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1. Introduction 

I f  interrupt ions are allowed in executing tasks on  a set of  processors, it is often possible to 
finish a given set of  tasks more quickly than  if  every task is processed to complet ion once 
begun. Such interrupt ions are called preemptions. We consider the general  p roblem of  
minimizing the finish t ime for task systems with a treelike precedence structure, a t tempting 
to minimize  preemptions in  the worst case but  otherwise ignoring their cost. We  deal  with 
the problem when the parameters o f  all  tasks are k n o wn  in  advance and  also with an  on-  
l ine problem with independent  tasks. Applicat ions are evident,  part icularly in  computer  
and  communica t ions  systems. 

This problem was first treated by  Mu n t z  and  Coffman [13]. Other  references relevant to 
our  work are [5, 7, 10-12, 14]. In  addit ion,  [2, 3] are of  interest as basic references in 
scheduling theory. The version of  this problem in which all tasks are restricted to have uni t  
execution t ime was originally solved by Hu  [8] and  has been discussed recently by Davida  
and  Lin ton  [4]. Hu 's  algori thm schedules trees from leaves to root and  therefore bears 
some resemblance to the more general  algori thm of  Muntz  and  Coffman.  However,  the 
Muntz  and  Coffman algori thm does not  follow directly from this algorithm. The  algori thm 
of  Davida  and  Lin ton  schedules from root to leaves and  therefore bears some resemblance 
to our  algorithms. These authors, however, did not  extend their results to treat adequate ly  
the problem we solve. As is the case for Hu ' s  rule, applicat ion of  their scheduling rule to 
problems with other than  uni t - t ime tasks yields subopt imal  schedules. Consequent ly,  they 
propose that a problem with integer execution times be reduced to one with un i t  execution 
times by decomposing all tasks into chains of  uni t - t ime tasks. Obviously  this reduct ion 
yields uni t - t ime problems which can be of  size exponent ia l  in the size of  the original  input.  
Thus  scheduling can take exponent ia l  t ime and,  it can be shown, some schedules will have 
an  exponential  n u m b e r  of  preemptions  which cannot  easily be el iminated.  
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Our best algorithm schedules forests of  n tasks on m identical processors in O(n log m) 
time, never producing more than n - 2 preemptions. It appears, then, that the interesting 
comparison is with the Muntz-Coffman algorithm, which runs in O(n 2) time giving 
schedules with O(nm) preemptions. We make such a comparison in some detail below. 

A scheduling problem is specified by a task system P and an integer m > 0 giving 
the number of identical processors on which P is to be serviced. The task system P =, 
(~, <, ~'), where .~" is an indexed set of n tasks, < is a partial order on ~, and each task T, 
in i f  has associated with it an execution time f(T,) > 0 which specifies the total amount of  
service T~ requires. A schedule for P on m processors must provide for each task T, 
receiving an amount ~(T,) of  service from one or more of the m processors in a way that 
respects < and which at any point in time assigns no more than one processor to any task 
and no more than one task to any processor. We present a precise definition of the term 
"schedule" later. For the moment it will suffice to say that a schedule will be presented as 
a set of lists, one for each processor, which gives an assignment of  intervals of time to 
tasks. These lists will be in ascending order on the times and, taken together, must respect 
the above requirements. 

In this paper we will optimize schedules with respect to two criteria, schedule length (the 
time required to complete all processing under the schedule constructed) and number of 
preemptions (measured by the number of elements in the schedule lists themselves). As 
stated above, the partial order < is restricted to be a rooted forest. We will assume in the 
discussion of our algorithm that the forest is initially rooted, that is, for different tasks T, 
T~, Tk in J ,  if Ti < Tk and T~ < T,, then either T, < Tj or Tj < T,. A task T, is initial if for 
no Tj, ~ < T,. A task T, isfinal ff for no T~, T, < T~. A scheduling problem with exactly one 
initial task is called a job. Thus a nonempty scheduling problem P may be partitioned into 
r _> 1 nonempty jobs which are the trees of the forest defined by P. If, for i ffi 1 . . . . .  r, 
J, = (~,  <,, ~'i) is the/th job in P, then P = (t3~-1 ~ 1.37.1 <,, ~ -1  ~',), which with a slight 
corruption of notation we denote as P = tY~.l J,. It is assumed that < is presented as a 
graph without transitive edges so that the space necessary to store < is O(n). Choosing < 
to be initially rooted, therefore, is little more than a definitional convenience when 
schedules are to be constructed off-line. (An off-line algorithm is allowed to receive all of 
the input for a problem before producing any output.) I f  < were presented as a terminally 
rooted forest, it could be converted into the form we require in O(n) time. In fact, it is 
easily seen that a schedule for a terminally rooted problem can be constructed from a 
schedule for the corresponding initially rooted problem in time proportional to the number 
of entries in the schedule. We discuss the question of on-line computation later in the 
paper. 

We now proceed to an informal description of the Muntz and Coffman algorithm [13] 
and of our algorithm so that the basic ideas of  their operation may be understood. 

Both algorithms rest on an application of the principle of  optimality: the given problem 
P is decomposed into an initial problem and a remainder problem, and a rule is given for 
scheduling the initial problem. The decomposition and the rule have the property that an 
optimal schedule for P may be obtained by following the schedule for the initial problem 
by any optimal schedule for the remainder problem, provided of course that the first time 
mentioned in the schedule for the remainder problem is equal to the last time mentioned 
in the schedule for the initial problem. It may happen that some tasks are split between the 
initial and remainder problems. The complete algorithm in each case repeatedly applies 
such a decomposition to the remainder problem and concatenates the schedules produced 
for each initial problem. 

In the Muntz-Coffman algorithm the initial problem is defined by certain leaves of  the 
given forest, the schedule adopted for these leaves, and an event in this schedule. I f  there 
are no more than m leaves, the rule is to assign each leaf to a processor. The initial problem 
is defined by these leaves and the first time at which a leaf will terminate under the rule 
which schedules each leaf on a processor. Thus the initial problem is comprised of the 
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leaves, each given an execution time equal to the minimum among them of  their original 
execution times, and an empty precedence constraint. The remainder problem is the given 
problem with the execution times of  the leaves reduced by the amount given to the initial 
problem. 

The Muntz-Coffman algorithm decides the more interesting case, where there are more 
than m leaves and consequently more tasks are available than there are processors, by 
scheduling leaf tasks by their current level. The level of a leaf task in a terminally rooted 
forest is the sum of the execution times over all tasks on the path from the task in question 
to a root. A task's own execution time is included in the sum. The rule is to schedule the 
m leaf tasks of  greatest level, each on one of  the m processors. If, however, there are more 
than m leaf tasks with level greater than or equal to the level of  the mth leaf task in some 
total ordering of  leaves by level, then all of  these tasks are scheduled as follows: Each leaf 
with a level greater than the level of  the mth leaf has assigned to it a processor. Assume at 
this point that there are l remaining processors. The remaining k leaves to be scheduled 
are each assigned to k imaginary processors of  reduced speed equal to that of  l/k of  a true 
processor. This schedule on a combination of  true and imaginary processors is later 
converted into a schedule on the m true processors. 

When there are more than m leaves, the initial problem is defined by the schedule on 
the true and imaginary processors defmed above and the first of  two possible events were 
this schedule to be run on the whole problem: some leaf completes, or the level of  some 
leaf becomes equal to the level of  the mth leaf. It is relatively easy to compute the first such 
event. Partition leaf tasks into three classes: (1) unscheduled, (2) scheduled on an imaginary 
"slow" processor, and (3) scheduled on a true processor. Keep classes (1) and (3) each in 
a priority queue, ordered on level. An event is generated by task completion, by the level 
of  the tasks in the class (2) (which are all of  equal level) declining to the level of  the 
maximum level task in class (1), or by the level of  the lowest level task in class (3) falling 
to the level of  tasks in class (2) (since tasks in class (3) execute faster than those in class 
(2)). It should be observed for later use that any one original task can generate at most two 
such scheduling events over the entire execution of  the algorithm. 

The schedule for an initial problem using imaginary processors can be converted to a 
schedule on m true processors by taking the k tasks on the k imaginary processors and 
assigning them preemptively to the 1 < k unused true processors using the algorithm of  
McNaughton [11]. This conversion introduces exactly I - 1 preemptions for each initial 
problem when I > 0. Since each of  the k shorter tasks in an initial problem has the same 
time requirement on a true processor, it is possible to avoid having any task presented 
within a schedule for an initial problem also preempted at the point where schedules for 
initial problems are concatenated. 

The execution time of  the Muntz-Coffman algorithm is f~(n2), as may be seen from the 
example in Figure 1. Task times are written in the nodes representing tasks. In this example 
an initial problem is first defined with (n + 1)/2 tasks each of  unit execution time. Next, 
an initial problem with (n - 1)/2 tasks is defined, and so forth. Constructing the schedule 
for each initial problem costs time proportional to the number of  tasks in it. The execution 

~'q(n+l)/2 time, then, is at least proportional to m + Z~,-m i, which realizes ~(n 2) when n is 
sufficiently larger than m. Since no task can generate more than two scheduling events, it 
follows that the number of  preemptions is O(nm). This bound is realized for the example 
in Figure 1. Horvath et al. [7] deal with extending the Muntz-Coffman algorithm to 
arbitrary directed acyclic graphs and to systems with processors of  uniformly different 
speeds. With the exception of  problems on two processors or with independent tasks, 
their algorithms produce suboptimal schedules. We do not deal with such extensions 
in this paper. 

The Muntz-Coffman algorithm schedules by identifying paths of  greatest or "critical" 
length in the remainder problem. Each path from node to root in the given problem 
becomes critical in this sense at some point. As a comparison with our algorithm will show, 
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this strategy leads to overspecification of the times at which some of the tasks must be run. 
Our algorithm succeeds in segregating the tasks into two classes. In one class there is what 
can be termed the "backbone" of the problem, a superset of those tasks whose start and 
finish times are fixed in any schedule in which schedule length is minimized. The other 
tasks can in general be scheduled with some freedom. Our algorithm exploRs this freedom 
to reduce the running time to O(n log m). 

In contrast to the algorithm just described, our algorithm takes the given forest to be 
initially rooted. Under this assumption we will make the notions of initial and remainder 
problems more precise. We say that a pair of scheduling problems (P', P") is a consistent 
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decompositzon of P if  

(i) : =  : '  u : " ;  
(ii) < '  = < restricted to ,~ ' ;  

(iii) < "  = < restricted to ,~-"; 
(iv) if  T, E J - '  and T~ ~ 9-", then (T~, T,) cannot be in <; and 
(v) T(T,) = ~'(T~) + ~-"(T~) for all t. 

We call P '  the initial problem of the decomposition and P" the remainder problem. As 
indicated, our algorithm will repeatedly decompose remainder problems to find a schedule. 
Proofs of  correctness and optimality will rest in part on showing that the algorithm 
constructs consistent decompositions; hence the above definition. We note for later use 
that consistent decomposition is an associative operation. 

Let the weight S, of a job  J, be 

S ,= ~ ~'(Tj) for t =  1 . . . . .  r. 

Without  loss of  generality let the jobs  be indexed so that S, _> S,+1 for i = 1 . . . . .  r - 1. 
With this ordering, the crittcal index j* with respect to m identical processors is the greatest 
j which satisfies (m - j)S: > ~-:+1 St, or 0 if  there is no suchj .  Jobs J1 . . . . .  Jj.  are critical. 
The remaining jobs  are noncrttical. In general, there is some freedom allowable in 
scheduhng the tasks in the noncritical jobs, and perhaps no freedom in scheduling the first 
task in some critical job. 

Our "critical weight" algorithm may be stated in simple form as follows. 

1 Schedule the mmal task of each cnUcal job J, on processor t 
2 Schedule (preempttvely and optunally) the set ofnoncnttcal jobs on processors j* + 1 through rn 
3 Truncate th,s partml schedule on processors 1 through m at the Ume of the first of two events: termination of 

an mmal task of a critical job or termmatmn of the schedule constructed on processors j* + 1 through m m 
step 2, provtded this schedule ~s nonempty. Let the portmn of the gtven problem scheduled up to the point 
of truncatton define an lmtml problem and the truncated partml schedule be its schedule. 

4 Take the schedule for the mmal problem and follow tt by the schedule obtained by recurslve apphcatmn of 
the procedure to the remainder problem 

A proof  of  optimality rests on the fact that no task, scheduled when the j ob  of  which it 
is the root ~s critical, can be scheduled earlier without violating the given precedence 
constraints. We prove this fact later when the algorithm has been stated precisely enough 
to do so. 

Given this fact, optimality is easy to prove. I f  the first initial problem generated by the 
algorithm has fewer than m jobs, then the schedule for the initial problem is optimal.  Since 
no task from the remainder problem can be scheduled before the schedule for the initial 
problem terminates, the condRions for application of  the pnnciple  of  optimali ty are 
satisfied. On the other hand, if  the first initial problem has at least m jobs, then we take as 
the initial problem (for purposes of  our proof)  the union of  all imtial problems generated 
by the algorithm up to but not including the first initial problem with fewer than m jobs. 
In this case the schedule for the large initial problem so defined is optimal because it keeps 
all processors busy. Also, any opt imal  schedule for the remainder problem wdl begin with 
tasks all of  which belong to critical jobs. By the result mentioned above, no such task can 
be scheduled earlier. Thus the conditmns for application of  the principle of  optimality are 
satisfied in all cases and we may conclude that the algorithm produces optimal schedules. 

It is easy to implement the algorithm to run in O(n 2) ttme in the worst case. In the 
remainder of  the paper  we show how to achieve the O(nm) and O(n log m) running times 
we clatm and also discuss the minimization of  preemptions. To facilitate the exposition, 
some of  the straightforward but extensive programming details necessary for achieving the 
running times claimed are presented in appendixes, as is the detailed correctness proof  of  
the basic algorithm. These detads are straightforward and could in principle be left to the 
reader. 
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2. Preliminary Results 

Let M = {1 . . . . .  m} be a set o f m  > 0 identical processors represented by their indices, 
and let to and t r be real numbers satisfying to < tf, the starting time and finishing time, 
respectively. For P, a scheduling problem, the set A = {([6, t2)j, T,)} is an assignment of  M 
to P in interval [to, tf) if 

(a) for all ([tl, t2)], Tt) E A 
(i) j ~ M ,  

(ii) to_< tl < t2_< tr, 
(iii) T, E ~,  

(b) (interval assignments nonoverlapping) for i, j ~ M and Tk, T~ E J ,  (It1, t2),, Tk), 
([t3, t4)~, T~) E A and (i = j or k = i) implies t4 -< tl or t2 -< t3; 

(c) (interval assignments conform to ~,) for T, E J ,  ~,(T,) _> ~(t2 - tl I([tl, t2)~, Z) E A). 

A complete assignment is one in which equality holds in (c) o f  the definition for all 
T, E ~.  An assignment A is rectangular if for a l l j  E M and for all t, to _< t _< tf, there exists 
([t~, t2)j, T,) E A for which t~ _< t _< t2. I f  to and tf both appear in elemems of  A, then 
tf - to is the length of A. 

An assignment A of  M to P in interval [to, tl) is feasible with respect to < if, for all 
( [6 ,  t2)t, Tk), (It3, t4)], Tz) ~ A, Tk < Tz implies t2 --< t3. Our algorithms will generate A in the 
form of  m lists A,, i = 1 . . . . .  m, where ([tt, t2),, Tj) ~ A, if and only if ([6, t2),, Tj) E A. 
Also, if ([tb t2),, Tj), ([t3, t4),, Tk) ~ A,, then t2 _< t3 implies ([6, t2),, Tj) precedes (It3, t4),, Tk) 
on list A,. I f  A is complete, is feasible with respect to <, and is represented as described, 
then A is a schedule. In such representations we will omit the interval subscripts, writing 
element ( [ t l ,  t2),, Tj) as ([h, t2), Tj) if the element is known to be on list A,. 

We have defined a preemption informally as an interruption in the service of  a task. 
The number of  preemptions in an assignment A in which n distinct tasks appear is 
card(A) - n, where card(X) is the number of  elements in set X. 

If  P is a scheduling problem which satisfies mSj _< ~-1  S, f o r j  = 1 . . . . .  r, then P is said 
to be noncritical in M. I f P  is noncritical, then for every to there exists a feasible rectangular 
complete assignment of  M to P for the interval [to, to + ~,~-~ S,/m) [11]. This result, which 
we have alluded to in the introduction, employs a simple "bin packing" construction which 
we now describe informally. Take the jobs in some order and, beginning with processor 1, 
allocate time on this processor for the first job, beginning at to. The tasks of  the job are 
themselves allocated one at a time at the earliest free time in an order consistent with <. 
Continue to allocate jobs on the first processor at the earliest free time until a job is 
encountered for which the remaining time in the interval is insufficient. This job is split 
between the first and second processors so that tasks of  this job (and possibly a part o f  a 
task) occupy all of  the remaining tune on the first processor. The remaining tasks (and 
possibly a fraction of  a task) are allocated time on the second processor, starting at to. The 
tasks given to the second processor are chosen to come first in some order consistent with 
<, so that < is not violated between processors 1 and 2. The procedure is then continued 
on processor 2. 

This procedure treats each job essentially as if it were a single task, but of  course the 
fmal schedule must be presented in terms of  the tasks of  the given problem. These 
requirements are met by flattening jobs, that is, finding a total order for job J, consistent 
with <,. In particular, for a scheduling problem P the list N = t.J~.~{(S,, ((~(T0, T~) . . . . .  
(¢(T,,), T,,))) I without loss of  generality F,  ffi {71 . . . . .  T,, } and Tj <, Tk impliesj < k for 
T~, Th ~ ~ }  is aflattened hstfor P. As the following lemma states, the ideas of  [11] can be 
embodied in a slightly more general procedure which accepts a scheduling problem in the 
form of a flattened list, truncates this schedule at a cutoff time tc to define an lnitml 
problem, and returns the truncated schedule in an assignment A and the remainder 
problem in a list. 
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LEMMA 2.1. Let 1~1 C M = { 1 . . . . .  m}, th = card(l~l), t~ > to, and A be any assignment 
of  M. I f  P is a scheduling problem sati~ying rhS, _< ~ - 1  Sy, i ffi 1 . . . . .  r, and N is a flattened 
list for  P, then there exists a procedure R E C T A N G L E  for  which 

(i) RECTANGLE(A,  N, 1~1, to, to) ffi (A ', S " )  is well defined; 
(ii) there exists a consistent decomposition (P', P") of  P for  which A '  - A is a complete 

feasible rectangular assignment ofl~! to P' in [to, min{tc, to + ~ - 1  Smith}) and N "  is 
a flattened list for  P ' ;  

(iii) (s, Q) E N "  implies s _< to + ~r S,/rh - t¢. 

PROOF. Parts (i) and (ii) follow from [11] and an examination of  the procedure 
RECTANGLE shown in Appendix A. The ideas have been outlined in the informal 
discussion above. We omit further details. Part (iii) follows from the fact that if N "  is 
nonempty, it contains exactly the jobs and parts thereof which would be scheduled in the 
interval [t~, to + ~ . ~  S,/rh) by the procedure of  [1 l]. []  

It should be noticed that when t~ is sufficiently large, R E C T A N G L E  reduces to the 
procedure of  [11] as applied to noncritical scheduling problems. 

Certain sets employed in R E C T A N G L E  and the other algorithms of  this paper are 
lists on which certain primitive operations are defined. The operation pop deletes and 
returns the last element inserted in the list by the operation push. The element itself is 
the head of the list. In other words, for a list X and an element x, pop(push(x, X))  ffi x and 
head(push(x, X))  = x. We will also use pointers to list elements and employ a pointer to 
the head of  a list as a pointer to the list itself. Thus ifp is a pointer, then elem(p) is the list 
element pointed to byp.  For lists X and Y and pointers p and q, where elem(p) ffi head(X) 
and elem(q) = head(Y), the result of  the assignment Y , -  X will be elem(p) = head(Y). 

3. The "'Critical Weight" Algortthm 

As observed above, any noncritical scheduling can be scheduled by the procedure 
RECTANGLE.  However, when the noncriticality condition does not hold, this procedure 
will fail in general to produce a schedule of  minimum length. Noncriticality holds in no 
case when the number of  jobs r satisfies r < m, and noncritieality may not hold when 
r >_ m. In the introduction the critical index for a scheduling problem P was defined as 
j* ffi max{0,jl for all i =. 1 . . . . .  j, (m - 0S, > ~-,+1 Sk} where, without loss of  generality, 
S, _> S,+1 for i = 1 . . . . .  r - 1. A job J, is critical in P (for given m) i f i  _<j*. Otherwise the 
job is noncritical in P. Our strategy is to schedule, one to a processor, part of  the initial 
task of  each critical job up to a cutoff time to. Such an assignment is always possible since, 
as may be seen, j*  < m. The remaining jobs (if any) are scheduled according to the 
procedure RECTANGLE on the unused processors, of  which there is at least one when 
r _> m. The cutoff time tc is used as a parameter to RECTANGLE.  Consequently, a 
schedule is completed for an interval ending at to, and the remainder problem is scheduled 
by a reapplication of  the rule at time to. 

We now gwe in detail the algorithm which embodies this strategy, establish its correct- 
ness, and then (in Section 4) show how it can be implemented to run in O(n log m) time. 
A simpler variant, which runs in O(nm) time, is given first. This variant is of  use for 
expository purposes and also because it leads to an O(nm) on-line algorithm for problems 
with independent tasks and release times, a problem which Horn solved [6] with an 
algorithm which runs in O(n 2) time. 

At the start of  each iteration of  the algorithm, there will exist a consistent decom- 
position (P', P") of  P for which P '  will be scheduled in A and P" will not. For reasons 
of  efficiency it is important to store each job J f  of  P" in one of  two forms, the flattened 
list elements of  the form (s,, Q,), already defined, and elements o f  the form (s, uj, T0. In 
the former case s, = S,", but m the latter case s, = S," + t for the "current" time t. To be 
precise, for t >_ 0 and a scheduhng problem P, a list I is a list for  P at t if I = IJ~.l {(s,, Q,) 
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or (s,, ui, T~)l(s,, Q,) is a f lattened list for J,  and (s,, u,, T,) satisfies s, = S, + t, u, -- 
¢(Ti) + t, and T, is initial in J,} .  W e  assume there is available from a traversal o f  P a 
function o J - - >  ~ ,  where  o(TJ = ~'(Z) + ~(¢(Tj)]  T~ < T:) for Z E J .  

Algorithm C R I T 1 C A L . _ W T ( P ,  m) 

1. C~@, 
2. N ~ @ ,  
3. t ~-- 0; 
4. S *-- 0; 
5 L ~ LIt'.1 {(o(T,), ¢(Z), Z)  [ Z zs imtial in J~}, 
6. for i ~-- 1 until m do A, ~ O endfor 
7 while card(C O L O N)  > 0 do 

(a) There exists a consistent decomposinon (P', P")  of  P for which 
(i) A is a complete feasible assignment of M to P '  in [0, t), / (h) C O L U N ts a hst for P"  at t, 

H I -  ( | h ) S  --  V~(s , l (s , ,Q,)EN),  
(b) For  (s,, u,, Z )  E C O L there exists {Z . . . . . .  Z ,  - Z} where Z, is minal  m 

J,, E P a n d ,  f o r j  = 1 . . . . .  k -  1, T , <  T,j~, and ~ . 1  ¢(T0 ffi u,. 

/ /Pa ruUon  jobs with respect to j *  and determine cutoff t ime t + 4 / /  
8 C, L, N, S, 4) *-- SPLIT(C,  L, N,  S, 0; 

(a) There exists a consistent decomposition (P'  LI P")  of  P for w h c h  
(0 A is a complete assignment of  M to P '  m [0, t), 

H2 

10 
11 

12 

13. 
endwhile 

14 return(A, 0 
end C R I T I C A L _ W E I G H T  

0 0  C U N ,s a hst for P"  at  t, 
(ih) S = ~(s,I (s,, e,)  E N),  
(iv) (s,, u,, T,) ~ C lff J," is cnucal,  where T, is imtlal  m J,"; 

(b) L f f i ~ ;  

(c) A = m m  . . . . .  ~u .  ({u, - tl(s~, u,, T,) E C} U {S / (m - card(C))}). 
/ / E x t e n d  schedule of critical tasks to t + A / /  
for (s,, u,, T,) E C do push(([t, t + A), T,), A,) where, wtog, C = {(sl, ul, T0 , .  , (s,, u,, T,)} 
endfor 
/ / E x t e n d  schedule of  noncritical tasks to t + A / /  
if S > 0 then (A, N )  , -  RECTANGLE(A,  N,  {card(C) + 1 . . . . .  m}, t, t + A) endff 
ff S > 0 then S *-  S - A(m - card(C)) endif 
/ / D e l e t e  from C any jobs with initial  tasks completed at t + A and put  the successor jobs m L / /  
for (s,, u,, T,) E C satisfying u~ - (t  + A) ffi 0 do 

C ~-- C - ((s,, u,, T,)}; 
for T~ satisfying T~ < Tj and, f o r  no Tk, T, < Tk < Tj do 

L ~ L U  {(~T~) + t + a, ~(T~) + t + ~, T~)} 
endfor 

end for 
//Update time// 
t ~ - t + A  

Figure 2 shows an example of  a scheduling problem with 24 tasks. Algorithm CRITI-  
C A L _ W T  gives the schedule shown schematically in Figure 3 when m = 3. This schedule 
contains 12 preemptions, 9 of  which can be removed easily by further processing to be 
discussed later. 

Two assertions, HI  and H2, are enibedded in the algorithm. It is easily verified that a 
procedure SPLIT exists which returns an output satisfying H2 when supplied an input 
satisfying HI.  We discuss later an implementation which runs in O(n log m) time over the 
entire execution of  the algorithm. We defer further discussion of  SPLIT until that time. 

LEMMA 3.1. Assertion H1 :s invariant over every iteration o f  the loop at step 7 o f  
Algorithm CRITICAL__WT.  

The proof of  Lemma 3.1 is given in Appendix B. 

LEMMA 3.2. Algorithm C R I T I C A L _ _ W T  executes at most n iterations o f  the loop at 
step 7 on any scheduling problem P with m > O. 
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FIG. 2 An example scheduling problem 

PROOf. Consider at the start o f  an iteration of  the loop at step 7 the consistent 
decomposition (P',  P")  of  P. I f  P" = (~" ,  <", ~"), we notice that at least one task is 
deleted from J-" during the ensuing iteration. Since ~ "  = ~ implies C O L O N = ~ ,  
termination must occur in at most n iterations. []  

THEOREM 3.1. Given a scheduling problem P and m > O, CRITICAL__WT(P,  m) is 
well defined. I f  CRITICAL__WT(P,  m) = (A, tf), then ,4 is a schedule for  P on M in interval 
[0, tr) and for  no t < tr does there exist any schedule for  P on M in [0, t). The number o f  
preemptions in A is less than or equal to 2nm - 4n - m + 3 for  m _> 2. 

PROOF. From Lemma 3.2 we have that C O L O N = O after at most n iterations. Since 
HI  must hold after line 13 is executed for the last time (Lemma 3.1), it follows that A is a 
complete assignment of  M to P in [0, tl). Examination of  the algorithm verifies that A is 
presented in the form of  a schedule. 

The proof  of  optimality follows from the discussion given in the introduction and the 
invariance of  part (b) of  assertion H 1 established in Lemma 3.1. 

In any interval [t, t + A) other than It, tr), preemptions may be generated in both critical 
and noncritical jobs. The way the time increment A is chosen may cause as many as j *  
preemptions on processors { 1 . . . . .  j*}.  On processors {j* + 1 . . . . .  m} it is possible that 
there will be m - j *  - 1 preemptions internal of  the interval [t, t + A) and m - j *  - 1 
preemptions at the end of  the interval ff R E C T A N G L E  produces N # ~3 (in which case 
only j*  - I preemptions are possible on the first j *  processor). Notice that one preemption 
at time t + A can be recovered in the next interval i f  R E C T A N G L E  schedules first the last 
job  it puts into N on the previous iteration and reverses from iteration to iteration the 
order in which it schedules free processors. 

The maximum number of  preemptions chargeable to [t, t + A) for t + A < tr is 
max0<j.<m {j* - 1 + 2(m - j *  - 1)} = 2m - 4, where there are./* - 1 preemptions 
possible on {1 . . . . .  j*} and 2(m - j *  - 1) possible on {j* + 1 . . . . .  m}. Notice that 
t + A < tf requires that j*  >_ 1 and m _> 2. Otherwise only one interval occurs. In  the 
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last interval there can be at most m - j *  - 1 preemptions for j *  _> 0. Combining we get 
(n - l)(2m - 4) + m - 1 = 2nm - 4n - m + 3. For  m = 2, this bound reduces to 1. [ ]  

To obtain the bound of  O(nm) on running time, we confine our attention to steps 8, 9, 
10, and 12. All other steps can easily be seen to require O(n) time over the entire execution. 
Let the set C = {(s, u,  T~)} be kept in two binary heaps [1], one ordered on st and one on 
u,. After execution of  step 8, card(C) < m. With care, a bound of  m can be maintained 
throughout execution. We notice that each deletion of  an element from C in step 12 can 
be charged to a task. Thus over the entire execution of  the algorithm, step 12 will cost 
O(n log m). Continuing the analysis, it was established in the proof  of  Lemma 3.1 that no 
element is ever moved by SPLIT from N to C. Thus SPLIT can be implemented to first 
merge L into C, discarding smallest elements from C whenever card(C) = m. Then j*  can 
be found by the further moving of  smallest elements from C to N. Each such movement 
is charged to a unique task. The weight S of  N can be computed as the calculation 
proceeds. The heap ordered on u, may be used to discover A. Altogether, step 8 will run in 
O(n log m) time. 

The costly steps are 9 and 10. It is easily seen that step 9 will require O(nm) time m the 
worst case. Each execution of  step 10 is O(card(N)). Let N~ be the set N before step 10 on 
the k th  iteration, and let N~ be the set N output in step 10 on the k th  iteration. It is clear 
that Nk = N~-i O {elements rejected from C in step 8}. Since card(N') < 2m and the 
number of  elements rejected from C cannot exceed n in total, ~ - a  Nk < 2mn + n.  Thus 
step 10 contributes O(nm) time over all iterations. This analysis supports the following 
result. 

THEOREM 3.2. Algorithm CRITICAL__WT can be implemented to run in O(nm) time. 

As is evident from Figure 3, some preemptions can in general be eliminated from 
schedules produced by Algorithm CRITICAL__WT.  The elements of  A can be collected 
in O(nm) time into a list in which any pair  ([h, t2),, Tk) and ([t2, t3)~, Tk) will be adjacent. 
Segments of  the lists At and A~ can then be swapped so that all preemptions in which a task 
Tk is preempted and resumed at the same time t2 occur on the same processor. List elements 
can then be coalesced to recover all such preemptions. In fact, this process can be 
embedded in Algorithm CRITICAL__WT at an increased cost of  only a constant factor. 

In the next section we focus attention on steps 9 and 10 in order to cut the running time 
to O(n log m). In the faster algorithm the easily recoverable preemptions discussed will not 
be generated in the first place. A salient feature of  Algorithm CRITICAL__WT,  which we 
now discuss, is its adaptat ion to on-line computation. Let there be given a scheduling 
problem P in which the tasks are independent (< = 6 )  but each task T, E ~- has a release 
time 0(T,). An assignment A of  M to P is feasible with respect to p i f  (It1, t2), T~) ~ A implies 
ta --> 0(T,) for all T, ~ ~ .  As mentioned, an algorithm is known which solves this problem 
in O(n 2) time [6]. This algorithm is off-line in the sense that the entire problem must be 
known before the interval between the first two release times can be scheduled, x Our 
algorithm can be adapted to solve this problem on-line in O(nm) time. We assume that 
the given scheduling problem is presented on-line in order of  release time. Algori thm 
CRITICAL__WT operates as before except that certain operations wait for parts of  the 
schedule to be executed before they are performed. In particular, the algorithm waits to 
execute step 11 until the on-line time advances to t + A, since it is possible that A will be 
redefmed on-line by the occurrence of  a release. I f  the algorithm is waiting to execute step 
I l and a release occurs, A is immediately redefmed to let t + A equal the current on-line 
time, and the results of  steps 8-10 are adjusted to agree with this new value. In  step 12, 
tasks are deleted from C as before, but L is constructed from the new tasks released at time 
t + A. Correctness, optimality, and run-time analysis are essentially as before. The number  
of  preemptions does not exceed 2nm - 2n - m + 2. I f  our algorithm is used to solve this 
problem off-line, it may be necessary to charge O(n log n) t ime to sort J "  by p. The 

l We are also aware of an O(n log nm) off-hne algorithm of Sahm [ 14] 
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analogous problem on independent tasks with due times can be solved off-line within a 
time bound of  the same order by transforming the problem into a release time problem 
and reversing the schedule found. 

4. A n  O(n log m) Algorithm 

In the analysis of  Algorithm C R I T I C A L _ W T ,  steps 9 and 10 were idenufied as the only 
steps requiring more than O(n log m) time. We now show how to modify the algorithm to 
bring these steps within the desired bound. What we will do is postpone the action of  step 
10 and simply accumulate all the "new" members of  N each time step 10 would be 
executed. Associated with the jobs which would be scheduled will be the time t at which 
they first would have entered N. This time will be called the release time for the given job. 
Then when it first happens that S -- 0, all jobs saved will be scheduled in the interval 
where S was greater than zero. It will always be possible to schedule tasks in the free time 
in which CRITICAL__WT would have scheduled them in step 10. 

The excessive time spent in step 9 arises from preempting initial tasks of  critical jobs at 
each time t when, in fact, these tasks may appear continuously over a larger interval in the 
completed schedule. We show how to keep these tasks "on the same processor" and not 
generate preemptions in the first place. Doing so involves two innovations. When an initial 
task T, from C is scheduled on Aj at time t = tl, the assignment will be incompletely 
specified. The element placed on Aj will be ([tl, oo), T,). When t equals the termination 
time, either because ~(T,) is exhausted or J, becomes noncritical, the symbol oo ts replaced 
with t. For purposes of  efficiency the set C is partitioned into two sets C -- Ca U Ca, where 
Ca is the set of  active critical jobs and Cd is the set of  dormant critical jobs. When an 
element ([tl, oo), T,) is first placed on A j, (s,, u,, T j  E Ca. The element (&, u,, T j  is then 
moved to Cd where it remains until ([t~, oo), T,) is terminated. The crucial point is that only 
the elements of  Ca need be considered in step 9. 

We now present the modifications in sufficient detail to establish correctness and prove 
a bound of  O(n log m) on running time. It will no longer be possible always to schedule the 
initial tasks o f  the j*  critical jobs on the first j*  processors, so we will keep the indices of  
the processors available to R E C T A N G L E  on a list Z. (Later R E C T A N G L E  is dispensed 
with, but the list Z will still be needed.) Initially Z ffi { 1 . . . . .  m}. Processors become 
unavailable when assigned in step 9. Under the modifications to be shown, a processor will 
remain assigned until either the task scheduled is found in step 12 to terminate or the job 
to which it belongs becomes noncritical in step 8. Also introduced is the set ZBR~ which 
contains exactly those processors on which a critical task begins or terminates at time t. 
The modifications are made in two stages in order to facilitate proof of  correctness. 

Our first modification will change steps 8-12 to reduce the running time of  step 9. The 
changes yield the following loop at step 7. It is assumed that initialization Z , -  { 1 . . . . .  m} 
and ZBRK *-- ~ is performed. 

7 while card(Ca U Cd O L U N) > 0 do 
//PartiUon jobs with respect to./* and determine cutoff Ume t + A// 

8(a) (Ca, Cd, L, NNEw, S, A, Z, ZBRK) ~ SPLIT(Ca, Cd, L, S, t, Z, ZBRK), 
8(b) N *- N t3 NNew, 

//Extend schedule of critical tasks to t + A// 
9 for (s, u, T, .) E C~do 

i *-pop(Z), 
push(([t, oo), T), A J; 
let p sausfy elem(p) ffi head(A,), 
C ~ C a -  {(s, u, T, .)}, 
Cd*--CdU {(s,u, T,p)}, 
ZBRK *-- ZBRK U 0} 

endfor 
//Extend schedule of noncntwcal tasks to t + A// 

10. if  S > 0 then (A, N) ~-- RECTANGLE(A, N, Z, t, t + A) endif 
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1 i if  s > 0 then S ~-- S - A(m - card(Ca t.) Ca)) endif 
//Delete from C. t.) Cd any jobs with initial tasks completed at t + A and put successor jobs in L//  

12. (L, Cd, Z, ZBRK) ~ CLOSE(Ca, t, A, Z, ZBRK), 
13 te--t+A 

endwhile 

The procedure SPLIT operates as before, with the following embellishment: When a 
noncritical job ~s removed from Cd to be put into N, it is necessary to complete its entry on 
the list schedule with the finish Ume t. The pointer field p in the element (s, u, T, p) E Cd 
facilitates this operation. Completing such an entry frees a processor, so this event is 
recorded in the set ZBRK and the processor is added to the set of  free processors Z. Step 9 
then proceeds essentially as before to generate new elements for the schedule list from the 
newly critical jobs, all of  which are in C,. To do this for (s, u, T, .) in Ca, a free processor 
i is obtained from Z, the element ([t, oo), 7') is pushed onto list A,, and (s, u, T, p) is put in 
Ca, where p points to the element just pushed onto A,. The commitment of  processor i is 
recorded by deleting its index from Z and entering the index in ZBraC. Steps 10 and 11 are 
unchanged. 

Step 12 is now implemented with a procedure CLOSE which operates only on Ca since 
C, is empty when CLOSE is called. Jobs in Co with zero execution time remaining for 
their initial tasks are processed as in step 12 of  CRITICAL__WT, but, in addition, schedule 
entries are completed with time t and the freeing of  processors is recorded as in the new 
procedure SPLIT. 

It follows from the above discussion that steps 8(a) and 8(b) can satisfy the input-output 
requirements defined by H 1 and H2 if Ca O Cd is taken as C and the additional pointer 
field in elements of  C U L is ignored. Reference to the realization o f  SPLIT shown in 
Appendix C allows this assertion to be verified in detail. It should be observed that the set 
N is not needed as an input to SPLIT. The variable S contains sufficient information on 
the contents of  N. 

It may be shown by induction that if (s, u, T, .) E Cd before step 9, then there is at that 
moment an element (It1, co), t) in A. Thus it is correct for step 9 to reference only elements 
of  C,. The call in step 12 is not in fact restricted to a proper subset of  C because, at this 
point, Cd = C, t./Cd. The effect of  putting "open-ended" elements of  the form ([t, 0o), T) 
into A in step 9 is to permute in each iteration the indices of  the processors, so that the 
several assignments which CRITICAL__WT in general makes to one task in conaguous 
time intervals but on several processors are coalesced into one element in A on one 
processor. The processors which are free to R E C T A N G L E  in step 10 are recorded m Z. 
Freed processors are put into Z in steps 8 and 12 and are removed in step 9, as described 
above. It can be shown by induction that the modified algonthm does indeed schedule 
critical tasks in the same time intervals as does CRITICAL__WT, and that Z contains 
exactly those m - j *  processors which are available to R E C T A N G L E  in step 10. In order 
to complete a proof of  invariance of  HI  under these modifications, it is necessary only to 
substitute the current value of  t for each occurrence of  oo in elements of  A. The details are 
a straightforward parallel of  the proof of  Theorem 3.1 and will not be discussed further. 
We notice that p ~ A in any (s, ((A, 7') . . . .  ), p) E N is a pointer to an element ([h, t2), T) 
in A, where t2 # oo. These pointers give us the potential to recover preemptions generated 
when an initial portion of  a task is to be scheduled as part of  a noncritical job. 

As we have just argued, the above modifications preserve optimahty of  the schedule 
produced. The complexity arguments already given for steps 8 and 10-12 remain un- 
changed, as may be verified in detad by reference to Appendix C where realizations of  
SPLIT and CLOSE are shown. We notice that confining the domain of  step 9 to Ca reduces 
the total time spent in step 9 to O(n) because no task repeats m Ca. The only step which 
still exceeds the desired bound of  O(n log m) is step 10. 

We now replace step 10 with a statement which wall save noncritical jobs for scheduhng 
later. 
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/ / S a v e  new noncritical j o b s / /  
10 for (s, Q,p) ~ NNew do push((t, s, Q,p), R) endfor 

To schedule the tasks in the list R at the times when N would normally become empty by 
the action of RECTANGLE, statement 14 is added. 

/ / In i t t a t e  scheduhng of  accumulated noncritical j o b s / /  
14. if S = 0 then 

(A, R, Z) ~ PACK(A, R, Z, t); 
Z~RK ~ 0 

e n d i f  

We notice that N becomes vestigial under the modifications. What remains to be shown 
is that the deferred scheduling of noncritical jobs can be realized to run in O(n  log m) time 
overall. Of course, correctness is trivial if complexity is not an issue. The procedure PACK 
could simply mimic the action of RECTANGLE at each release time when jobs were put 
on the list R. It would suffice to insert at the appropriate places in R the sets Z of available 
processors. Our plan, however, is to schedule jobs from later to earlier times in a way 
which respects release times but introduces fewer preemptions. It in fact will not be possible 
to obtain our time bound if the sets Z are stored in R. Just storing them would cost O ( n m ) .  

Instead, we store ZBRK. The complete algorithm, FAST__CRITICAL__WT, is as shown 
below. 

Algorithm FAST..._CRITICAL__WT(P, m) 
l(a) C,  *--- O; 
l(b) Ca , -  O; 
l(c) Z~O; 
l(d). Znnr ~ ~; 
l(e) for t ~ m by - 1  until 1 dopush O, Z) endfor 
2. R ,~-- O, 
3. t ~--- 0, 
4. S ~ 0 ;  
5. L ~ LI~.x{(o(T,), ~'(T,), T,, A)[ T, ts #mttal m J,}; 
6 for i <--- 1 until  m do A, *-- O endfor 
7 while card(Ca U Ca U L) + S > 0 do  

/ / P a r t m o n  jobs with respect to j *  and determine cutoff t ime t + A / /  
8(a) (Ca, Ca, L, NNrW, S, A, Z, ZnnK) *-- SPLIT(Ca, Ca, L, S, t, Z, ZsnK), 
8(b) if R # O then push(Znm~, R) endif 
8(c). ZBnK *-- 0; 

/ / E x t e n d  schedule of  cnttcal  tasks to t + A / /  
9. for(s,  u, T, - ) E  Cado  

*- pop(Z); 
eush(([t, oo), ~, A,), 
let p samfy elem(p) = head(A,), 
C a ~ ' - C . -  {(s,u, T, .)}, 
Ca ~ Ca U {(s, u, T, p)}, 
ZBR~ *-- Zsnx O 0) 

endfor 
/ /Save  new noncrmcal j o b s / /  

10 for (s, Q, p) E NNEw do push((t, s, Q, p), R) endfor 
11 if S > 0 then S ~ S - A(m - card(Ca 0 Ca)) endif 

/ /De le t e  from Cd any jobs with mmal  tasks completed at t + A and put the successor jobs m L / /  
12 (L, Ca, Z, ZBnK) *-- CLOSE(Ca, t, A, Z, ZBRr), 

/ / U p d a t e  tune/ /  
13 t * - t + A ,  

/ / I n m a t e  scheduhng of accumulated noncrmcal  j o b s / /  
14 i f  S = 0 then 

(A, R, Z)  *-- PACK(A, R, Z, t), 
ZBRK ~ 0 

endif 
endwhile 

15 return (A, t) 
end FAST__CRITICAL._WT 



A New  Algorithm for  Preemptive Scheduling o f  Trees 301 

It is easy to show by induction that the fist R is o f  the following form when P A C K  is 
called: 

R ffi (((t, s, Q ,p ) l t  -- to), U(to), ((t, s, Q , p ) l t  = tl), 
U(tl) . . . . .  U(tt-~), ((t, s, Q, p)  lt = t,)), 

where head(R) ffi (it, s, Q, p)  and to, tl . . . . .  tt are the values of  t at each iteration from the 
last one in which S became nonzero through the iteration in which the call to PACK 
occurs. The sets U(t O, i ffi 0 . . . . .  1, are the sets ZBRK at step 8(b) o f  the main algorithm at 
each value t, oft .  For i = 0 . . . . .  l, U(t,) # 9 .  However, it may be that ((t, s, Q, p ) l t  ffi t,) 
is void for some values of  i. The set p ffi (t,l((t, s, Q, p) l t  ffi t,) is nonvoid} is the set of  
release times in R. It is also easy to see for any release time t, that the set Z(ti), the value of  
Z at step 10 of  the iteration of  the main algorithm when t ffi tl, satisfies Z(ti) C Z(ti) t_l 
IJJ.l+~ U(6). Which of  the processors in the superset just shown were actually free in 
It,, 6'), where j '  is the least j satisfying 6 > t, and 6 E p, can be determined by examining 
A. Notice that if [t,, 6') ffi [t,, t,+l), then we are guaranteed that any h E Z(t,) is free for the 
entire interval [t,, 6') because the interval corresponds to one iteration of  the loop at step 
7 of  the main algorithm. This property may not hold, however, for interval It,, 6") when 
t,+~ ~ p. In this case we have the following lemma. 

LEMMA 4.1. Let  t,, 6" E p, where j '  is the least j satisfying t 1 > ti, and let [t,, h+l), 
[t,+x, t,+2) . . . . .  [6"-~, 6") be the intervals corresponding to the iterations o f  F A S T _ _  
C R I T I C A L _ _ W T f r o m  t ffi t, to t ffi 6"-1. For k = i, . . . .  j '  - 1, i f h  E Z(tk+~), then h ~ Z(tk). 

PROOF. Let some processors become free (be put into Z) at some tk for i _< k < j ' .  This 
event occurs in CLOSE where the processors freed are pushed onto the list Z. By 
assumption, in the next iteration no jobs are put into NNEW- Thus no processors are freed 
in SPLIT, and for every processor freed by CLOSE at tk there is an element in Ca when 
step 9 is reached at tk+l. Therefore each processor pushed onto Z when t ffi tk is reused in 
the interval [tk, tk+~). []  

The procedure PACK employs a rule similar to the one used by Sahni [14]. The rule is 
apphed successively to each interval of  the schedule already constructed which begins at a 
release time and ends with t, the schedule time at which S ffi 0, triggering the call to PACK. 
Intervals are processed in reverse order on release times in R, that is, "right to left" in the 
schedule so far constructed. The jobs released at t~ are scheduled when the interval [t,, t) 
is processed. 

An assignment A is regular m [t~, tb) i f A '  = (([6, t2), .)It2 > t,} C A has the property 
that A'~ = { ( I l l ,  t2), "), (It2, t3), ") . . . . .  ( I t / - 1 ,  tz),.)} and t~ >_ tb for i ffi 1 . . . . .  m. Figure 4 
depicts a regular assignment which for convenience of  exposition we show in ascending 
order on the amount of  idle time. In the interval over which regularity is defined, idle time 
always originates at t, and is conUguous on any one processor. By Lemma 4.1, the schedule 
in the first interval to be processed by PACK is regular, and this property is inherited by 
the schedules of  preceding intervals by virtue of  properties assured by Lemma 4.1 and the 
scheduhng rule. 

Let us assume that the rule of procedure PACK is applied to a regular assignment such 
as that shown in Figure 4. This rule schedules a very short job at the right o f  the shortest 
interval of  idle time. A job too large to fit in the shortest interval o f  idle time is placed on 
the processor with the largest interval of  idle time it can completely fill, the remainder 
being put as late as possible on the next processor in order o f  increasing idle time. These 
alternative placements are illustrated in Figures 5 and 6. In the event a complete interval 
of idle time is filled, the portions of  the hsts for interval [t~, tb) are swapped, if possible, so 
that an "uncovered" element in the interval ending with t~ is "covered" on the right. The 
result of  swapping the schedule in Figure 6 is shown in Figure 7. This swapping ensures 
that the next interval processed will be regular. Swapping is also done to recover 
preemptions. 

In the example of  Figure 2, S becomes nonzero m the execution o f  Algorithm 
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FIG 5 PACK schedules a short job 

F A S T _ C R I T I C A L _ W T  at t = 15. The one call to PACK occurs when S again becomes 
zero at t = 100. Figure 8 shows A at the point when PACK is called and again when the 
schedule is completed using the rule just discussed. In this example, the schedule produced 
has 4 preemptions, none of which is easily recovered, compared to 12 under 
CRITICAL_WT, 9 of which were recoverable at a cost of O(nm) time. The effect of 
swapping lists in PACK may be noticed in the changes in processor for tasks Tg, T~4, and 
T16. Tasks scheduled by PACK are shown lightly shaded in the figure. 

THEOREM 4.1. Algorithm F A S T ~ C R I T I C A L _ _ W T  generates schedules which mini- 
mize f imsh time and contain at most n - 2preemptions f o r  m _> 2. This bound on preemptions 
is a best bound. 

PROOf. Correctness and opttmality of the schedules produced follow directly from the 
correctness of a realization of the procedure PACK and arguments presented earlier. This 
realization and its correctness proof are given in Appendix D. 

If  the execution of PACK is ignored, FAST__CRITICAL__WT introduces at most one 
preemption per task, which occurs when a task becomes noncritical. The execution of 
PACK introduces at most one preemption of a task, but when it does, the initial task of the 
job so scheduled begins execution at the time t at which it became noncnUcal during 
execution of the loop of the main algorithm. The back pointers into elements preceding t 
(which are on the lists for A defined in Appendix D) allow the first preemption to be 
recovered by swapping the parts of the lists which begin at or after t (the B-lists), The 
details may be seen in the procedure PACK. Thus, ignoring execution of PACK, at most 
one preemption occurs for any one task. 
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FIG 7 Result  o f  swappmg processors m Figure  6. 

To obtain the bound n - 2, three cases are considered. I f  no jobs  of  the given problem 
are critical, then the algorithm reduces to one execution of  PACK in which at least two 
tasks will receive no preemptions. In the case where there are critical jobs, let there be 
fewer than two time intervals terminated by the termination of  a critical task. I f  there are 
two or more such intervals, then at least two tasks are left unpreempted. In  the case where 
there are no time intervals terminated by a critical task, two tasks remain unpreempted in 
the execution of  PACK. If  one time interval is terminated by a critical task, then one of  its 
successors wdl also remain unpreempted. 

The case where no job  of  the given problem is critical establishes n - 2 as a best bound 
on the number of  preemptions. []  

THEOREM 4.2. Algorithm FAST._SCHED___B ~._WT runs in O(n log m) time. 

PROOF. Earlier discussion has reduced this proof  to a proof  that steps 10 and 14 run in 
O(n log m) time overall. Over the enure execution of  step 10, an element appears in NNEw 
at most once for each task. Thus step 10 is O(n). 

We have already argued a bound of  n - 2 on the number of  preemptions introduced. 
Consider the execution of  PACK (Appendix D). In steps 2, 9, 16, and 18 of  PACK each 
operation is chargeable to some task termination. No mdwidual  operation is charged to 
the same task twice. I f  Z is kept as a height-balanced search tree [1], then step 12 costs 
O(log m), and over the entire execution of  the algorithm steps 11 and 12 cost O(n log m). 
Steps 13-15 are linear in the number  of  tasks. Steps unmentioned in this discussion are 
each constant and add up to O(n). [] 
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5. Conclusion 

The major result of  this paper is an O(n log m) algorithm for scheduling forests composed 
of  n tasks on m identical processors. The schedules produced are optimal with respect to 
schedule length, and in the worst ease the schedules have no more than n - 2 pxeemptions, 
a bound which cannot be improved when m is large. The schedules produced are a set of  
m lists, one for each processor, giving in order of  execution the tasks to be executed on a 
given processor. 

Also presented is a simpler version of  the algorithm which runs in O(nm) time, yielding 
optimal schedules with no more than 2nm - 4n - m + 3 preemptions for m _> 2. When 
m ffi 2, this expression reduces to 1. This algorithm is easily adapted to scheduling 
independent tasks with release times on-line. The algorithm for the release time problem 
also runs in O(nm) time, generating schedules with at most 2nm - 2n - m + 2 preemptions. 
Virtually the same algorithm also schedules arbitrary forests on two uniform processors, 
processors with uniformly different processing speeds. The only modification is to use the 
bound of  Liu and Yang [10] and the algorithm of  Gonzalez and Sahni [5]  t o  schedule the 
noncritical jobs. 

Appendix A. Realization of Procedure RECTANGLE (See Section 2) 

procedure  RECTANGLE(A,  N, M,  to, to), 
procedure  SCHED((s,  Q), A j, to, to t:); 

/ / G i v e n  the  f la t tened hst  (s, Q), p rocedu re  S C H E D  assigns tasks  m the  in te rva l  [to, ra in ( to  tf)) A n y  
tasks  or  p o m o n s  the reo f  w h i c h  do  not  fit  m the  in te rva l  a re  r e tu rned  m a f la t tened  h s t . / /  
wlog let Q ffi ((A1, T1) . . . .  (Ak, Tk)); 
i ~--- 1, 

t ~--  t0, 

/ / S c h e d u l e  task  T, i f  tt wi l l  t e rmina te  no  la ter  t h a n  ram(to, t f ) / /  
while t + A, <_ ram{to tf} d o  

push(([t, t + A,), T,), A j), 
t * - t  + ~,, 
i~- .- t+ 1, 
if  ~ > k then  r e tu rn  ((0, 0 ) ,  A~) eml i f  

endwhi le  
i f t = m m { t o t f } t h e n r e t u r n ( ( s - t + t o , ( ( ~ . , T , ) , .  , (Ak, Tk))), Aj) 
e l se  push(([ t, mm {to tr} ), TO, A j), 

re tu rn  ((s - m m ( t .  t:} + to, ((4, - mm{to t:} + t, T,), (A,+l, T,+ 0 . . . . .  (Ak, Tk))), Aj)  
e n d i f  

e n d  SCHED; 
/ / G w e n  a set o f  tasks  ( represented  by  f la t tened  hsts  m N), the  p rocedure  wt!l  schedu le  t h e m  on  the  set o f  
processors  M from t ime  to to tune  tc I f  s o m e  tasks  need  to be schedu led  af ter  t~: they wd l  be saved  m a t  mos t  
2k - 1 f la t tened  hsts  w h i c h  wi l l  be r e tu rned  m N ' / /  
wlog let M = { l, . , k } ,  
N ' ~ O ;  
t: ~-- to + ~( s  I (s, Q) E N) /k ,  
(s, Q) ~ pop(N); 
t ~---to, 
for t ~-- 1 unti l  k d o  

s r ¢-- O, 
Q' ~-0, 
while t + s _< t I d o  

((s", Q"), A,) ~- SCHED((s,  Q), A,, t, t .  tf); 

l 
( s '  + s" ,  ((Ai, T~), , (A~., T~.), (Ai', T;'), , (A~',,, T,~-))) 

(s ' ,  Q ' )  ~ (s '  + s" ,  ((a~, T~), , (A'k' + A;', T~,), , (A~-, Tg-))) 
otherwtse where wlog 

Q '  = ((a~, T~), , (A,~., T,~.)) 
Q "  = ((~( ' ,  T~'), , (A,~., T~-)), 

t~--- t+~, 
(s, Q) ~ pop(N) 

endwhi le  
push((s', Q'), N'),  
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if  t < tf then 
((s', Q'), a,+~) ~ SCHED((s,  Q), A,+b to, to to + s - tf + t); 
if  t < t, then ((s', Q'), A J  *-- SCHED((s ' ,  Q'), A,, t, to tt) ¢~Uf 
push((s', Q'), N'); 
t * - t o + s - - t f + t ;  

else t ~-- to 
endif 

endfor 
return (A, N') 

end RECTANGLE; 

Appendix B. Proof of  Lemma 3.1 

PROOF. Prior to the first iteration of  the loop at step 7 the partition (0, P) satisfies part 
(a) of  HI  because S = 0, C LI N = 0 ,  and L is a list for P at t = 0. Part (b) is trivially 
satisfied by the construction of  L. 

The proof of  invariance is by induction. We first prove that part (a) holds after every 
iteration. Then, with this result, we prove that part (b) holds as well. 

Assume (a) of  HI  is satisfied before iteration k _> 1. We will show that (a) of  HI  is 
preserved over iteration k. In order to develop the argument, we subscript program 
variables with statement numbers to stand for the value of  the variable before the statement 
is executed in iteration k. For example, before statement 8 the value of  set L is denoted Ls. 
By the assumed correctness of  SPLIT, H2 holds before step 9. Let (P~, P~') be the consistent 
decomposition of  P which satisfies H2. Since the jobs in C are disjoint from the jobs in N, 
P~' has a consistent decomposition (Peg, PNg) where C9 is a list for Pc9 at t and N9 is a list 
for PNg. Consequently, (P~ LI Peg, PNg) is a consistent decomposition of  P at t. Let step 9 
be executed. The time increment A is sufficiently small so that all tasks scheduled in step 
9 are independent with respect to <. Thus P~ LI Pc. has a consistent decomposition 
(PAso, Pc~0) where Alo is a complete feasible assignment of  M to PA,o in [0, t + A) and Cm 
is a list for Pc,o at t + A. It should be noted that Pqo is a pseudoproblem in the sense 
that there may be (s, u, T) E Pc,0 fox which u - (t + A) = 0. Since N9 = N10, it follows that 
(PA~, Pc~o U PN~) is a consistent decomposition of  P where Cm is a list for Pc,~ at t + A and 
Nlo is a list for PN~o. 

Consider the execution of  steps 10 and 1 I. From Lemma 2.1, the disjointness of  C and 
N, and the fact that Cm = Cm, it can be concluded that (PA,2, Pc,2 t.J PN,2 ) is a consistent 
decomposition for P where A12 is a complete feasible assignment of  M to PA,~ m 
[0, t + A), C12 is a list for Pc,2 at t + A, and N~2 is a list for PN,2- It remains to observe that 
step 12 replaces C~2 with the sets C~3 and L13 having the property that (Pco, Pc,~ O PLy3) is 
a consistent decomposition for Pq2 where Pco is a pseudoscheduling problem for which T 
is identically zero, Ct3 is a hst for Pc,~ at t + A, and L~8 is a list for PL,~ at t + A. Combining 
results and noticing that A~3 = A~2 and N~z = N~2 give a consistent decomposition 
(Pa,~, Pc,~ U PL,~ U PN,) of  P, which satisfies (i) and (ii) of  part (a) of  H 1 at the start of  
iteration k + 1. The effect of  step 11 satisfies (iii). Induction on k completes the proof that 
part (a) of  H 1 is invariant. 

In order to prove the invariance of  part (b) of  H 1, we must prove the following assertion: 
At any iteration k _> 1, Na _C N9 and C9 .~. Ca I_J La. The proof is by contradiction. Assume 
there exists (s, ((A~, T0 . . . .  )) E Na and that (s + t, A~ + t, T1) E C9 in satisfaction of  H2. 
Since N8 ~ 0 ,  it must be that k > 1 and card(Ca O La O Na) ~- m. The assumed 
contradictory element must have been a member of  N~2 in iteration k - I. 

In proving part (a) of  HI  we identified a consistent decomposition (PA,2, Pc,2 t3 PN~) of  
P prior to the execution of  step 12. Let this decomposition occur in iteration k - 1. I f  we 
take C~2 t.J N~2 to be a list for Pc,~ 13 PN~ z a t  tk = t~-i + Ak-~, where t, is the value of  
program variable t at the start of  iteration i, then without loss of  generality we can write 

= I.J~.lJ~. i s  $1 ~ . . .  _> Sj* -> S~ _> . . .  _> S~ if Pc,~ LI PN,~ ~ Here j*  the critical index of  
iteration k - 1. Therefore (m - j*)S~. > ~ ' - t  S,, but (m - I)S~ _< ~,r.t+~ S,. NOW consider 
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the scheduling problem P~ of  the consistent decomposition (P[, P~') which satisfies part (a) 
of  H1 before step 8 in iteration k. P~' is derived from Pc,~ O PN,~ of  iteration k - 1 by the 
execution of  step 12. Without loss of  generality let P6' = ~ J[ '  satisfy S~' --> . . .  --> S[,', 
_> . . .  _> S'/-, where Jt = J[;, and thus St = S['-. We may assume that J~,', is a job which 
contradicts N8 C_ N9 and C9 C C9 LI Ls. In this case the critical index in iteration k is 
greater than or equal to l". Steps 12 and 13 in iteration k - 1 had no effect on jobs J~, 

• , - -  t p  . ~  ~ .  r 
• • J r ,  s o  {J t+l  . . . . .  J~} C {J/"+l ,  . .  Jr",,}. Consequently ~'-'r+~ S," _ ~,-z+a & .  O u r  

assumption is that 

r"  

( m - l " ) S ~ ' >  ~ S['. 
~--/"+1 

We consider two cases. Let I" satisfy l _< l" _< m. Our assumption clearly fails if 1" = m. 
Therefore l" < m and 

r r "  S ¢  S~ < V 
S~ ' -=S t - -  < ~ m .-~- (m--  ,-t+l( - 1 ) - - ,  +1 1")' 

which contradicts our assumption• Thus the other case, !" < l _< m, is the only possibility. 
In this case at least (l - / " ) j o b s  from the set {J~ . . . . .  Jj.} have been split, so their weights 
appear in the sequence St%l . . . . .  S~. Thus 

X > 
z - - l " + l  ~ - - l+ l  

S, + (! - l")Sl > (m - l)St + (1 - l")Sl = (m - l")Sz 

a n d  

r" S[' (m -- l")St 
S t = S t ' x >  ~ (m 1") > 1 " ) - S t ,  

t - - / " + l  - -  ( m  - -  

a contradiction. All eases have been exhausted, so we conclude that N8 C N9 and C9 C 
C8 U L8 over the execution of  SPLIT, as claimed. It remains to notice that on all iterations 
but the first, every job represented in C8 O L8 has a direct predecessor in set C9 of  the 
previous iteration, and part (b) of  H 1 follows by induction on k. []  

Appendix C. Realization of  Procedures S P L I T  and C L O S E  (See Section 4) 

procedure SPLIT(Co, Ca, L, S, t, Z, ZBRK) 
N,--O; 
for (s,, u,, T,, p,) E L do 

//Move a job from L to Cd/ 
c , , ~ c ~ o  {(s,,u,, T,,p,)}, 
let (s, u, T, p) mmirmze s m Ca 0 Ca, 
/ / K e e p  only criUcal jobs m C. O Ca / /  
while card(Ca O Ca) -> m or (S > 0 and S _> (s - O(m - card(Ca O Ca)) 

and card(Ca O Ca) > 0) do 
if(s, u, T,p) E Co then Ca * -Ca  - {(s, u, T,p)} 
e lse / /Complete  schedule entry and record freeing of processor/ /  

Cd~--Cd-- {(S, U, T,p)}; 
let head(An) = elem(p), 
([th -), 7) ,-pop(a,); 
push([h, O, T), A,), 
push(k, Z), 
Zs~x ~ Znnx 0 (k} 

endif 
/ / P u t  job deleted from C. t.J Ca into N and update S / /  
N ~ N 1.3 {(s - t, ((u - t, T), (~(TO, Tl) . . . . .  (~(Tk), Tk)), p) ~ where wlog T -< T, zff I _< ~ <_ k and 

for  l _< l,j_< k zf T~ < Tj then z < j } ,  
S ~ - - S + s - t ;  
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if card(C~ U Cd) > 0 then let (s, u, T, p) minimize s in Co U Cd endif 
endwhile 

endfor 
if card(C~ 0 Cd) ffi 0 then A ~-  S/m 
else A ~--min({u - tl(s, u, T,p) E Ca U Cd} IA (S/(m - eard(C~ U Cd))}) 
endif 
return (C~, Cd, (~, N, $, A, Z, ZBRic) 

end SPLIT; 

procedure CLOSE(Cd, t, A, ZBRK); 
L ~.-0;  
/ / F o r  each job  m Cd for winch the nut~al task has zero executton ttme remaining, terminate this task m the 
schedule and put successor jobs in L / /  
whl ]e  Cd ~ ~ d o  

let (s, u, T, p) mimmize u m Cd, 
if  u -- (t + A) > 0 then return (L, Cd, Z, Zm~g) endif 
C d ~ - ' C d  - {(S, U, T e e ) } ;  
let head(Ak) ~ elem(p); 
([tl, oo), T~) ~-pop(Ak); 
push(([tb t + A), T~), A~), 
push(k, Z), 
ZBRK ~-- ZSRK U {k}, 
for Tl satufying T <  Tj and, for no Tt, T <  Tl < Tj do 

L *- L tA {(o(Tj) + t + A, ~.(T~) + t + A, Tj, A)) 
endfor 

endwhile 
return (L, Cd, Z, ZBRX) 

end CLOSE; 

Appendix D. Realization of Procedure PACK and Proof of Correctness (see Section 4) 

Wocedure PACK(A, R, Z, t), 
procedure SWAP(x); 

/ / S w a p  hst Bw wtth hst B~, fory ~ ZSWAP// 

if tl < tR where head(Aw) ffi ([ . ,  tl), .) then 
let] E ZSWAF, 
Bw ~ B~; 
Z S W A P  ~ Z S W A P  - -  ( J ) ;  

w ~.-j 
endif 
lfpR ¢ A then 

let elem(pR) ffi head(A,), 
B~ ~ B~; 
ff k E ZswAe then ZswAP ~-- ( ZswAP 0 {w}) -- (k} endif 

endif 
end SWAP; 
procedure SCHED(Q, B,, tl, t2, Bj, t3, tO 

/ /Schedule  Q so as to fill idle ume  on B,, ff possible, with any overflow scheduled as late as possible on 
B,/ /  
wlog let Q ffi ((A~, T1),. , (At, Tt)), 
L~ . -~ ,  
t ~-- t l ,  

k * - l ;  
while t + Ak _< t2 do 

push(([t, t + Ak), Tk), L); 
t ~--- t + Ak; 
k ~ - k + l  

endwhile 
f i t  < t~ then 

push(([t, t2), Tk), L), 
while L ~,t ~ do push(pop(L), BJ endwhile 
t ~ t3 '4" ~kk --  (t2 --  t); 
push(([t3, t), Tk), L), 
k ~ - - k +  1 
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else while L ~ 0 do push(pop(L) ,  B~) endwhile 
t ~--- t3 

endif 
while k _< I do 

push(([t, t + Ak), Tk), L), 

k~-k+ I 
endwhile 

while L # O do push(pop(L), Bj) endwhile 
return (B,, B~) 

end SCHED; 
//Accumulate ZSRK sets at the head of R// 

I. Y~--~ 
2 while head(R)~ (I .... m} do Y~-- YUpop(R)endwhile 
3. ifR ffi ~ then return (A, ~5, Z) endif 

//Move prefix of each hst A,, up to any ~dle tune beginning at last release Ume, onto a new list B,// 
4. ZSWAe ~ ~ ,  
5 fiR, Sm Qm ps) ~ head(R), 
6 for i~ Zdo B, <-- {(It, t), A)); 

while tn < tl = t2 where head(A,)  = ([ . ,  tl), .), head(B,)  = (It2, .), . )  do  push(pop(A,) ,  B,) 
endwhile 
if tl = ts  < t2 where head(A,)  = ( [ . ,  tt), .), head(B,) = ([t2, -), . )  then Zsw~w ~ Z s w a e  LI {/} 
endif 

endfor 
7 while R # ~ do 

c a n  
8 "head(R) = ( . , . , . ,  .): / / M o v e  prefix o f  each list A,, where  z was  a m e m b e r  o f  ZsRm up  to first gap m 

A , / /  
9 [fin, sn, Q m p n )  ~.-pop(R); 

for I E Y do 
if ~ ~ Z then B, ~ {([t, 0, A)},  

Z ~ Z U{t} endif 
while tn < tl ffi t2 where head(A,)  = ([- ,  tO, .), head(B,)  - ([t2, .),  . )  do 

push(pop(A,), B,) 
endwhile 

if tl = tn < t2 where head(A,)  = ( [ . ,  tO, • ), head(B,)  = (Its, • ), .)  then 
Zswae ~ ZswAp 0 0} 

else ZswA. ~-- ZswAe - {0 
endlf 

endfor 
10. Y ~-- ~ ,  

/ / S ~ h e d u l e  j ob  (ts, sR, QR, p n ) / /  
!1 w l o g l e t Z =  { I , .  , q } , a n d  

let ~r(Z) sattsfy 
(O f o r  I = l, , q, ~ 0  E Z 

( u ) f o r  ~ = 1 . . . .  q - 1, t.o~ --< t,~,+l), 
head(B. .~) = ([t.,~, .), .), 
head(B..+i)) ffi ([t~.+l), .), .)), 

12 1 ~-- m m { l l t . ~  - tn >-- sn where 1 _< I _< q and  head(B.u}) = ([t,,~, .),  .)}; 
case 

13 t.~t) - tn = sn [(B.~0, . )  ~ S C H E D ( Q n ,  B.~o, ts.  t.~o, ", , . . ) ,  S W A P ( i ) ]  
14 1 = 1 or t~t-~) ffi tn" [(B..),  .)  ~ S C H E D ( Q m  B.u~, tan - sR, l e o , . , . ,  . )]  
15 'else. [(B.lt-l~, B.~o) ~ S C H E D ( Q n ,  B.~t-]), tn, t.u-~l, B.io, 

swae(t-  l)] 
endcase 

16 "head(R) ~ { 1, , m } . / / H e a d  o f  R ~s a processor  s e t / /  
[ Y ~ Y ~ pop(R)] 

endcase 
endwhile 
/ / M o v e  elements  f rom B-11sts back to A - h s t s / /  

17. X ~--- ~ ;  
18. for i ~ Z d o  

while head(B,)  # ([t, t), . )  do 
([t~, t2), T~) ~--pop(S,),  
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if fi - t4 and Tj - Tk where head(A,) - (It3, t0, Tk) then 
(its, tO, T,) ,-eoe(a,); 
push(([t~, t~), Tk), A,) 

else push(([t,, t2), T~), AJ 
endif 

endwhile 
if t2 -- tthen X*-- XO {t) endif 

endfor 

19. return (A, R, X) 
end PACK; 

The proof  of  correctness of  procedure PACK will be by induction over the execution 
of the loop at step 7 of  FAST CRITICAL__WT.  It will be necessary to reference 
the properties of  Algorithm C R I T I C A L  W T  established in earlier sections. Let 
CRITICAL__WT(P,  m) ffi (A, .). For any value tk assumed by t during the execution of  
C R I T I C A L _ W T ( P ,  m), let A(tk) ffi (([tl, t2), .)]t2 <-- tk} C A, and let P(tk) be the scheduling 
problem for which A(tk) is a complete feasible assignment of  M to P(tk) in [0, tk). Also let 
A t be any assignment A in which each instance of  oo is replaced by t. Referring to 
FAST__CRITICAL__WT, let R(tk) -- {(t, s, Q,p)l(s, Q , p )  ~ NNEW(tk)} be the jobs put 
into R when t = tk, and let S(tk) be the value of  S before step 8 when t = tk. S(tk) is the total 
weight of  all jobs which become noncritical before tk and which CRITICAL__WT 
schedules affter tk. NOW consider the execution of  PACK. 

Defme 

ZtR ---- {i[([tl, h), ") ~ A, O B, implies t2 --< tR or tR ~- tl}, 

RtR = {(t, S, Q , p ) l t  ffi tR} c R, 

S(RtR) ffi ~(sl(t, s, Q, p )  ~ Rt,), 

where R, tR, A,, B, are program variables in PACK. The following lemma may be proved 
by induction over the execution of  PACK. 

LElVlMA 4.2. Zswap ffi {i[([tl, tR), ") E A,  and t2 > t, where ([t2, t3), .) minimizes t2 in B,} 
after step 10 in any iteration o f  PACK.  

ZSWAP be LEMMA 4.3. Let  RtR = R(tR) after step l0 in some iteration o f  PA CK, and let o 
the value o f  ZSWAP at this time. Then 

S(R(tR)) > S(tR) 
(0 card(Z$wAP) -- card(Z(tR) -- ZswaP)° , 

S(R(tR)) - s S(tR) 
(iO card(Z~wap) - 1 > card(Z(tR) -- ZSWA~)O ' 

f o r  any (t, s, Q, p )  E R(tn). 

PROOF. Part (i) is a consequence of  the definition of  job criticality implemented in 
CRITICAL__WT. Part (ii) follows from the same arguments since s must be less than or 
equal to the sum of  the weights of  all of  the descendants of  Q's predecessor job with respect 
to <. []  

Let G be the following proposition: 

(a) z[ ffi O?.~(A, IJ B,) is regular in [tR, t); 
(b) ([tb t2), .) E A, ifft2 _< tR for i E Z; 
(c) z, .  c_ z; 
(d) there exists A *, a complete feasible assignment of  M to P* ffi I.I,.~ ( L  J (t,, s,, Q,, p,) 

E R, Q, is a list for J~ and <,*is a total order) in [to, t) and A * t3 A t is a complete 
feasible assignment of  M to P(t) m [to, t). 
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LEMMA 4.4. G is invariant over the execution o f  PA C K  when G is evaluated after step 10. 

PROOF. Consider the first execution of  step 10. Steps 1-10 establish parts (a), (b), and 
(c) of  G. Part (d) follows from the correctness of  Algorithm CRITICAL__WT. Let G hold 
following some execution of  step l0 and consider the next execution o f  step 10. There are 
two cases. 

Case 1. The variable tR is unchanged. In this case exactly one iteration of  the loop at 
step 7 is executed. Part (b) is preserved by step 9. A trace of  the remaining steps of  the loop 
will verify that parts (a) and (c) are preserved. It remains to show that part (d) will hold 
when a job has been scheduled in the manner specified in steps 11-15. Because the 
assignment in A is regular in [tR, t), the idle time on any processor i after time tR coincides 
with an interval [tR, t,) where t, is the first time to show on the list B,. Every processor with 
idle time in [tR, t) appears in the set Z as a consequence of  part (c). Clearly the scheduling 
rule in PACK preserves regularity, as was shown in Figures 5 and 6. Because the 
precedence relations in each job in R are a total order, the jobs in R can be viewed as 
single tasks. Consequently there is an interchange argument to show that .4 * assumed by 
G can be constructed so that the job QR is scheduled as in PACK. Thus part (d) is 
preserved. 

Case 2. The variable tn assumes a new value. In this case one or more executions of  
step 16 intervene after the iteration in which G is given as true. By the arguments above, 
G certainly holds at the end of  the iteration in which G is given as true. Now let tR assume 
a new (smaller) value. Again, by the arguments in case l, part (d) must hold. Also, the 
execution of  step 9 reestablishes parts (b) and (c). The issue is whether part (a) (regularity) 
is preserved. 

Lemma 4.1 establishes regularity at all times except at the former tl. We must show that 
G true after step 15, when (t, s, Q, p) ~ R implies t < tl,  itself implies ([h, tR), .) ~ A,  only 
if ([tR, t2), ") E B,. The set ZswAP contains all processors which violate this property. Each 
time the idle time on some processor is used up, a processor is removed from ZSWAP. Our 
proof proceeds by induction o n  card(ZswAP). 

It follows by the proof of  correctness of  CRITICAL__WT that It s ffi ~,¢z,R(tl - 
t,l([tl, tz), -) minimizes t~ m B,) = S(tR) + S(Rtl)  after step l0 in any iteration o f  PACK. 
Let card(ZswaP) ffi I. Since ItR - min,~z,,{tl - tRl([t~, t2), .) minimizes tl in B,} _> S(tR), 
PACK will surely remove a processor from ZSWAP while scheduling R(tR). So let 
card(ZswAP)  m a > l, and assume that PACK correctly reduces Zswav to O whenever 
card(ZswAP) m a - 1. By the argument just presented for card(ZswAP) = 1, it must occur 
that a processor is removed from ZSWAP. Part (i) of  Lemma 4.3 is given. If  the first 
processor removed from ZSWAP is the one with minimum idle time, let ~ be the length of  
that interval. By minimality of  ~, a8 _< S(R(tR)). Thus 

S(R(tR)) - ~ > S(R(tR))(I -- ( l /a))  _ S(R(tR)) > S(tR) 

a -  1 a -  l a card(Z( t t¢)) -  a' 

and we can conclude from our induction hypothesis that PACK will correctly reduce 
ZSWAP to O. If  the first processor removed from ZswAv is not the one with minimum idle 
time, we can let it be removed in the first iteration. If  the weight of  the job  so scheduled 
is s, then we have the relation of  part (ii) of  Lemma 4.3, and the proof is again completed 
by induction on a. It should be noticed that in each of  the arguments just presented, the 
last job scheduled on the processor with least idle time was assumed to be split so that the 
job scheduled exactly filled the idle interval. []  
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