A Linear Time Algorithm for Optimal Routing
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Abstract. The problem of connecting a set of terminals that lie on the sides of a rectangle to minimize
the total area is discussed. An O(n) algorithm is presented to solve this problem when the set of n
terminals is initially sorted. The strategy in this paper is to reduce the problem to several problems such
that no matter what instance is started with, at least one of these problems can be solved optimally by
a greedy method.
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1. Introduction

Let 7 be a rectangle and let S be a set of » points that lie on the sides of 7. Each
point in set .S has to be connected to another point in S by a wire. The path
followed Uy these wires consists of a finite number of horizontal and vertical line
segments. These line segments are assigned to two different layers. All horizontal
line segments are assigned to one layer and all the vertical ones are assigned to the
other layer. Line segments on different layers can be connected at any given point
z by a wire perpendicular to the layers if both line segments include point z on

their respective layers (this is normally referred to as a via or contact cut). Every

pair of distinct and parallel line segments must be at least A > 0 units apart and
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every line segment must be at least A units from each side of T, except in the region
where the path joins the point in S it connects. Also, no path is allowed inside of
rectangle 7 on any of the layers (see Figure 1).

Problem 2-RIM (routing around one module “two terminal” nets) consists of
specifying paths for all the wires in such a way that the total area is minimized.
That is, to place T together with all the wires (that must satisfy the restrictions
imposed above) inside a rectangle (with the same orientation as 7°) of least possible
area. This problem has applications in the layout of integrated circuits [5, 8] and
conforms to a set of design rules for VLSI systems [7].

Hashimoto and Stevens [4] present an O(nlogn) algorithm to solve the 2-R1M
problem for the case when all the points in S lie on one side of 7" and an Q(nlogr)
lower bound on the worst case time complexity for this problem was established
in [3]. In [5], an O(»?) algorithm is presented to solve the 2-R 1M problem. If more
than two layers are allowed and wire overlap is permitted, then the problem
becomes NP-hard [9]. Other generalizations of the 2-R1M problem have been
shown to be NP-hard [6]. In this paper we present a linear time algorithm to solve
the 2-R1M problem when the set of terminals is initially sorted. Since sorting the
terminals can be done in O(nlogn) time, the more general case can be solved in
O(nlogn) time.

The first few steps in our procedure are the initial steps in LaPaugh’s algorithm
[5]. These steps divide the 2-R1M problem into two subproblems and find the
direction for the paths connecting local terminals (a terminal is said to be local if
it is to be connected to another terminal located on the same side or on an adjacent
side of T'). After performing these operations it is only required to solve a restricted
version of the 2-R 1M problem. In this restricted version of the 2-R1M problem all
the nonlocal terminals appear on the top and bottom sides of 7. It is at this point
that our algorithm will differ from the one given in [5].

To simplify the presentation of our results, first we show the existence of an
optimal solution, D, that satisfies the following properties:

(a) Balance. The number of paths crossing two predefined vertical half-lines resting
on the top side of 7 differs by at most one.

(b) Minimum height. The height on the top side of T for D (maximum number of
paths crossing any vertical half-line resting on the top side of 7°) is minimum
amongst all optimal solutions that satisfy (a).

Two suboptimal solutions satisfying (a) are defined. Both of these solutions can
be easily generated. We show that an optimal solution satisfying (a) and (b) above
differs from one of these suboptimal solutions by a set of connecting paths that
can be easily characterized. Our algorithm generates these suboptimal solutions
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and interchanges the direction of several sets of paths. At least one of these feasible
solutions is an optimal solution for our problem.

In Section 2 we present some initial definitions an d the steps from LaPaugh’s
[5] algorithm that our procedure follows. In Section 3 we present a series of lemmas
that show the existence of an optimal solution that can be generated by a greedy
method. Our algorithm and complexity issues relating to the 2-R 1M problem are

discussed in Section 4.

2. Definitions and Problem Transformations

In this section, we redefine the 2-R 1M problem, since our algorithm can be easily
explained under this new definition. We also define some terms and present the
steps from LaPaugh’s algorithm that our procedure follows.

Let T be a rectangular component of size # by w (height by width). There are 2n
terminals (T, T», ..., T>,) on its sides, It is assumed that every pair of terminals
is at least A > 0 units apart and every terminal is located at least A units from each
of the corners of T. The function C(i), for 1 = i < 2pn, indicates that terminal T is
to be connected to terminal Tc;,y. If C({) = j, then C(j) = i, that is, C is a symmetric
function. Terminal 7; is to be connected to terminal 7, by a wire that follows a
path beginning at point 7; and ending at point 7. Each of these paths can be
partitioned into a finite number of straight line segments. These line segments
must lie on the same plane as T, but cannot lie on the inside of rectangle 7. Each
line segment must be parallel to a side of 7. Perpendicular line segments can
intersect at any point, but parallel line segments must be at least A units apart.
Also, all line segments must be at least A units away from every side of rectangle T
except in the vicinity where a line segment connects a terminal. The 2-RIM
problem consists of specifying paths for all the interconnections subject to the rules

+ A nl ~h that tha tnatal
memtioned above in such a way that the total area is minimized, that is, place the

component together with all the interconnnecting paths inside a rectangle (with
the same orientation as 7°) of least possible area.
Label the sides of the component (in the obvious way) left, top, right, and

bottom. Starting in the bottom-left corner of 7, traverse the sides of the rectangle
clockwise. The 7th corner to be visited is labeled S._.. Assume that terminal T’ is
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the /th terminal visited. The closed interval [x, y], where x and y are the corners of
T or the terminals 7}, consists of all the points on the sides of T that are visited
while traversing the sides of 7" in the clockwise direction starting at point x and
ending at point y. Note that interval [x, x] includes only one point. Parentheses
are used instead of square brackets when it is desired to specify an open interval.
We use [So, Si], [S1, S2], [S2, S3], and [ S, So) to represent the left, top, right, and
bottom sides of T, respectively. Terminal T; is said to belong to side /, S(i) = [, if
T; 1s located on the interval [S;, Sy+1ymoa@]-

Set D={d,, d», ..., d,} is said to be an assignment if {d;, C(d))|1 =i<n} =
{1,2, ..., 2n}. Any subset of an assignment is said to be a partial assignment. An
assignment D indicates the starting point for each path connecting a pair of
terminals. The direction of all the paths given by D is the clockwise direction. For

P = D th ro that ~to ta al T tn te
“n}" l e U, I,lle ‘V‘V’}l\a Lllal \aUllll\«\«lD l.\,l llllllal F A l\/lllllllal T(_ (1) alarto ut t\al llllllul ;7-',

moving perpendicular to side S(i) and then continues in the clockwise direction
with respect to T until it can be joined to a wire (all of it on the outside of T')
perpendicular to S(C(i)) that ends at terminal T,. In a partial assignment, the
starting point for some of the connecting paths might not be specified. The
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assignment for the layout given by Figure 1 is {3, 5, 8, 9, 10}. For any / € D, we
say that the path connecting terminal T; crosses point z if z € [T}, Tcy)).

For any assignment (or partial assignment) D we define the height function Hp
forx,y€{T\, Ta, ..., Ta,} U {So, Si, S2, S} as follows:

Hp(x, y) = max{number of \paths given by D that cross point z| z € [x, y]}.

We refer to Hp(x, y) as the height of assignment D on the interval [x, y]. For
example: H;(So, S1) is 3, Hp(Ts, Ts) is 2, and Hp(S», S3) is 2, for the assignment,
D, whose layout appears in Figure 1.

The next two lemmas establish that the 2-R1M problem reduces to the problem
of finding an assignment D with least (4 + (Hp(S\, S2) + Hp(S3, So)) - N) - (w+
(Hp(So, 1) + Hp(S-2, S3)) - A) and then in O(nlogn) time (O(n) time if the set of
terminals is initially sorted) one may obtain an optimal area layout for it. This
layout is an optimal solution to our problem. The proof of Lemma 2.1 is construc-
tive. The construction process begins by finding physical routes for the wires on
each of the four sides of the rectangle separately. This procedure is carried out by
the algorithm given in [5]. These four layouts are combined to form the final
layout by making the appropriate wire connections in each of the four corners of
the rectangle.

LemMmA 2.1. For every assignment D, there is a rectangle Q of size hy by wg,
where

hQ =h+ (H])(Sl, Sz) + HD(SSa SO)) <A
and
wo = w + (Hp(So, S1) + Hp(S2, S5)) - A,

with the property that rectangle T together with the interconnecting paths defined
by D can be made to fit inside Q.

ProoOF. The proof appears in [6]. O

LEMMA 2.2. For any assignment D, a layout with the area given by
Lemma 2.1 can be obtained in O(nlog n) time (O(n) time if the set of terminals is
initially sorted).

Proor. The proof of this lemma appears in [6]. O

In what follows we shall refer to an assignment as an optimal assignment
when it is the assignment for an optimal area layout. Note that an optimal area
layout for an optimal assignment can be obtained from the constructive proof for
Lemma 2.1.

Terminal T; is said to be a global terminal if | S(i) — S(C(i))] = 2, that is,
terminal T is global if it is to be connected to a terminal located on the opposite
side of the rectangle. Terminal T; is said to be local otherwise, that is, if it is to be
connected to a terminal located on the same side or on an adjacent side of the
rectangle 7. Terminals T,, Ty, T,, and T), are the only global terminals for
the problem depicted in Figure 1. For assignment D we define the area function,
A(D), as

(h + (Hp(S1, S2) + Hp(S3, So)) - ) - (w+ (Hp(So, S1) + Hp(S2, S3)) - N),

that is, the total area required by an optimal layout for T together with all the
interconnections specified by D.
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Definition 2.1. Partial assignment D’. Let D’ be the partial assignment in
which each local terminal is connected by a path that crosses the least number of
corners of 7.

LEmMA 2.3. There is an optimal assignment, D, such that D’ C D.

ProOOF, The proof appears in [6]. The proof is based on an interchange
argument. Given any optimal assignment that does not include D’, one constructs
another assignment that includes D’ (by connecting all local terminals by the paths
given in D’) without increasing the total layout area. [

Lemma 2.3 shows that given any instance of the 2-R1M problem there exists an
optimal assignment in which all local terminals are connected by paths that cross
at most one corner of 7. The 2-R1M problem has been reduced to the problem of
finding the starting point for the paths connecting the global terminals in the
presence of the partial assignment D’. The next lemma partitions the 2-R1M
problem into two separate problems: the problem of finding an optimal assignment
for the 2-R 1M problem in which all global terminals appear on the top and bottom
sides of T (P,) and the one in which all global terminals appear on the left and
right sides of 7" (P,). In both of these subproblems local terminals are connected
by the paths given by D’.

LEMMA 2.4. The assignment D, U D, is an optimal assignment, where D, is an
optimal assignment for problem P; (1 < i < 2).

PrOOF. The proof of this lemma appears in [6] and is based on the fact that if
D, U D, is not an optimal assignment to the original problem, then either D, is
not an optimal assignment for P, or D, is not an optimal assignment for P,. O

3. The Restricted Problem

In this section we show that given any instance of the restricted 2-R1M problem,
it is always possible to obtain an optimal assignment by solving one of several
problems using a greedy method. Hereafter, we restrict our attention to the solution
of the 2-R1M problem in which all global terminals are located on the top and
bottom sides of 7 and all local terminals are connected by the paths specified in
D’. Note that problem P,, defined in the previous section, can be transformed to
this one by rotating the rectangle 90 degrees. If the number of global termi-
nals located on the top side of T is zero, then D’ is an optimal assignment
(Lemma 2.3). In what follows we assume that there is at least one global terminal
located on the top side of 7.

First we define two points, T, and T. Then we show the existence of an optimal
assignment in which the global terminals located on the interval [Si, T.] ([7s, S-])
are connected by paths that cross the left (right) side of 7.

Definition 3.1. « and 8. Let

L =D’ U {all global terminals are connected by a path crossing the left side of T'};
I=min{k | H(T:, T)= H.:(S), S>)and T, €[S, S>]};
o= [ if 7 isalocal terminal;
/—0.5 otherwise;

R =D’ U |all global terminals are connected by a path crossing the right side of T'};
r= max{k l HR(Tk, TA) = HR(S] . Sz) and 7, € [S] s Sz]}, and

= r if 7T, isalocal terminal,;
r+0.5 otherwise.
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FiG. 2. Assignment D”.

Note that « and 8 do not always correspond to terminal indices. Sometimes they
correspond to a terminal index = 0.5. In what follows we corrupt our notation by
making reference to T, and T,. When T,(T};) does not correspond to a terminal
we mean a point located € < X units to the left (right) of terminal T.(774). In both
of these cases such a point is located on the top side of 7. We also assume that the
definition of an interval and the height function have been extended to include T,
and T;. For the problem given in Figure 1, « is 3 and 8 is 5 (if 75 and T were
global terminals then « = 2.5 and 8 = 5.5). The values for o and g are integers for
the problems depicted in Figures 6 and 7. Note that when a (or 8) is an integer it
corresponds to the index of a local terminal. From the definition of « and 8 it is
simple to prove that a < §.

Definition 3.2. Partial assignment D”. Let D” = D’ U {all global terminals
located on the interval [.S;, T.] connected by a path crossing the left side of 7} U
{all global terminals located on the interval [T}, S;] connected by a path crossing
the right side of T'} (see Figure 2).

Definition 3.3. h, and hs. Let h, = H}(T., T.) and hg = H(T3, Tp).

We now show that there is an optimal assignment, D, such that D” C D. Before
proving this, we prove the following lemma, which will be useful in the proof of
subsequent lemmas.

LEmMMA 3.1. Given any assignment D such that D’ C D,

(i) Hp(S:, Tx) < Hp(Ty, S,) for every Ty in Sy, T.), and
(ll) H[)(S], Tk) = HD(Tk, Sz)for every Ty in [Tﬁ, Sz]

ProoOF. Since the proof for (ii) is similar to the proof for (i), we only prove (i).
Clearly, if we can prove that Hp(Tx, Tx) < Hp(T., T.) for every Ty in [S), T.],
then (i) holds. Let T} be any global terminal located on the interval [S), T.] and
let W be the set of indices of the terminals that are connected differently in D and
L, where L is the assignment in Definition 3.1. Note that all the terminals whose
index is in W are global since D’ C Dand D’ C L. Let W, = WnN {/|T,isin
[Si, T} and W, = W N {{|T,is in [T,, S:]}. At this point it is important to
remember that T, is not a global terminal and thus W, N W, = @. Since each
terminal whose index is in P is connected by a path that crosses the right side of
T in D but not in L, we know that

. HD(T/\'; Tk) = HL(Tka Tk)+ | Wl | - | W2 |9
and
HD(Ta7 Ta) = HL(Ta9 Ta)+ | Wl | - I W2 |‘
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From the definition of « kr‘ow that H (T, T) = H(T., T,) for any T} in
[S:, T.]. Hence, Hp(T%, TA) Hp(T., T.) for any T in [S,, T,]. Thus, as
established before it must be that (1) holds. This completes the proof of the
lemma. O

LemMma 3.2, Let D” be as defined above. There is an optimal assignment, D,
such that D” C D.

PrROOF. Lemma 2.3 guarantees the existence of at least one optimal assignment
that includes D’. We show that at least one of such assignments includes D”. The
proof is by contradiction. Suppose every optimal assignment that includes D’ has
the pronertv that D” is not a subset of it. Let D be an optimal assionment that

UL PRUOPCINY ias 2200 SLaUslL O «alil L111lal Qsoipiililciil

includes D’ and has the least dlsagreement (in terms of the number of connecting
paths) with D”. There are two cases depending on where the disagreement occurs.

Case 1. There is a terminal, T;, located on the interval [S;, T.] connected
differently in D” and D.

We establish a contradiction by constructing another optimal assignment, M =
(D — {i}) U {C(i)}, that includes D’ and has less disagreement with D” than D.
Since Hu(S3, So) = Hp(S3, So) + 1, D' € M, and M has less disagreement
with D” than D, a contradiction can be obtained by proving that Hu(S:, SZ) <
Hy(S,, S-) — 1 (see Figure 3).

Since T; is connected by a path that crosses the right side of 7 in D but not in
M and T, is not T, (remember that T; is a global terminal and T, cannot be a
giobal terminai), we know that Ha(T,, S2) = Hp(T,, S2) — 1 = Hp(S1, S2) — 1.
Since D’ C M, then from Lemma 3.1 we know that Hx (S, T.) < Hpy(T,, S5).
Hence, Hy(S;, S2) = Hy(T., S2) < Hp(S,, S2) — 1. A contradiction.

Case?2. Thereisaterminal located on the interval [T}, S.] connected differently
in D” and D.

A contradiction for this case can be obtained by using a proof similar to the one
for Case 1.

This completes the proof of the lemma. O

Dofinitin vl')/lt

Lo erieiUre S, b,

(T, Tp).

If £ = Q then nartial assi

If ¢ then part ign

the starting point (and by conventlon the direction) for the connection of all
terminals, and by Lemma 3.2 we conclude that D” is an optimal assignment. In
what follows we assume that £ > 0. A lower bound for the height on the top side
of T for any assignment that includes D” is given by A.

we have specifi

gnment, that is, we have specifi

ad
ea

Definition 3.5. A, letA=1ha,+ hy + 1)/21.

From the above definitions one can easily prove the following claim.
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CLamm 1. Hp(S:, S5) = A for any assignment D such that D” € D

‘U\ul, 22/ i1 4

In what follows we show that there is an optimal assignment that includes D”,
with height on the top side of T is equal to A or A + 1, and with the property that
the heights at points T, and T} differs by at most one.

LEMMA 3.3. There is an optimal assignment, D, such that

(@) D" C D,
(b) | Hp(T., Ty — Ho(Tj, Tp) | < 1, and
(¢) A< Hp(S,S)<A+1.

ProoF. Using the following claim together with the fact that Hp(7., T.) +
Hy(Ty, Tg) = h, + hg + ¢ one can easily prove the existence of an optimal
assignment D satisfying (a)—(c). Hence, the proof of the lemma follows from the
proof of the following claim.

CLAIM. There is an optimal assignment, D, such that

G N7 C N
uj 7 =0,

(ii) Hp(S:, S2) — Hp(T., T.) < 1, and
(iii) Hp(S\, S2) — Hp(T, Tp) < 1.

Proor. From Lemma 3.2 we know that there is at least one optimal assignment
satisfying (i). We now show that one of such assignments also satisfies (ii) and (iii).
This is shown by contradiction. Suppose all optimal assignments satisfying (i) do
not satisfy (ii) or (iii). Let D be an optimal assignment such that D” € D and D
has the smallest height on the top side of T (i.e., least Hp(S), S2)) amongst all
optimal assignments that satisfy (i). There are three cases depending on which of
the inequalities is violated.

Case 1. HD(Sl, Sz) - HD(TE,, Ta) < 1 and HD(Sl, Sz) - HD(Tﬁ, Tﬂ) > 1.

If every global terminal located on the interval (7,, T;) is connected by a path
crossing the right side of T in assignment D, then from the definition of 8 one can
prove that H,(Ts, Tp) = Hp(T., S2). Since D’ C D, then from Lemma 3.1 we
know HD(Sl, T‘,) = HD(Ta, Sz) = HD(TB; T,@) = HD(Sl, Sz) But, since (lll) is
violated we know that Hp(Ty, T5) < Hp(Si, S2). Therefore, it must be that there

is at least one global terminal located on the interval (7, T5) connected by a path
cracsine the laft cide af T7in D 1 ot T he the richtmanct olahal tarminal in (T T\
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connected by a path crossing the left 51de of T. Let M = (D — {C(r)}) U {r}. If we
prove that D” C M, M is an optimal assignment and M has less height on top side
of T than D, then there is a contradiction.

Since T, € (T., Ts), D” © M and only one connecting path differs in A and D,
we know that H,,(S5, So) = Hp(S3, So) + 1. Hence, a contradiction can be obtained
by proving that H,(Sy, S2) < Hp(S), S2) — 1. From Figure 4 it is simple to observe
that

Hy (S, T) = Hp(Sy, Tk) — | = Hp(S1, $2) — |, for every T, €[S, T)).

Consequently, we only need to prove that Hy/(T,, S>) < Hp(S,, $3) — 1.

Since all giobal terminals in [T, S>] are connected by paths that cross the right
side of 7' in M, a proof similar to the one for Lemma 3.1 can be used to show that
Ho(T,, 85) = Hy(T, Tp). Clearly, Hy(Ts, Tg) = Hp(Ts, Ts) + 1. From these two
equations and the inequality being violated in the conditions of Case 1, we know
that Hx(T,, S>) = Hp(S1, S,) — 1, and as established before there is a contradiction.
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Case 2. HD(Sl, Sz) - HD(Ta, Ta) >1 and HD(S!, SZ) - HD(Tﬂ> Tﬁ) =1
Since the proof for this case is similar to the one for Case 1, it will be omitted.
Case 3. Hp(S:, S:)— Hp(T., T.)> 1 and Hp(S\, S,) — Hp(Ts, T) > 1.

Let T/(T,) be the leftmost (rightmost) global terminal located on the interval
(T., T) connected by a path that crosses the right (left) side of T in D. One can
prove the existence of these two terminals by using arguments similar to those in
the proof for Case 1. If 7 is to the right of T, then a proof similar to the one for
Lemma 3.1 can be used to prove that Hp(S\, T,) = Hp(T,, T.), Hp (T}, S,) =
Hp(T,, Ts), and since there are no global terminals in (T,, T;), we know that
Hp(T,, T)) = Hp(T,, T.). Hence, it must be that H,(S,, S,) = max{Hp(T., T,),
Hp(T,, T,)}. This contradicts our assumption that (ii) and (iii) are violated.
Therefore, T, must be located to the left of T,.

Let M = (D — {I, C(r)}) U {C(]), r}. We now show that assignment M has the
following properties: D” C M, M has less height on the top side of 7 than D, and
M is an optimal assignment. Clearly, if these statements hold, then there is a
contradiction (see Figure 5).

Straightforward arguments can be used to show that a contradiction can be
obtained by proving that

Hu(Sy, Ti) = Hp(S1, $2) =2 and  Hu(T,, $2) = Hp(S), $2) — 2.

Since all global terminals located on the interval [.S), T;] are connected by a path
that crosses the left side of 7" in M, a proof similar to the one of Lemma 3.1 can
be used to show that Hy(S:, T;) = Hu(T,, T,). Following similar arguments
we know Hy(T,, S2) = Hu(Ts, Tp). Clearly, Hy(T,, T.) = Hp(T,, T,) and
H\(T;, Ts) = Hp(Ts, Ts). From these equations and the inequalities violated
in the conditions of Case 3, we know that Hy(S,, T;) = Hp(S,, S») — 2 and
H,(T,, S5) < Hp(S,, S:) — 2. Thus, as it was established before there is a
contradiction.

This completes the proof of the claim and the lemma. O

The remaining proofs and the algorithm could be greatly simplified if one
could prove Lemma 3.3 with condition (c) replaced by either Hp(S:, S2) = A or
Hp(S), $5) = A + 1. However, such lemmas cannot be proved. In what follows we
give counterexamples to both of these proposed lemmas. In Figure 6 we give a
problem instance that does not have an optimal assignment satisfying (a) and (b)
in Lemma 3.3 and with height on the top side of T equal to A. Let us prove this
claim. Since there are four global terminals located on the bottom side of 7, the
height on the bottom side of 7 for any assignment must be at least two. Therefore,
if we can prove that there is no assignment with area < (2 + 7)) - (w + 4))
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satisfying (a) and (b) in Lemma 3.3 and with height on the top side of T equal to
A = 4, then the assignment for the layout given in Figure 6 is optimal and there is
no optimal assignment satisfying the above properties. The proof is by contradic-
tion. Suppose there is an assignment, D, with area less than or equal to (2 + 7)) -
(w + 4 ), satisfying (a) and (b) in Lemma 3.3 and height on the top side of T equal
to A. Since D’ C D ((a) in Lemma 3.3), we know that all local terminals are
connected as in Figure 6. Since the height of D on the top side of T is A, then at
most one global terminal can be connected by a path that crosses the interval (75,
T)3) on the top side of T. But if there is exactly one of such paths, then D does not
satisfy (b) in Lemma 3.3. Hence, it must be that 75 and 7, (75 and T)4) are
connected by paths that cross the left (right) side of 7. But then assignment D has
height on the bottom side equal to 4 and on the top side equal to A = 4. Hence, D
has area greater than (4 + 7)) - (w + 4)\). A contradiction.

In Figure 7 we give an instance that does not have an optimal assignment
satisfying (a) and (b) in Lemma 3.3 and whose height on the top side of T is
A + 1. Let us prove this claim. Clearly, there cannot be an assignment that satisfies
(a) and (b) in Lemma 3.3 with height on the top side of 7 less than A = 4 and
since there are four global terminals located on the bottom side of T then any
feasible assignment must have a height on the bottom side of T of at least two.
Hence, the layout depicted in Figure 7 is optimal and there is no optimal assignment
with height on the top side of T equal to A + 1.
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Note that in both of these examples 4., + Az + t is even. When this value is odd,
one can show that there always exists an optimal assignment whose height on the
top side of T"is A. The proof of this fact is similar to the proof of Lemma 3.3. In
the next two lemmas we do not take advantage of this fact; however, it will be used
by the final algorithm. A skeptical reader can ignore this fact and obtain another
algorithm that is slower than ours.

We now define assignments E. and Eygn. Later on we show there is an optimal
assignment that differs from Ej.q or Esgn by a set of connecting paths that can be
easily characterized. If 4, + hs + ¢ is even, then Ejeq = Ejgne = D” U {the leftmost
y global terminals located on the bottom side of 7" that have not yet been included
in D” are connected by a path that crosses the left side of 7} U {the remaining
global terminals (those terminals not included in D” and not included in the
previous partial assignment) are connected by a path that crosses the right side of
T}, where y is such that the height at points 7, and T, for this assignment is
identical. When A, + hs + t is odd, E\.q is defined similarly, except that the value
for yis such that Hy, (T., T.) = Hg, (Ts, Ts) + 1 (see Figure 9). Assignment Eign,
is defined similarly, except that the value for y is such that Hy, oilTos T) + 1 =
Hp  (Tg, Tg). These assignments are formally defined below.

Definition 3.6. Ee and Erign. Let

M = {l| T,is a global terminal located on the bottom side of T'and /, C({) & D"};
M, ={l|lisin M, [is the ith largest value in M and i < [(h, + hg+ t)/21 = h.};
M, = {l|!/isin M,/ is the ith largest value in M and i < L(h, + hg + £)/2] — h.};
Eqa=D"U{l|leMIU{C)|IEM—-M)};

Eign=D"U{l|]1€ M} U{C()|] € (M — M))}.

Clearly, if A, + hs + ¢ is odd, then Eieq and Egn will differ only in the starting
point for one path (see Figure 8). From the above definitions one can prove the
following claim.

CLAM 2. For E € {Eyq, Eugnl, E is an assignment for T; D” C E; and
| He(T., Ton) — He(Ty, Tp) | < 1.

In what follows we define some terms for assignment E, which can be either E
or Eig,. When we make use of the terms defined this way, it will be explicitly
indicated which of Ei or Egn, was used in the definition.

Definition 3.7. R, T} and T}. Let R = Hg(S:, S2) — A.Forl=1,2,..., R,
let T/ (T}) represent the rightmost (leftmost) terminal located on the interval
[S1, S2] whose height is A + [and let T'§ (T§) represent T (T7,).
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If for assignment E the value of R is 0 then T is T, and T% is Ty, and as we
show in the next two lemmas if there is an optimal assignment with height equal
to A then assignment E is optimal. An assignment D that includes D” is said to
conform to assignment E € {Fiq, Erign} (and E conform to D) if Hp(T,, T.) =
Hg(T,, T,), that is, the number of global terminals connected by a path crossing
the left side of 7 in D is the same as the number of global terminals connected by
a path crossing the left side of 7in F.

CLAIM 3.  Any optimal assignment, D, that satisfies conditions (a) and (b) in
Lemma 3.3 conforms to the assignment E,,;, O Eigp.

PrOOF. Since D” is included in D, En and Elgn, we know that for each of
these assignments the sum of the heights at points 7, and T} is equal to A, +
hs + t. When this value is even then from condition (b) in Lemma 3.3 we know
that the heights at points 7, and T} is the same. This property is also satisfied by
E\ = Eigni. Hence, D conforms to Eier and to Epgn. When A, + A5 + ¢ is odd then
we know that in assignment D the heights at points T, and T} differs by 1. Hence,
D conforms to En if Hp(T., T.) > Hp(Ts, Ts), and D conforms to Ejgn,
otherwise. [

We define Eiq and Ei,n because there are instances for which there is no optimal
assignment that conforms to E.. This is also true for .. The problem depicted
in Figure 9 does not have an optimal solution that conforms to E,.. Note that
this happens only when A, + A, + ¢ is odd.

Example. Let D be an optimal assignment that satisfies (a)-(c) in Lemma 3.3
and let £ € {Ein, Ergn} conform to D. A connecting path is said to be an
RDLE(LDRE) path if it crosses the right (left) side of T in D but not in E. Clearly,
the only difference between assignments D and E is because of RDLE and LDRE
paths. In Lemma 3.4 we show that there is an optimal assignment D that satisfies
Lemma 3.3 with the same number of RDLE and LDRE paths and the number of
such paths is either LR/2] or TR/21. Furthermore, we know the region on the top
side of T where the terminals, that these paths connect, are located. In Lemma 3.5
we show that there is an optimal assignment, D, such that in the assignment E €
{Eiert, Erign) that conforms to D we can precisely identify the terminals that the
RDLE and LDRE paths connect. The identification of these terminals can be
carried out by a simple greedy method. The main idea behind our algorithm is to
construct assignments E.q and Fiign, and then identify the RDLE and LDRE paths
in them. Once this process is completed we reverse the direction of the RDLE and
LDRE paths to obtain an optimal assignment.
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LEMMA 3.4. There is an optimal assignment D such that E € {E.s, E,ign}
conforms to it and

(a) D" CD;

(0) | Hp(T., To) — Hp(Tp, Tp) | = 1

(C) A=< HD(Sl, Sz) <A+ 1;

(d) Each RDLE (LDRE) path connects a terminal located on the interval [T r Tj)
(T,, TR]); and

() The number of RDLE and LDRE paths is TR/21 if Hp(S\, S») = A and
LR/21, otherwise.

Proor. From Lemma 3.3 we know there is an optimal assignment that satisfies
(a), (b), and (¢); and from Claim 3 we know that any of such assignments conforms
to E € {Ejen, Eign). We now show that at least one of these optimal assignments
satisfies (d) and (e). This will be shown by contradiction. Suppose all optimal
assignments satisfying (a), (b), and (c) do not satisfy (d) or (e). Let D be one of
these assignments that differs the least with E (the assignment that conforms to it).
There are two cases depending on which of (d) or (e) is violated.

Case 1. (d) is violated. There are two subcases depending on how (d) is violated.

Subcase 1.1. There is an LDRE path connecting a terminal located on the
interval (T'k, Tj).

Let 7; (T,) be the rightmost (leftmost) terminal located on the top side of T
connected by an LDRE (RDLE) path. By assumption the LDRE path exists. The
existence of an RDLE path is guaranteed by the fact that if there are more LDRE
paths than RDLE paths, then (b) does not hold since we know E conforms to D.
Let M = (D — {C(]), r}) U {l, C(r)}. We now show that M is an optimal assignhment
satisfying (a)-(c) and that it has less disagreement with E and D. It is simple to
show that M satisfies (a) and (b) and that it has less disagreement with £ and D.
Now, since the connecting paths for 7; and T, overlap on the bottom side of T
in D (this can be seen from the definition of assignment E), Hp(S3, So) =
Hy (S35, Sp). Therefore, to establish a contradiction we only need to prove
that HD(Sl, Sz) = HM(SI, Sz)

A contradiction can be easily obtained if it is the case that T, is located to the
left of 7. So let us assume that 7, is located to the right of T} (see Figure 10).

Again, since E conforms to D and D satisfies (b), we know that there are the
same number of RDLE and LDRE paths. Let f be this number. Since there are at
most f — 1 LDRE paths connecting a terminal in [.S;, T%] and all the f RDLE
paths connect a terminal located on the interval (T'%, S:], we know that

Hp(Tk, TR) = H(Tk, TR) = (f— D)+ 1 = f=He(T%, Tk) — 2f + 2.
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With respect to M and E there are only f— 1 LDRE and RDLE paths. Since all
the LDRE paths (with respect to M and E) are located on the interval [S), 7;) and
all the RDLE paths (with respect to M and E) are located on the interval (7, S,],
we know that Hy (T, T) = He(Ty, T) — 2(f — 1) for every Ty € [T}, T,]. Now,
by the definition of T% we know Hg(T,, T.) = Hg(Tk, Tk) for every T, €
[T, T,]. Hence, Hy(T:, T.) = Hp(T%, T%) for every T, € [T,, T,]. Clearly,
HM(Sl, Tk) = HD(Sl, Tk) for every T, € [S], T/) and HM(Tk, Sz) = HD(Tk, Sz) for
every T, € (T,, S,). From these inequalities we know H (S, S2) = Hp(S,, $2),
which as established before is a contradiction.

Subcase 1.2. There is an RDLE path connecting a terminal located on the
interval (T, Tz).

A contradiction for this case can be obtained by applying arguments similar to
those in the previous subcase.
Hence if (d) is violated there is a contradiction.

Case 2. Assignment D satisfies (d) but not (e).

Again, since E conforms to D and D satisfies (b), we know that there are the
same number of RDLE and LDRE paths. Let f be this number. Let T} represent
T# if Tk is not connected by an LDRE or RDLE path, let 7} represent a point
¢ < \ units to the right of T% if T% is connected by an LDRE path and let 7,
represent a point € < A to the left of T'% if Tk is connected by an RDLE path (note
that this can happen only when T% = T '%). Assume that the definition of the height
function has been extended to include 7, when 7 does not correspond to a
terminal point. Clearly, H(Ty, Ti) — Hp(Ty, T;) = 2f. Also, if Hp(S), S2) = A +
a, where ais O or 1, then Hx(T, T.) — Hp(Ty, T:) = R — a. Hence, the value for
[fis at least as large as the bounds given in (e). If equality occurs, there is nothing
to prove. So assume that f'is larger than the bound in (e). Therefore, R = 1 and
there is at least one RDLE and one LDRE path. Let 7, (7)) be the leftmost
(rightmost) terminal located on the top side of T connected by an RDLE (LDRE)
path. Since D satisfies (d), we know that / < r. Let M = (D — {C({), r}) U {I, C(r)}.
We now show that M is an optimal assignment satisfying (a)-(d) and that it has
less disagreement with E than D. It is simple to show that M satisfies (a), (b), and
(d) and that it has less disagreement with F than D. Also, one can easily show that

Hp(S5, So) = Hpy(Ss, So) and Hy(Ty, Ti) = Hp(Ty, T)
forevery T, €[Sy, T)) U (T}, S5

Hence, a contradiction can be obtained by showing that Hp(S), S3) = Hu(Tr, Ti)
for every T, € [T), T,] (see Figure 11). Clearly,

Hy(Ty, T,)=He(Ti, T) —2 - f+ 2 for every T, € 1T, T,],
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where fis the number of RDLE (or LDRE) paths for D and E,

Hp(T%, TR) = H(Tk, Tk) — 2 - f, (eq. 1)
if the path connecting 7°% is the same in D and E, and
Hp(T, TR) = He(Tk, TRY =2 - f+ 1, (eq. 2)

if the path connecting 7% differs in D and E. From the definition of T% and T2
we know Hp(Ty, T) < He(Tk, Tk) = He(T#%, Tk), forevery T, € [T}, T,]. From
these inequalities we know

Hy(Ty, Ty) < Hp(Tk, Tk) + 2 for every T, € [T, T,], (eq.3)
if the path connecting T'% is the same in D and E, and
Hy (T, T)) = Hp(Tk, Th) + 1 for every T, € [T), T,], (eq.4)

if the path connecting T% differs in D and E. Now if Hp(S,, ;) = A, then

substituting /> [R/21 = [(Hg(T%, T}) — A)/211in eq. 1 and eq. 2, we know that

Hp(Tk, TR) < He(Tk, TR) — 2 - ((He(T%, TR) — A)/21 + 1), if the path

connecting 73 is the same in D and E, and Hp(Tk, T?) < He(Tk, T}) —

2. (I(H(T%, T%)— A)/21+ 1) + 1, if the path connecting T zdiffers in D and E.
Simplifying,

Hp(Tk, TR)<A-=2 if the path connecting T'% is the same in D in E, and

Hp(Tk, TR)=A-1 if the path connecting 7% differsin D and E.
Similarly, when Hp(S|, S2) = A + 1, one can prove that

Hy(Tx, TR)=A—-1 if the path connecting 7" is the same in D and E, and

Hp(T%, TR)=A if the path connecting 7% differsin D and E.

Substituting the last two pairs of inequalities in (eq. 3) and (eq. 4), we know that
forevery T, € [T), T,],

Hu(Ty, Ty) = A (f Hp(S1, S,) = 4),
and H(T, Ti)=A+1 GfHp(S,, $5) = A+ 1).
Hence, Hy (T, Ti) = Hp(S), S>) for every T, € [T, T,] and as it was established
before, there is a contradiction. O

Sets of terminals will be defined and subsets of them will be labeled A, A”, B’,
and B”. These sets will be used in Lemma 3.5 where it will be shown that there is
an optimal assignment that differs from FE.q, or E.gn by the set of paths that connect
the terminals labeled 4’ and 4”, or B’ and B”. Consequently in order to construct
an optimal assignment it is only required to construct Ejn and Egg, and then
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interchange some set of connecting paths. One of the assignments obtained this
way will be an optimal assignment. In sets P/ (P/') defined below we identify all
the terminals that could possibly be connected by an RDLE (LDRE) path.

Definition 3.8. Sets P/ and P/. For /= 1to R, let P/ (P}) be the set of global
terminals located on the interval [T/, T3)(T., T7]) connected by a path crossing
the left (right) side of T in assignment E.

CLAM 4. For E € {Ey, Engnl and 1 <1< R, | P} | = Tl/21 and | P} | = T1/21.

Proor. The proofis by contradiction. Suppose that for some problem instance
an assignment E € {Eq, Eign violates the above inequalities, that is, for some
1 =/ < R, either | P/| < l/2]1 or | P/ | < T1/21. Since a contradiction can be
obtained by applying similar arguments in both cases, assume that for some
l=Il=<R,|P/| <Tl21 Let W, = {i| T; is a global terminal located on the
interval [S;, T'/) that is connected by a path that crosses the left side of T in E}.
The assignment R in Definition 3.1 is assignment E after reversing the paths in
W, U P/. Hence,

He(T;, T{) < H(T;, T]) — | Wi | + | P/ |
and He(Ty, Tp) = Hr(Ty, T3) — | Wi | — | P/].

From the definition of 8 we know that Hx(T/, T/) = Hr(T;, Ts). Combining
these inequalities we know that

He(Ty, Tg) = He(T!, T7)— 2 | P/ .

Subsituting Hx(T/, T/) = A + [ and | P/ | < 1/21 in the above inequality, we
know that Hx(T5, T5) = A + 1. But, from the definition of A and E we know that
Hg(Ts, Tg) = A. A contradiction. [0

Let us now explain the reason behind our labeling procedures. Let D be an
optimal assignment with height on the top side of T equal to A that satisfies the
conditions of Lemma 3.4. For simplicity, let us assume that [R/21 is odd. From
Lemma 3.4 we know that on the interval [T ', T5) there are exactly [ R/21 terminals
connected by RDLE paths. For all k, the interval [T k-2, T5) contains at least
[R/21 — k terminals connected by RDLE paths as otherwise one can show that the
height on the top side of T for assignment D is > A. Hence, at least one RDLE
path connects a terminal in P{, at least two RDLE paths connect terminals in P35,
and so on. Let us now consider how we can determine which of the terminals in
set P{ is connected by an RDLE path. Let { and j be any two indices of terminals
in set P{. If C(i) > C(j), T;is connected by an RDLE path and 7; is not connected
by an RDLE path, then one can obtain another optimal solution by reversing the
paths that connect terminals 7; and 7} in assignment D. The optimality of this new
assignment follows from the fact that the height on the bottom side of T did not
increase with the interchange and the new assignment can be shown to have height
on the top side of T equal to A. This suggests that there is an optimal solution such
that the terminal with index i is connected by a path type RDLE if for all other
indices j in Pj it is the case that C(i) < C(j). The same arguments apply for set
P; and the remaining sets as well as for the sets P/’s. In what follows we label
terminals 4’ and A” following the procedure just described and in the next lemma
we show that if there is an optimal solution with height on the top side equal to A
that satisfies the previous lemma, then there is an optimal assignment in which all
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Definition 3.9. A’, A”, B’ and B” labeling. We label terminals as follows:
A’ labeling
for/=1to Rby2do
Let X = {C(i)| T; € P/ and T; was not labeled A’ when considering sets P{, P}, ...,
P,
Label A’ terminal T;, where i is such that C(i) = min{x | x € X};

endfor
A” labeling

This labeling procedure is identical to the previous one, except for the sets P/
being replaced by P7 and “min” is replaced by “max”.

B’ labeling
for/=2to R by 2do
Let X = {C(i)| T; € P/ and T; was not labeled B’ when considering sets P;, P, ...,
P,
Label B’ terminal T;, where i is such that C(i) = min{x | x € X};
endfor
B” labeling

This labeling procedure is identical to the previous one, except for the sets P/
being replaced by P/ and

“min” is replaced by “max”.

From Claim 4 we know that during each iteration of the above labeling proce-
dures the set X contains at least one element and thus one terminal will be labeled.
The next lemma establishes that there is an optimal assignment which can be
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terminals labeled (4’ and 4”) or (B’ and B")
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(@) D" C D;
(b) | Hp(T., To) — Hp(T, T) | = 1
(©) A= Hp(S,, SH) = A+ 1;
(d) Each RDLE (LDRE) path connects a terminal located on the interval
[Tk, Ts)(Te, TRD:;
(e) The number of RDLE and LDRE paths in D is TR/21 if H(S,, S2) = A and
LR/21 otherwzse, and
(f) IfHp(S,, S) = A, then a terminal is connected by an RDLE (LDRE) path in
D iff the terminai is labeled A” (A”). If Hp(S), ;) = A + 1, then a terminai is
connected by an RDLE (LDRE) path in D iff the terminal is labeled B’ (B”).
ProOOF. From the previous lemma we know there is at least one optimal
assignment satisfying (a)-(e) and from Claim 3 we know that any of such assign-
ments conforms to assignment E € {Ejn, Erign]. We now show that at least one of
these assignments satisfies (f). The proof is by contradiction. For each assignment,
D, that satisfies (a)-(e) and with Hy(S);, S5) = A, we define the function K(D) as

It L ] whara 7 (17\ 30 aithar tha amallagt intascar cnich that tarminal 7T 10 nat
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connected by an RDLE (LDRE) path but it was the /’ (/”) terminal to be labeled
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A’ (A4”), or R+ 1 if all the terminals connected by RDLE (LDRE) paths are labeled
A’ (A4”). The definition of K(D) when Hp(S:, S;) = A + 1 is similar, except that
instead of using 4’ and A”, we use B’ and B”. Let D be an optimal assignment
satisfying (a)-(e) with the largest value for K(D). Clearly, the previous lemma
guarantees the existence of at least one of these assignments. Now, since there are
the same number of RDLE and LDRE paths as the number of terminals labeled
A" and A” (B’ and B”) if Hp(S,, S2) = A (if Hp(S1, 82) = A + 1), we know that
there must be a terminals labeled 4’ or A” (B’ or B”) that is not connected by an
RDLE or LDRE path. If H(S\, S») = A (Hp(S, S2) = A + 1), let T, be a terminal
such that it is neither connected by an RDLE or an LDRE path, but for the least
value of / it was the /th terminal to be labeled 4’ or A” (B’ or B”). There are four
cases depending on the label of T,. Remember that if Hp(S,, S2) = A, T, is labeled
A’ or A”, otherwise T, is labeled B’ or B”.

Case 1. Hp(S), S,) = A, terminal 7, is labeled 4’ and 7, is not connected by
an RDLE path in D.

Terminal T, and / are defined above. Clearly, T, € P/. We now show there is a
terminal, 7, € P/ connected by an RDLE path in D that was not labeled 4’ when
labeling sets P{, P3, ..., P/. From the labeling procedure and Claim 4 we know
that the number of terminals labeled 4 while considering sets P, P3, ..., P/ is
l{/21. Now if T, does not exist then there are no more than [//21 — 1 terminals
connected by RDLE paths in D for the interval [T/, Ts). Hence, Hp(T/, T]) =
He(T!, T}Y=2 - (I(H(T}, TH— A)/21— 1) > A. A contradiction. So, T, exists.

Now, since both T, and T,  belong to P/ and the labeling procedure did not
select T,., we know T, is to the right of T, on the bottom side of 7. Figure 12
depicts the two possible cases for the relative location of T, and T,.

Let M = (D — {r’, C(r)}) U {C(r’), r}. Clearly, K(M) > K(D). It is simple to
show that if we prove that H,(.S|, S») = A, then we have established a contradiction.
Clearly, if the situation shown in Figure 12a occurs we know there is a contradiction.
So, the remaining case is depicted in Figure 12b.

One can easily show that if H»/(Ty, T:) < A for every T, € [T,, T, ] then we
obtain a contradiction. This is equivalent to proving that Hp(T, T) < A — 2 for
every T, € (T,, T, ), since this also implies that Hp(T,, T,) = A — 1, and
Hp(T,, T,) = A — 1. Let us prove this bound. Let I. be the interval (T';, T;) for
1 < z = R (note that these intervals do not correspond to the P’ intervals) and let
T, be any terminal located on the interval (7, T,-). Let z be the smallest integer
such that T; € I.. Let w be the number of paths that are neither RDLE nor LDRE

"paths and cross 7y in D. Clearly, there are the same number of such paths that
cross T; in E. There are at least Lz/2] terminals connected by RDLE paths that
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were labeled 4” when considering sets P{, P3, ..., P/ located on the interval
[Tk, S2], since by assumption the first / — 1 terminals labeled 4’ are connected by
RDLE paths and z < /. Clearly, T, is to the right of T, and T, is connected by an
RDLE path not included in the previous bound. Hence at least Lz/2] + 1 RDLE
paths cross T in E and since T € (T, T,-), all LDRE paths cross T} in E. So, it
must be that Hz(T), Ti) = w + [R/21 + Lz/21 + 1. Now, since T} € (T,, T,) then
no LDRE path crosses point 7, in D and at least Lz/21 + 1 RDLE paths do not
cross point 7 in D. Therefore, we know that

Hp(Tie, Te) = w+ TR/21 = Lz/21 — 1.

From these two inequalities and the fact that Hz(T%, Tx) < A + z — 1, we know
that Hp(Ty, T:) = A — 2. Hence, Hy(S:, S2) < A, and as it was established before
there is a contradiction. This completes the proof of this case. O

Case 2. Hp(S,, S») = A, terminal 7, is labeled A” and T, is not connected by
an LDRE path in D.

The proof of this case is similar to Case 1. O

Case 3. Hp(S;, S,)= A+ 1, terminal T, is labeled B’ and T, is not connected
by an RDLE path in D.

The proof of this case is similar to the one for Case 1. It will be included because
we feel it explains the reason behind the two labeling procedures. Let 7, and / be
as defined above. Clearly, T, € P;/. Now we show that there exists a terminal, T,
€ P/ connected by an RDLE path in D that was not labeled B’ when labeling sets
P, Pi, ..., P/. From the labeling procedure and claim 4 we know that the
number of terminals labeled B’ while considering sets P}, P, ..., P} is [/2. Now
if T, does not exist then there are no more than (//2) — 1 terminals connected by
RDLE paths in D for the interval [T}, T;]. Hence,

Ho(T}, T) = H{(T}, T}) — 2 - ([HE‘T"zT’) = AJ - 1) SA+ L

A contradiction.

Now, since both 7, and T, belong to P/ and the labeling procedure did
not select T, we know T, is to the right of T, on the bottom side of T.
Figure 12 depicts the two possible cases for the location of T, and T.. Let
M=(D-{r,Cr}U{C@F),r}. Clearly, K(M) > K(D). It is simple to show that
if we prove that H (S, S;) = A + 1, then we will establish a contradiction. Clearly,
if the situation depicted in Figure 12a occurs, we know there is a contradiction.
So, the remaining case is depicted in Figure 12b.

One can easily show that if Hy (T, T;) < A + 1 for every T, € [T,, T,], then
we obtain a contradiction. This is equivalent to proving that Hy(Tk, Ti) < A — 1
for every T, € (T,, T,), since this bound implies that H,(7,, T,) < A, and
Hp(T,, T,y = A. Let us now prove this bound. Let I. be the interval (T2, T}) for
1 = z < R (remember that these intervals do not correspond to the sets P’) and let
T, be any terminal located on the interval (7, T,-). Let z be the smallest integer
such that T € I.. Let w be the number of paths that are neither RDLE or LDRE
paths and cross T in D. Clearly, there are the same number of such paths that
cross Ty in E. There are [z/21 — 1 terminals connected by RDLE paths and labeled
B’ when considering sets P;, Pj, ..., P/ located on the interval [T}, S5), since by
assumption the first / — 1 terminals labeled B’ are connected by RDLE paths and
z < [. Clearly T, is to the right of T, and T, is connected by an RDLE path not
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included in the previous bound. Hence at least [z/21 RDLE paths cross 7} in E
and since T, € (T,, T,), all LDRE paths cross 7, in E. So, it must be that
Hy (T, T) = w+ LR/2]1 + [z/21. Now, since T, € [T,, T,), then no LDRE path
crosses point T} in D and at least [z/21 RDLE paths do not cross point 7 in D.
Therefore, Hp(Tk, T) < w + LR/2) — Iz/21. From these two inequalities and
the fact that H.(Ty, T.) = A + z — 1, we know tht Hy(Ty, Tx) < A — 1. Hence,
H,(S;, S5) < A and as it was established before there is a contradiction.
This completes the proof of this case. O

Cased. Hp(S;, S)) = A+ 1, terminal 7, is labeled B” and 7 is not connected
by an LDRE path in D.

The proof for this case is similar to the one for Case 3. O

4. Algorithm and Complexity Issues

In this section we present our algorithm to solve the 2-R 1M problem. The algorithm
is based on the lemmas presented in Sections 2 and 3. Our algorithm has worst
case time complexity O(nlogr) and O(n) when the set of terminals is initially
sorted. In the last part of this section we discuss lower bounds for the worst case
time complexity of decision tree algorithms for the 2-R 1M problem. The algorithm
is given below.

algorithm ROUTING

Rename the set of terminals in such a way that when traversing 7 in the clockwise direction
starting at point Sy, the terminals are visited in the order T, T3, . . ., Ta,;
Label the terminals local and global following the definitions that appear after Lemma 2.2;
Construct D'; // def2.1 //
Partition the problem into the following two subproblems:
P, is the initial problem after deleting all global terminals located on the left and right
sides of T, and
P, is the initial problem after deleting all global terminals located on the top and bottom
sides of T
D, « SOLVE(P,);
D, «— SOLVE(P,); // Assume that the rectangle is rotated 90 degrees //
Combine D, and D; into the final assignment D;
Construct and output the final layout for D using the procedure discussed in the proof of
Lemma 2.2 [L];
end of algorithm ROUTING;

procedure SOLVE(P),

Construct D’ for P; // def 2.1 //
if there are no global terminals then return (D’) endif;

Compute « and §; // def 3.1 //
Construct D”; // def 3.2 //
Compute ¢; // def 3.4 //
if 7 = O then return(D”) endif;

Compute A; // def 3.5 //
Construct Eieq and Eggne; // def 3.6 //
Compute R for Ein and Eign; // def 3.7 //
Define T, ..., Tk, TG, ..., Tk for Erq and Egn; // def 3.7 //
Perform the A’, A7, B’, and B” labelings for Ex and E,.n; // def 3.9 //
if h. + hs + ¢ is even then /! Eet = Edgn //

D, <« MODIFY(A4’, A", En);
D, «~ MODIFY(B’, B”, E\);
else // there is an optimal assignment with height on the top side of 7 is equal to A //
D, « MODIFY(A4’, A", E);
D; — MODIFY(A’, A”, Eign);
endif
return(D, if A(D,) = A(D;) and D, otherwise);
end of procedure
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procedure MODIFY(L, L', F)

D « E except that the paths connecting all terminals labeled L and L’ is reversed;
return(D);

end of procedure

THEOREM 4.1. Algorithm ROUTING solves the 2-R1M problem.
PrOOF. The proof is based on Lemmas 3.1, 3.2, 3.3, 3.4,and 3.5. O
THEOREM 4.2. The time complexity of procedure ROUTING is O(nlogn).

ProOOF. The first step in procedure ROUTING (sorting the terminals) takes
Q(nlogn) time. Once the terminals are sorted all other steps can be easily shown
to take O(n) time, except for labelings 4’, 4”, B’, and B”. The problem of labeling
the terminals has been reduced to the offline min and offline max problems in
which the set of elements is restricted to integers in the range of [1, 2n] which can
be solved by union and find operations [1]. For this special case Gabow and Tarjan
[2] showed that the overall time complexity for these operations is bounded by
O(n). Therefore the time complexity for our algorithm is O(rlogn). O

THEOREM 4.3. The time complexity of procedure ROUTING is O(n) when the
set of terminals is initially sorted.

ProoF. See the proof of Theorem 4.2. O

In [3], it was shown that Q(nlog n) comparisons are required by any decision tree
algorithm that solves the 1-dimensional 2-R1M problem. This result holds even
when comparisons among linear functions are allowed. A similar result can also
be proven for the case when the input to the 1-dimensional 2-R1M problem is
restricted to terminals located at a distance of at least A > 0 units from each other.
Clearly, this result also holds for the 2-R 1M problem. Hence, the worst case time
complexity for the 2-R 1M problem is O(rlog n).
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