval 
(T,, T,) connected by a path that crosses the right (left) side of T in D. One can 
prove the existence of these two terminals by using arguments similar to those in 
the proof for Case 1. If T, is to the right of T,, then a proof similar to the one for 
Lemma 3.1 can be used to prove that HD(S, , T,) = HD( T,, T,), HD(T,, &) = 
H,(T,, TB), and since there are no global terminals in (T,, T,), we know that 
HD(T,, T,) 5 HD(T,, T,). Hence, it must be that HD(SI, S2) = maX(HD(T,, T,), 
HD(To, T,)j. This contradicts our assumption that (ii) and (iii) are violated. 
Therefore, T, must be located to the left of T,. 

Let A4 = (D - (1, C(rj)) U (C(I), r). W e now show that assignment A4 has the 
following properties: D” G M, A4 has less height on the top side of T than D, and 
M is an optimal assignment. Clearly, if these statements hold, then there is a 
contradiction (see Figure 5). 

Straightforward arguments can be used to show that a contradiction can be 
obtained by proving that 

HdS,, T/J 5 HD(~I, s2) - 2 and HdTr, &) 5 HD(~I, s2) - 2. 

Since all global terminals located on the interval [S, , T,] are connected by a path 
that crosses the left side of Tin A4, a proof similar to the one of Lemma 3.1 can 
be used to show that H&S,, T,) = HM( T,, T,). Following similar arguments 
we know HM( T,, 5’2) = H&T,, TB). Clearly, HM(T,, T,) = HD(T,, T,) and 
HM(Tp, Tp) = HD(Tp, T,). From these equations and the inequalities violated 
in the conditions of Case 3, we know that HM(SI, TJ % HD(S~, S2) - 2 and 
H,+,(T,, S,) I HD(SI, S2) - 2. Thus, as it was established before there is a 
contradiction. 

This completes the proof of the claim and the lemma. Cl 

The remaining proofs and the algorithm could be greatly simplified if one 
could prove Lemma 3.3 with condition (c) replaced by either H,,(S, , S2) = A or 
HD( SI , S,) = A + 1. However, such lemmas cannot be proved. In what follows we 
give counterexamples to both of these proposed lemmas. In Figure 6 we give a 
problem instance that does not have an optimal assignment satisfying (a) and (b) 
in Lemma 3.3 and with height on the top side of T equal to A. Let us prove this 
claim. Since there are four global terminals located on the bottom side of T, the 
height on the bottom side of T for any assignment must be at least two. Therefore, 
if we can prove that there is no assignment with area 5 (h + 7X) . (W + 4X) 
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satisfying (a) and (b) in Lemma 3.3 and with height on the top side of T equal to 
A = 4, then the assignment for the layout given in Figure 6 is optimal and there is 
no optimal assignment satisfying the above properties. The proof is by contradic- 
tion. Suppose there is an assignment, D, with area less than or equal to (h + 7X) . 
(W + 4 X), satisfying (a) and (b) in Lemma 3.3 and height on the top side of T equal 
to A. Since D ’ G D ((a) in Lemma 3.3), we know that all local terminals are 
connected as in Figure 6. Since the height of D on the top side of T is A, then at 
most one global terminal can be connected by a path that crosses the interval ( T6, 
T13) on the top side of T. But if there is exactly one of such paths, then D does not 
satisfy (b) in Lemma 3.3. Hence, it must be that T5 and T6 (T13 and T14) are 
connected by paths that cross the left (right) side of T. But then assignment D has 
height on the bottom side equal to 4 and on the top side equal to A = 4. Hence, D 
has area greater than (h + 7 X) . (W + 4X). A contradiction. 

In Figure 7 we give an instance that does not have an optimal assignment 
satisfying (a) and (b) in Lemma 3.3 and whose height on the top side of T is 
A + 1. Let us prove this claim. Clearly, there cannot be an assignment that satisfies 
(a) and (b) in Lemma 3.3 with height on the top side of T less than A = 4 and 
since there are four global terminals located on the bottom side of T then any 
feasible assignment must have a height on the bottom side of T of at least two. 
Hence, the layout depicted in Figure 7 is optimal and there is no optimal assignment 
with height on the top side of T equal to A + 1. 
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Note that in both of these examples h, + hB + t is even. When this value is odd, 
one can show that there always exists an optimal assignment whose height on the 
top side of T is A. The proof of this fact is similar to the proof of Lemma 3.3. In 
the next two lemmas we do not take advantage of this fact; however, it will be used 
by the final algorithm. A skeptical reader can ignore this fact and obtain another 
algorithm that is slower than ours. 

We now define assignments Elef, and Eright. Later on we show there is an optimal 
assignment that differs from Elen or Eright by a set of connecting paths that can be 
easily characterized. If h, + hs + t is even, then Elef, = Etight = D” U {the leftmost 
y global terminals located on the bottom side of T that have not yet been included 
in D” are connected by a path that crosses the left side of T] U {the remaining 
global terminals (those terminals not included in D” and not included in the 
previous partial assignment) are connected by a path that crosses the right side of 
T), where y is such that the height at points T, and Tp for this assignment is 
identical. When h, + ha + t is odd, Eleft is defined similarly, except that the value 
for y is such that HE,,,( T,, T,) = HE,,J T,, TO) + 1 (see Figure 9). Assignment Erigh, 
is defined similarly, except that the value for y is such that HE&T,, T,) + 1 = 
HE,,,,(TO, Tp). These assignments are formally defined below. 

Definition 3.4. Eleft and Eright. Let 

M = (r ] T, is a global terminal located on the bottom side of T and I, C(l) 4 D”}; 
M, = (I ( 1 is in M, 1 is the ith largest value in Mand i 5 r(h, + hp + t)/21- h,); 
M2 = (I ] I is in M, 1 is the ith largest value in A4 and i 5 t(h, + hp + t)/2J - h,); 

E,,~,=D”U(ZIIEM,)U{C(Z)I~E(M-M,)1; 
Erigh,=D”u(III~M21U(C(I))IE(M-M2)). 

Clearly, if h, + ha + t is odd, then Elef, and Eright will differ only in the starting 
point for one path (see Figure 8). From the above definitions one can prove the 
following claim. 

CLAIM 2. For E E (Eleft, E,.&, E is an assignment for T; D” L E; and 
I f&V,, T,) - H&T,, To) I 5 1. 

In what follows we define some terms for assignment E, which can be either Eleft 
Or Eright. When we make use of the terms defined this way, it will be explicitly 
indicated which of El,ft or Eright was used in the definition. 

Dejnition 3.7. R, T; and T;. Let R = HE(SI, S,) - A. For I = 1, 2, . . . , R, 
let T; (T;) represent the rightmost (leftmost) terminal located on the interval 
[S, , &] whose height is A + 1 and let T,$ (T&‘) represent TB (T*). 
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If for assignment E the value of R is 0 then Tk is T,, and Tg is T,, and as we 
show in the next two lemmas if there is an optimal assignment with height equal 
to A then assignment E is optimal. An assignment D that includes D” is said to 
conform to assignment E E (EM, ErightJ (and E confirm to D) if HD(T,, T,) = 
Ht-(T,, T,), that is, the number of global terminals connected by a path crossing 
the left side of Tin D is the same as the number of global terminals connected by 
a path crossing the left side of Tin E. 

CLAIM 3. Any optimal assignment, D, that satisfies conditions (a) and (6) in 
Lemma 3.3 conforms to the assignment E/‘/t or Elighr. 

PROOF. Since D” is included in D, Eleft and Eright, we know that for each of 
these assignments the sum of the heights at points T, and T, is equal to h, + 
hB + t. When this value is even then from condition (b) in Lemma 3.3 we know 
that the heights at points T, and Tp is the same. This property is also satisfied by 
EIert = Eright. Hence, D conforms to Eleft and to Etight. When h, + hB + t is odd then 
we know that in assignment D the heights at points T, and T,, differs by 1. Hence, 
D conforms to E left if H,,(T,, T,) > H,JT,, TP), and D conforms to Eright, 
otherwise. Cl 

We define Eleft and Eright because there are instances for which there is no optimal 
assignment that conforms to El,ft. This is also true for Etight. The problem depicted 
in Figure 9 does not have an optimal solution that conforms to Eright. Note that 
this happens only when h, + hB + t is odd. 

Example. Let D be an optimal assignment that satisfies (a)-(c) in Lemma 3.3 
and let E E ( Elef,, ErightJ conform to D. A connecting path is said to be an 
RDLE(LDRE) path if it crosses the right (left) side of Tin D but not in E. Clearly, 
the only difference between assignments D and E is because of RDLE and LDRE 
paths. In Lemma 3.4 we show that there is an optimal assignment D that satisfies 
Lemma 3.3 with the same number of RDLE and LDRE paths and the number of 
such paths is either LR/2J or rR/21. Furthermore, we know the region on the top 
side of T where the terminals, that these paths connect, are located. In Lemma 3.5 
we show that there is an optimal assignment, D, such that in the assignment E E 
(E,,rt, Erightj that conforms to D we can precisely identify the terminals that the 
RDLE and LDRE paths connect. The identification of these terminals can be 
carried out by a simple greedy method. The main idea behind our algorithm is to 
construct assignments Eleft and Eright, and then identify the RDLE and LDRE paths 
in them. Once this process is completed we reverse the direction of the RDLE and 
LDRE paths to obtain an optimal assignment. 
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LEMMA 3.4. There is an optimal assignment D such that E E (EIL9, Erjghl) 
conforms to it and 

(a) D” G D; 
(6 I HdTa, To) - HdT,, To) I 5 1; 
(c) ArH,(S,,&)<A+ 1; 
(d) Each RDLE (LDRE) path connects a terminal located on the interval [ Tk T,) 

(Ca, T;;I); and 
(e) The number of RDLE and LDRE paths is lR/21 if HD(SI, &) = A and 

LR/2J, otherwise. 

PROOF. From Lemma 3.3 we know there is an optimal assignment that satisfies 
(a), (b), and (c); and from Claim 3 we know that any of such assignments conforms 
to E E (EleR, E,+,,,). We now show that at least one of these optimal assignments 
satisfies (d) and (e). This will be shown by contradiction. Suppose all optimal 
assignments satisfying (a), (b), and (c) do not satisfy (d) or (e). Let D be one of 
these assignments that differs the least with E (the assignment that conforms to it). 
There are two cases depending on which of(d) or (e) is violated. 

Case 1. (d) is violated. There are two subcases depending on how (d) is violated. 

Subcase 1.1. There is an LDRE path connecting a terminal located on the 
interval (T$, TO). 

Let T, (T,.) be the rightmost (leftmost) terminal located on the top side of T 
connected by an LDRE (RDLE) path. By assumption the LDRE path exists. The 
existence of an RDLE path is guaranteed by the fact that if there are more LDRE 
paths than RDLE paths, then (b) does not hold since we know E conforms to D. 
Let M= (D - (C(l), rj) U {j, C(r)]. We now show that Mis an optimal assignment 
satisfying (a)-(c) and that it has less disagreement with E and D. It is simple to 
show that M satisfies (a) and (b) and that it has less disagreement with E and D. 
Now, since the connecting paths for T, and T, overlap on the bottom side of T 
in D (this can be seen from the definition of assignment E), HD(S3, SO) 2 
H,,,,( &, &). Therefore, to establish a contradiction we only need to prove 
that fb(S, Sd 2 fAdSI, Sd. 

A contradiction can be easily obtained if it is the case that T, is located to the 
left of T,. So let us assume that T, is located to the right of T, (see Figure 10). 

Again, since E conforms to D and D satisfies (b), we know that there are the 
same number of RDLE and LDRE paths. Letfbe this number. Since there are at 
most f - 1 LDRE paths connecting a terminal in [S, , T;I] and all the f RDLE 
paths connect a terminal located on the interval (T$, &I, we know that 

H,,(T;;, T;) 2 HE(T:, T;) - (f- 1) + 1 -f= HE(T;, T;) - 2f+ 2. 
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With respect to M and E there are only f - 1 LDRE and RDLE paths. Since all 
the LDRE paths (with respect to M and E) are located on the interval [ S1, TI) and 
all the RDLE paths (with respect to A4 and E) are located on the interval (T,, &I, 
we know that H,+,(Tk, Tk) = HE(Tk, Tk) - 2(f- 1) for every Tk E [T/, T,]. Now, 
by the definition of Tg we know HE(Tk, Tk) 5 HE(Tg, Tg) for every Tk E 
[T,, T,]. Hence, HM(Tk, Tk) I HD(T$, T$) for every Tk E [T,, T,]. Clearly, 
HM(SI, Tk) = &(S, Td for every Tk E Is,, T,) and HdTk, &) = HdTk, &) for 
every Tk E (T,, &I. From these inequalities we know H,(S,, &) 5 HD(SI, &), 
which as established before is a contradiction. 

Subcase 1.2. There is an RDLE path connecting a terminal located on the 
interval (T,, Th). 

A contradiction for this case can be obtained by applying arguments similar to 
those in the previous subcase. 

Hence if(d) is violated there is a contradiction. 

Case 2. Assignment D satisfies (d) but not (e). 

Again, since E conforms to D and D satisfies (b), we know that there are the 
same number of RDLE and LDRE paths. Let fbe this number. Let Tk represent 
Tg if Tg is not connected by an LDRE or RDLE path, let Tk represent a point 
t < X units to the right of Tg if T$ is connected by an LDRE path and let Tk 
represent a point E < h to the left of Tg if T$ is connected by an RDLE path (note 
that this can happen only when T$ = TA). Assume that the definition of the height 
function has been extended to include Tk when Tk does not correspond to a 
terminal point. Clearly, HE(Tk, Tk) - HD(Tk, Tk) = 2$ Also, if HD(SI, &) = A + 
a, where a is 0 or 1, then HE( Tk, Tk) - HD(Tk, Tk) > R - a. Hence, the Value for 
fis at least as large as the bounds given in (e). If equality occurs, there is nothing 
to prove. So assume that f is larger than the bound in (e). Therefore, R 2 1 and 
there is at least one RDLE and one LDRE path. Let T, (T,) be the leftmost 
(rightmost) terminal located on the top side of T connected by an RDLE (LDRE) 
path. Since D satisfies (d), we know that I< r. Let M = (D - (C(l), r)) U (1, C(r)]. 
We now show that A4 is an optimal assignment satisfying (a)-(d) and that it has 
less disagreement with E than D. It is simple to show that A4 satisfies (a), (b), and 
(d) and that it has less disagreement with E than D. Also, one can easily show that 

HdSs, So) 2 HdS,, So) and H,(Tk, T/c) = HdTk, Tk) 

for every Tk E [S, , T,) U (T,, &I. 

Hence, a contradiction can be obtained by showing that HD( SI , &) 2 HM( Tk, Tk) 
for every Tk E [T,, T,] (see Figure 11). Clearly, 

Hd’k, T/c) = H.&T/s, Tk) - 2 - f+ 2 for every Tk E [T,, T,], 
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wherefis the number of RDLE (or LDRE) paths for D and E, 

H,,(T;;, T;;) = H,(T;;, T;;) - 2 . J; (es. 1) 

if the path connecting TL is the same in D and E, and 

HD(T;;, T;;) = HE(T;;, T;;) - 2 . f+ 1, (es. 2) 

if the path connecting T$ differs in D and E. From the definition of T;l and Tk 
we know H,(Tk, Tk) 5 HE(TS, T$) = HE(Th, Tk), for every Tk E [Tl, T,]. From 
these inequalities we know 

H,w(Tk, T/J 5 HD(T;;, T;) + 2 for every Tk E [T,, T,], (es. 3) 

if the path connecting T$ is the same in D and E, and 

&(Tk, Tk) 5 HD(TZ, Ti) + 1 for every Tk E [T,, T,], (es. 4) 

if the path connecting Tg differs in D and E. Now if HD(S,, S,) = A, then 
substitutingf> rR/21 = r(H,(T;I, T$) - A)/21 in eq. 1 and eq. 2, we know that 
HD(T;;, T;;) 5 HE(Tg, Ti) - 2 . (r(HE(Tg, Tg) - A)/21 + I), if the path 
connecting Tg is the same in D and E, and Ho( Tg, T$) 5 HE( Ti, T{) - 
2 . (r(H& Tg, Tz) - A)/21 + 1) + 1, if the path connecting Tgdiffers in D and E. 

Simplifying, 

HD(T$, TZ) 5 A - 2 if the path connecting T$ is the same in D in E, and 

H,(T;I, T$)sA- 1 if the path connecting T$ differs in D and E. 

Similarly, when H,,(S, , &) = A + 1, one can prove that 

H,(T;;, T;;)sA- 1 if the path connecting TNR is the same in D and E, and 

H,(T;;, T;;) 5 A if the path connecting T$ differs in D and E. 

Substituting the last two pairs of inequalities in (eq. 3) and (eq. 4), we know that 
for every Tk E [T,, T,.], 

fh(Tk, Tk) 5 A (if HAS,, &) = A), 

and H&T,, Tk) I A + 1 (if H&S*, Sz) = A + 1). 

Hence, HM( Tk, Tk) 5 H,( S, , S,) for every Tk E [T,, T,] and as it was established 
before, there is a contradiction. 0 

Sets of terminals will be defined and subsets of them will be labeled A’, A”, B’, 
and B”. These sets will be used in Lemma 3.5 where it will be shown that there is 
an optimal assignment that differs from Eleft or Eright by the set of paths that connect 
the terminals labeled A ’ and A”, or B’ and B”. Consequently in order to construct 
an optimal assignment it is only required to construct Elef, and Etigh,, and then 
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interchange some set of connecting paths. One of the assignments obtained this 
way will be an optimal assignment. In sets Pi (P/‘) defined below we identify all 
the terminals that could possibly be connected by an RDLE (LDRE) path. 

Definition 3.8. Sets Pi and P;. For 1= I to R, let P; (PY) be the set of global 
terminals located on the interval [T,! , Tp)(( T,, TY]) connected by a path crossing 
the left (right) side of Tin assignment E. 

CLAIM 4. For E E (E,cfi, E,,,,,) and 1 5 15 R, 1 P; 1 2 [f/21 and 1 P; 1 2 r//21. 

PROOF. The proof is by contradiction. Suppose that for some problem instance 
an assignment E E’ (Elef,, ErightJ violates the above inequalities, that is, for some 
1 I 1 5 R, either 1 P; 1 < rf/21 or 1 P; 1 < r//21. Since a contradiction can be 
obtained by applying similar arguments in both cases, assume that for some 
1 I 1 5 R, 1 P; I < 11/21. Let W, = (i 1 Tj is a global terminal located on the 
interval [S, , T;) that is connected by a path that crosses the left side of T in E]. 
The assignment R in Definition 3.1 is assignment E after reversing the paths in 
W, U P;, Hence, 

H&T’, T;) 5 HdT;, T;) - I W I + If’; I 
and HE(TB, To) = HAT,, Td - I W I - If’; I. 
From the definition of /3 we know that HR(T/, T;) I HR(T,,, TB). Combining 
these inequalities we know that 

HE(Tp, T,) 2 H&T;, T;) - 2 I P; I. 

Subsituting HE(T,f , T;) = A + I and 1 Pi I < 11/21 in the above inequality, we 
know that HE(TD, To) 1 A + 1. But, from the definition of A and Ewe know that 
HE( T,, TB) 5 A. A contradiction. Cl 

Let us now explain the reason behind our labeling procedures. Let D be an 
optimal assignment with height on the top side of T equal to A that satisfies the 
conditions of Lemma 3.4. For simplicity, let us assume that fR/21 is odd. From 
Lemma 3.4 we know that on the interval [Th, TB) there are exactly lR/21 terminals 
connected by RDLE paths. For all k, the interval [Tj.-*k, T,) contains at least 
[R/21 - k terminals connected by RDLE paths as otherwise one can show that the 
height on the top side of T for assignment D is > A. Hence, at least one RDLE 
path connects a terminal in PI, at least two RDLE paths connect terminals in Pj , 
and so on. Let us now consider how we can determine which of the terminals in 
set Pi is connected by an RDLE path. Let i and j be any two indices of terminals 
in set Pi. If C(i) > C(j), T; is connected by an RDLE path and 7; is not connected 
by an RDLE path, then one can obtain another optimal solution by reversing the 
paths that connect terminals T, and Tj in assignment D. The optimality of this new 
assignment follows from the fact that the height on the bottom side of T did not 
increase with the interchange and the new assignment can be shown to have height 
on the top side of T equal to A. This suggests that there is an optimal solution such 
that the terminal with index i is connected by a path type RDLE if for all other 
indices j in PI it is the case that C(i) < C(j). The same arguments apply for set 
P; and the remaining sets as well as for the sets P;‘s. In what follows we label 
terminals A’ and A” following the procedure just described and in the next lemma 
we show that if there is an optimal solution with height on the top side equal to A 
that satisfies the previous lemma, then there is an optimal assignment in which all 
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terminals labeled A’ (A”) are connected by RDLE (LDRE) paths. The labeling B’ 
and B” are used when there is an optimal assignment satisfying the previous 
Lemma and with height on the top side of T equal to A + 1. 

Definition 3.9. A’, A”, B’ and B” labeling. We label terminals as follows: 

A’ labeling 
for 1 = 1 to R by 2 do 

Let X = (C(i) ( T, E P; and ‘I; was not labeled A’ when considering sets Pi, P;, . . . , 
p/q; 

Label A’ terminal K, where i is such that C(i) = min(x 1 x E X); 
endfor 

A” labeling 

This labeling procedure is identical to the previous one, except for the sets P; 
being replaced by PY and “min” is replaced by “max”. 

B’ labeling 
for 1= 2 to R by 2 do 

Let X = {C(i) 1 T, E P; and Ti was not labeled B’ when considering sets P; , Pi, . . . , 
&I; 

Label B’ terminal T, where i is such that C(i) = min(x ( x E X); 
endfor 

B” labeling 

This labeling procedure is identical to the previous one, except for the sets Pi 
being replaced by P; and 

“min” is replaced by “max”. 

From Claim 4 we know that during each iteration of the above labeling proce- 
dures the set X contains at least one element and thus one terminal will be labeled. 
The next lemma establishes that there is an optimal assignment which can be 
obtained by starting from Elen or Eright and reversing the path connecting the 
terminals labeled (A’ and A”) or (B’ and B”). 

LEMMA 3.5. There is an optimal assignment D, such that E E (El‘@ Eri8hl) 
conforms to it and 

(a) D” G D; 
(b) 1 HD(T,, T,) - HD(T~, Tp) 1 5 1; 
(c) A 5 H,(S,, S,) 5 A + 1; 
(d) Each RDLE (LDRE) path connects a terminal located on the interval 

PA, T,W”a, TX 
(e) The number of RDLE and LDRE paths in D is [R/21 ifH&S, , &) = A and 

LR/2J otherwise; and 
(f) If H,(S, , 5,) = A, then a terminal is connected by an RDLE (LDRE) path in 

D @the terminal is labeled A’ (A”). Zf HD(SI, &) = A + 1, then a terminal is 
connected by an RDLE (LDRE) path in D $the terminal is labeled B’ (B”). 

PROOF. From the previous lemma we know there is at least one optimal 
assignment satisfying (a)-(e) and from Claim 3 we know that any of such assign- 
ments conforms to assignment E E (E,,f,, ErightJ. We now show that at least one of 
these assignments satisfies (f). The proof is by contradiction. For each assignment, 
D, that satisfies (a)-(e) and with HD(SI, &) = A, we define the function K(D) as 
1’ + I”, where 1’ (1”) is either the smallest integer such that terminal, Tk, is not 
connected by an RDLE (LDRE) path but it was the 1’ (1”) terminal to be labeled 



Linear Time Algorithm for Optimal Routing 

I 

I 
(4 (4 

FIGURE 12 

827 

(b) 

A’ (A”), or R + 1 if all the terminals connected by RDLE (LDRE) paths are labeled 
A’ (A”). The definition of K(D) when II, S,) = A + 1 is similar, except that 
instead of using A’ and A”, we use B’ and B”. Let D be an optimal assignment 
satisfying (a)-(e) with the largest value for K(D). Clearly, the previous lemma 
guarantees the existence of at least one of these assignments. Now, since there are 
the same number of RDLE and LDRE paths as the number of terminals labeled 
A’ and A” (B’ and B”) if HD(S,, S,) = A (if HD(S1, &) = A + I), we know that 
there must be a terminals labeled A’ or A” (B’ or B”) that is not connected by an 
RDLE or LDRE path. If H,((S, , S,) = A (HD(SI , &) = A + I), let T, be a terminal 
such that it is neither connected by an RDLE or an LDRE path, but for the least 
value of 1 it was the Ith terminal to be labeled A’ or A” (B’ or B”). There are four 
cases depending on the label of T,. Remember that if Ho( S, , &) = A, T, is labeled 
A’ or A”, otherwise T, is labeled B’ or B”. 

Case 1. HD(S,, S,) = A, terminal T, is labeled A’ and T, is not connected by 
an RDLE path in D. 

Terminal T, and 1 are defined above. Clearly, T, E Pi. We now show there is a 
terminal, T, E P,! connected by an RDLE path in D that was not labeled A’ when 
labeling sets PI, Pi, . . . , Pi. From the labeling procedure and Claim 4 we know 
that the number of terminals labeled A while considering sets PI, P;, . . . , P; is 
l//21. Now if T,, does not exist then there are no more than f1/21 - 1 terminals 
connected by RDLE paths in D for the interval [T,f , T@). Hence, H,(T/, T;) 2 
HE(Ti, Tj) - 2 . (l(HE( T,f , Ti) - A)/21 - 1) > A. A contradiction. So, T,, exists. 

Now, since both T,. and T,., belong to P/ and the labeling procedure did not 
select T,,, we know Tee,, is to the right of Tee,,, on the bottom side of T. Figure 12 
depicts the two possible cases for the relative location of T,, and T,. 

Let A4 = (D - (r’, C(r))) U (C(r’), r). Clearly, K(M) > K(D). It is simple to 
show that if we prove that HM( SI, &) = A, then we have established a contradiction. 
Clearly, if the situation shown in Figure 12a occurs we know there is a contradiction. 
So, the remaining case is depicted in Figure 12b. 

One can easily show that if HrM( Tk, Tk) 5 A for every Tk E [T,, Tr,] then we 
obtain a contradiction. This is equivalent to proving that HD(Tk, Tk) 5 A - 2 for 
every Tk E (T,, T,,), since this also implies that H&T,, Tr) 5 A - 1, and 
HD( T,., , T,,) 5 A - 1. Let us prove this bound. Let 1; be the interval (T: , To) for 
1 I z 5 R (note that these intervals do not correspond to the P’ intervals) and let 
Tk be any terminal located on the interval (T,, T,,). Let z be the smallest integer 
such that Tk E 1,. Let w be the number of paths that are neither RDLE nor LDRE 
paths and cross Tk in D. Clearly, there are the same number of such paths that 
cross Tk in E. There are at least Lz/21 terminals connected by RDLE paths that 
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were labeled A’ when considering sets PI, Pi, . . . , P; located on the interval 
[Tk, $1, since by assumption the first l- 1 terminals labeled A’ are connected by 
RDLE paths and z I 1. Clearly, T,, is to the right of T, and T,, is connected by an 
RDLE path not included in the previous bound. Hence at least Lz/2J + 1 RDLE 
paths cross Tk in E and since Tk E (T,, T,,), all LDRE paths cross Tk in E. So, it 
must be that HE(Tk, Tk) 1 w + [R/21 + Lz/2J + 1. Now, since Tk E (T,, Tr,) then 
no LDRE path crosses point Tk in D and at least 1z/21 + 1 RDLE paths do not 
cross point Tk in D. Therefore, we know that 

HD(Tk, Tk) I W + rR/2i - Lz/2J - 1. 

From these two inequalities and the fact that HE(Tk, Tk) 5 A + z - 1, we know 
that Ho( Tk, Tk) I A - 2. Hence, H&S,, &) 5 A, and as it was established before 
there is a contradiction. This completes the proof of this case. Cl 

Case 2. H&S,, 8,) = A, terminal T, is labeled A” and T, is not connected by 
an LDRE path in D. 

The proof of this case is similar to Case 1. Cl 

Case 3. Ho( S1, &) = A + 1, terminal T,. is labeled B’ and T, is not connected 
by an RDLE path in D. 

The proof of this case is similar to the one for Case 1. It will be included because 
we feel it explains the reason behind the two labeling procedures. Let T, and 1 be 
as defined above. Clearly, T, E. P; . Now we show that there exists a terminal, T,. 
E P; connected by an RDLE path in D that was not labeled B’ when labeling sets 
Pi, Pi, . . . . P;. From the labeling procedure and claim 4 we know that the 
number of terminals labeled B’ while considering sets P;, Pi, . . . , P; is l/2. Now 
if T,, does not exist then there are no more than (l/2) - 1 terminals connected by 
RDLE paths in D for the interval IT/, To]. Hence, 

H,,(T;, T;) 2 H,(T;, T;) - 2 . HEW, T/V - A 
2 

A contradiction. 
Now, since both T, and T,, belong to Pi and the labeling procedure did 

not select T,,, we know Tee,, is to the right of Tee,,, on the bottom side of T. 
Figure 12 depicts the two possible cases for the location of T,, and T,. Let 
M = (D - (r’, C(r))) U (C(r’), YJ. Clearly, K(M) > K(D). It is simple to show that 
if we prove that H,+,( S, , &) = A + 1, then we will establish a contradiction. Clearly, 
if the situation depicted in Figure 12a occurs, we know there is a contradiction. 
So, the remaining case is depicted in Figure 12b. 

One can easily show that if HM(Tk, Tk) 5 A + 1 for every Tk E [T,, T,,], then 
we obtain a contradiction. This is equivalent to proving that HD(T,, Tk) 5 A - 1 
for every Tk E (T,, T,.), since this bound implies that H,(T,, Tr) I A, and 
HD( T,, , T,,) 5 A. Let us now prove this bound. Let 1, be the interval (Tl , To) for 
1 5 z 5 R (remember that these intervals do not correspond to the sets P’) and let 
TX be any terminal located on the interval (T,, T,,). Let z be the smallest integer 
such that Tk E Z,. Let w be the number of paths that are neither RDLE or LDRE 
paths and cross Tk in D. Clearly, there are the same number of such paths that 
cross TX in E. There are lz/21 - 1 terminals connected by RDLE paths and labeled 
B’ when considering sets Pi, P;, . . . , P; located on the interval [Tk, &I, since by 
assumption the first I - 1 terminals labeled B’ are connected by RDLE paths and 
z I 1. Clearly T,, is to the right of T, and T,, is connected by an RDLE path not 
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included in the previous bound. Hence at least i-z/21 RDLE paths cross Tk in E 
and since Tk E (Tr, T,,), all LDRE paths cross Tk in E. So, it must be that 
II&Tk, Tk) L w + LR/2J + rz/21. Now, since Tk E [T,, T,.,), then no LDRE path 
crosses point Tk in D and at least rz/21 RDLE paths do not cross point Tk in D. 
Therefore, IID(Tk, Tk) 5 w + LR/2J - rz/21. From these two inequalities and 
the fact that IIE(Tk, T,) 5 A + z - 1, we know tht IID(Tk, Tk) d A - 1. Hence, 
HIM(SI, S,) 5 A and as it was established before there is a contradiction. 

This completes the proof of this case. 0 

Case 4. Ho( S, , S,) = A + 1, terminal T,. is labeled B” and T, is not connected 
by an LDRE path in D. 

The proof for this case is similar to the one for Case 3. q 

4. Algorithm and Complexity Issues 
In this sectionwe present our algorithm to solve the 2-RlM problem. The algorithm 
is based on the lemmas presented in Sections 2 and 3. Our algorithm has worst 
case time complexity O(nlogn) and O(n) when the set of terminals is initially 
sorted. In the last part of this section we discuss lower bounds for the worst case 
time complexity of decision tree algorithms for the 2-RIM problem. The algorithm 
is given below. 

algorithm ROUTING 

Rename the set of terminals in such a way that when traversing Tin the clockwise direction 
starting at point So, the terminals are visited in the order T, , T,, . . . , Tzn; 

Label the terminals local and global following the definitions that appear after Lemma 2.2; 
Construct D’; // def 2.1 // 
Partition the problem into the following two subproblems: 

P, is the initial problem after deleting all global terminals located on the left and right 
sides of T, and 

P2 is the initial problem after deleting all global terminals located on the top and bottom 
sides of T; 

D, c SOLVE(P,); 
D2 c SOLVE(P,); // Assume that the rectangle is rotated 90 degrees // 
Combine D, and D2 into the final assignment D; 
Construct and output the final layout for D using the procedure discussed in the proof of 

Lemma 2.2 [L]; 
end of algorithm ROUTING; 

procedure SOLVE(P); 
Construct D’ for P; // def 2.1 // 
if there are no global terminals then return (D’) endif; 
Compute LY and 13; // def 3.1 // 
Construct D”; // def 3.2 // 
Compute t; // def 3.4 // 
if t = 0 then retum(D”) endif; 
Compute A; // def 3.5 // 
Construct &-R and Eright; // def 3.6 // 
Compute R for Elcn and Eright; // def 3.1 // 
Define T6, . . . , T;1, T6’, . . . , Ts for EM and Eright; // def 3.1 // 
Perform the A’, A”, B’, and B” labelings for EM and En& // def 3.9 // 
if h, + hp + t is even then /I EM, = -%I,, /I 

D, + MODIFY(A’, A”, EM); 
Dz c MODIFY(B’, B”, E,,fi); 
else // there is an optimal assignment with height on the top side of T is equal to A // 
D, c MODIFY(A’, A”, Em); 
02 c MODIFY(A’, A”, E,ig,,,); 

endif 
return(D) if A(D,) ‘: A(DJ and D2 otherwise); 
end of procedure 
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procedure MODIFY(L, L’, E) 
D c E except that the paths connecting all terminals labeled L and L’ is reversed; 
return(D); 
end of procedure 

THEOREM 4.1. Algorithm ROUTING solves the 2-RIM problem. 

PROOF. The proof is based on Lemmas 3.1, 3.2, 3.3, 3.4, and 3.5. Cl 

THEOREM 4.2. The time complexity of procedure ROUTING is O(n log n). 

PROOF. The first step in procedure ROUTING (sorting the terminals) takes 
Q(n log n) time. Once the terminals are sorted all other steps can be easily shown 
to take O(n) time, except for labelings A’, A”, B’, and B”. The problem of labeling 
the terminals has been reduced to the offline min and oflline max problems in 
which the set of elements is restricted to integers in the range of [ 1, 2n] which can 
be solved by union and find operations [I]. For this special case Gabow and Tajan 
[2] showed that the overall time complexity for these operations is bounded by 
O(n). Therefore the time complexity for our algorithm is O(n log n). 0 

THEOREM 4.3. The time complexity of procedure ROUTING is O(n) when the 
set of terminals is initially sorted. 

PROOF. See the proof of Theorem 4.2. Cl 

In [3], it was shown that Q(n log n) comparisons are required by any decision tree 
algorithm that solves the l-dimensional 2-RlM problem. This result holds even 
when comparisons among linear functions are allowed. A similar result can also 
be proven for the case when the input to the l-dimensional 2-RIM problem is 
restricted to terminals located at a distance of at least h > 0 units from each other. 
Clearly, this result also holds for the 2-R 1 M problem. Hence, the worst case time 
complexity for the 2-R 1 M problem is e(n log n). 

ACKNOWLEDGMENT. The authors like to thank the referees for pointing out 
mistakes in an earlier version of the paper. 

REFERENCES 

1. AHO, A., HOPCROFT, J., AND ULLMAN, J. The Design and Analysis of Computer Algorithms. 
Addison-Wesley, Reading, Mass., 1975. 

2. GABOW, H. N., AND TARJAN, R. E. A linear time algorithm for a special case of disjoint set union. 
J. Comput. Syst. Sci. 30 (1985), 209-221. 

3. GUPTA, U. I., LEE, D. T., AND LEUNG, J. An optimal solution for the channel-assignment problem. 
IEEE Trans. Comput. C-28, 11 (1979), 807-810. 

4. HASHIMOTO, A., AND STEVENS, J. E. Wire routing by optimizing channel assignment without large 
apertures. In Proceedings of the 8th IEEE Design Automation Conference. IEEE, New York, 1971, 
pp. 155-169. 

5. LAPAUGH, A. S. A polynomial time algorithm for optimal routing around a rectangle. In 
Proceedings of the 2lst IEEE Foundations of Computer Science. IEEE, New York, 1980, pp. 282- 
293. 

6. LAPAUGH, A. S. Algorithms for integrated circuit layout. An analytic approach. Ph.D. dissertation. 
Massachusetts Institute of Technology, Cambridge, Mass., 1980. 

7. MEAD, C., AND CONWAY, L. Introduction to VLSI Systems. Addison-Wesley, Reading, Mass., 
1980. 



Linear Time Algorithm for Optimal Routing 831 

8. RIVEST, R. L. The PI (placement and interconnect) system. In Proceedings of the 19th IEEE 
Design Automation Conference. IEEE, New York, 1982, pp. 415-48 1. 

9. SAHNI, S., BHATT, A., AND RAGHAVAN, R. The complexity of design automation problems. Tech. 
Rep. 80-23. Dept. Computer Science. The Univ. of Minnesota, Minneapolis, Minn., Dec. 1980. 

RECEIVED NOVEMBER 1982; REVISED MAY 1985 AND MARCH 1988; ACCEPTED MARCH 1988 

Journal of the Association for Computing Machinery. Vol. 35. No. 4. October 1988. 


