
A New Algorithm for Preemptive Scheduling of Trees

TEOFILO F. GONZALEZ AND DONALD B. JOHNSON

The Pennsylvania State Umverszty, Umverstty Park, Pennsylvania

ABSTRACT. Art algorithm which schedules forests of n tasks on m idenUcal processors m O(n log m) tune, off-
line, ms g~ven. The schedules are optunal with respect to fuush tune and contain at most n - 2 preemptions, a
bound which is reahzed for all n Also given is a sunpler algonthm whtch runs in O(nm) time on the same
problem and can be adapted to give optimal finish tune schedules on-hne for independent tasks with release
tunes

KEY WORDS AND PHRASES: preemptive schedules, mmtmum fmlsh tune, trees, forests, Identical processors,
umform processors, effictent algorithms, optunal schedules

CR CATEGORIES. 4 32, 5.25, 5 39

1. Introduction

I f interrupt ions are allowed in executing tasks on a set of processors, it is often possible to
finish a given set of tasks more quickly than if every task is processed to complet ion once
begun. Such interrupt ions are called preemptions. We consider the general p roblem of
minimizing the finish t ime for task systems with a treelike precedence structure, a t tempting
to minimize preemptions in the worst case but otherwise ignoring their cost. We deal with
the problem when the parameters o f all tasks are k n o wn in advance and also with an on-
l ine problem with independent tasks. Applicat ions are evident, part icularly in computer
and communica t ions systems.

This problem was first treated by Mu n t z and Coffman [13]. Other references relevant to
our work are [5, 7, 10-12, 14]. In addit ion, [2, 3] are of interest as basic references in
scheduling theory. The version of this problem in which all tasks are restricted to have uni t
execution t ime was originally solved by Hu [8] and has been discussed recently by Davida
and Lin ton [4]. Hu 's algori thm schedules trees from leaves to root and therefore bears
some resemblance to the more general algori thm of Muntz and Coffman. However, the
Muntz and Coffman algori thm does not follow directly from this algorithm. The algori thm
of Davida and Lin ton schedules from root to leaves and therefore bears some resemblance
to our algorithms. These authors, however, did not extend their results to treat adequate ly
the problem we solve. As is the case for Hu ' s rule, applicat ion of their scheduling rule to
problems with other than uni t - t ime tasks yields subopt imal schedules. Consequent ly, they
propose that a problem with integer execution times be reduced to one with un i t execution
times by decomposing all tasks into chains of uni t - t ime tasks. Obviously this reduct ion
yields uni t - t ime problems which can be of size exponent ia l in the size of the original input.
Thus scheduling can take exponent ia l t ime and, it can be shown, some schedules will have
an exponential n u m b e r of preemptions which cannot easily be el iminated.

Permission to copy without fee all or part of this material is granted prowded that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the Utle of the publicaUon and its
date appear, and notice ts given that copying Is by permission of the Assoctauon for Computing Machinery To
copy otherwise, or to repubhsh, requires a fee and/or specific permission
This research was supported m part by the National Science Foundation under Grant MCS 77-21092.
Authors' address Department of Computer Science, The Pennsylvama State University, UmversRy Park, PA
16802
1980 ACM 0004-541 !/80/0400-0287 $00 75

Journal of the Assoctauon for Computing Machinery, Vol 27, No 2, Aprd 1980, pp 287-312

288 x.F. OOIqZALEZ AlqV U. B. JOHNSO~q

Our best algorithm schedules forests of n tasks on m identical processors in O(n log m)
time, never producing more than n - 2 preemptions. It appears, then, that the interesting
comparison is with the Muntz-Coffman algorithm, which runs in O(n 2) time giving
schedules with O(nm) preemptions. We make such a comparison in some detail below.

A scheduling problem is specified by a task system P and an integer m > 0 giving
the number of identical processors on which P is to be serviced. The task system P =,
(~, <, ~'), where .~" is an indexed set of n tasks, < is a partial order on ~, and each task T,
in i f has associated with it an execution time f(T,) > 0 which specifies the total amount of
service T~ requires. A schedule for P on m processors must provide for each task T,
receiving an amount ~(T,) of service from one or more of the m processors in a way that
respects < and which at any point in time assigns no more than one processor to any task
and no more than one task to any processor. We present a precise definition of the term
"schedule" later. For the moment it will suffice to say that a schedule will be presented as
a set of lists, one for each processor, which gives an assignment of intervals of time to
tasks. These lists will be in ascending order on the times and, taken together, must respect
the above requirements.

In this paper we will optimize schedules with respect to two criteria, schedule length (the
time required to complete all processing under the schedule constructed) and number of
preemptions (measured by the number of elements in the schedule lists themselves). As
stated above, the partial order < is restricted to be a rooted forest. We will assume in the
discussion of our algorithm that the forest is initially rooted, that is, for different tasks T,
T~, Tk in J , if Ti < Tk and T~ < T,, then either T, < Tj or Tj < T,. A task T, is initial if for
no Tj, ~ < T,. A task T, isfinal ff for no T~, T, < T~. A scheduling problem with exactly one
initial task is called a job. Thus a nonempty scheduling problem P may be partitioned into
r _> 1 nonempty jobs which are the trees of the forest defined by P. If, for i ffi 1 r,
J, = (~, <,, ~'i) is the/th job in P, then P = (t3~-1 ~ 1.37.1 <,, ~ -1 ~',), which with a slight
corruption of notation we denote as P = tY~.l J,. It is assumed that < is presented as a
graph without transitive edges so that the space necessary to store < is O(n). Choosing <
to be initially rooted, therefore, is little more than a definitional convenience when
schedules are to be constructed off-line. (An off-line algorithm is allowed to receive all of
the input for a problem before producing any output.) I f < were presented as a terminally
rooted forest, it could be converted into the form we require in O(n) time. In fact, it is
easily seen that a schedule for a terminally rooted problem can be constructed from a
schedule for the corresponding initially rooted problem in time proportional to the number
of entries in the schedule. We discuss the question of on-line computation later in the
paper.

We now proceed to an informal description of the Muntz and Coffman algorithm [13]
and of our algorithm so that the basic ideas of their operation may be understood.

Both algorithms rest on an application of the principle of optimality: the given problem
P is decomposed into an initial problem and a remainder problem, and a rule is given for
scheduling the initial problem. The decomposition and the rule have the property that an
optimal schedule for P may be obtained by following the schedule for the initial problem
by any optimal schedule for the remainder problem, provided of course that the first time
mentioned in the schedule for the remainder problem is equal to the last time mentioned
in the schedule for the initial problem. It may happen that some tasks are split between the
initial and remainder problems. The complete algorithm in each case repeatedly applies
such a decomposition to the remainder problem and concatenates the schedules produced
for each initial problem.

In the Muntz-Coffman algorithm the initial problem is defined by certain leaves of the
given forest, the schedule adopted for these leaves, and an event in this schedule. I f there
are no more than m leaves, the rule is to assign each leaf to a processor. The initial problem
is defined by these leaves and the first time at which a leaf will terminate under the rule
which schedules each leaf on a processor. Thus the initial problem is comprised of the

A New Algorithm for Preemptive Scheduling of Trees 289

leaves, each given an execution time equal to the minimum among them of their original
execution times, and an empty precedence constraint. The remainder problem is the given
problem with the execution times of the leaves reduced by the amount given to the initial
problem.

The Muntz-Coffman algorithm decides the more interesting case, where there are more
than m leaves and consequently more tasks are available than there are processors, by
scheduling leaf tasks by their current level. The level of a leaf task in a terminally rooted
forest is the sum of the execution times over all tasks on the path from the task in question
to a root. A task's own execution time is included in the sum. The rule is to schedule the
m leaf tasks of greatest level, each on one of the m processors. If, however, there are more
than m leaf tasks with level greater than or equal to the level of the mth leaf task in some
total ordering of leaves by level, then all of these tasks are scheduled as follows: Each leaf
with a level greater than the level of the mth leaf has assigned to it a processor. Assume at
this point that there are l remaining processors. The remaining k leaves to be scheduled
are each assigned to k imaginary processors of reduced speed equal to that of l/k of a true
processor. This schedule on a combination of true and imaginary processors is later
converted into a schedule on the m true processors.

When there are more than m leaves, the initial problem is defined by the schedule on
the true and imaginary processors defmed above and the first of two possible events were
this schedule to be run on the whole problem: some leaf completes, or the level of some
leaf becomes equal to the level of the mth leaf. It is relatively easy to compute the first such
event. Partition leaf tasks into three classes: (1) unscheduled, (2) scheduled on an imaginary
"slow" processor, and (3) scheduled on a true processor. Keep classes (1) and (3) each in
a priority queue, ordered on level. An event is generated by task completion, by the level
of the tasks in the class (2) (which are all of equal level) declining to the level of the
maximum level task in class (1), or by the level of the lowest level task in class (3) falling
to the level of tasks in class (2) (since tasks in class (3) execute faster than those in class
(2)). It should be observed for later use that any one original task can generate at most two
such scheduling events over the entire execution of the algorithm.

The schedule for an initial problem using imaginary processors can be converted to a
schedule on m true processors by taking the k tasks on the k imaginary processors and
assigning them preemptively to the 1 < k unused true processors using the algorithm of
McNaughton [11]. This conversion introduces exactly I - 1 preemptions for each initial
problem when I > 0. Since each of the k shorter tasks in an initial problem has the same
time requirement on a true processor, it is possible to avoid having any task presented
within a schedule for an initial problem also preempted at the point where schedules for
initial problems are concatenated.

The execution time of the Muntz-Coffman algorithm is f~(n2), as may be seen from the
example in Figure 1. Task times are written in the nodes representing tasks. In this example
an initial problem is first defined with (n + 1)/2 tasks each of unit execution time. Next,
an initial problem with (n - 1)/2 tasks is defined, and so forth. Constructing the schedule
for each initial problem costs time proportional to the number of tasks in it. The execution

~'q(n+l)/2 time, then, is at least proportional to m + Z~,-m i, which realizes ~(n 2) when n is
sufficiently larger than m. Since no task can generate more than two scheduling events, it
follows that the number of preemptions is O(nm). This bound is realized for the example
in Figure 1. Horvath et al. [7] deal with extending the Muntz-Coffman algorithm to
arbitrary directed acyclic graphs and to systems with processors of uniformly different
speeds. With the exception of problems on two processors or with independent tasks,
their algorithms produce suboptimal schedules. We do not deal with such extensions
in this paper.

The Muntz-Coffman algorithm schedules by identifying paths of greatest or "critical"
length in the remainder problem. Each path from node to root in the given problem
becomes critical in this sense at some point. As a comparison with our algorithm will show,

290 T. F. GONZALEZ AND D. B. JOHNSON

fC '~
~ [~ ~ ~) represents • tosk T

~ T . ~ - ~ where V is execution
f'~"~,~2 .J~J.~.~ ~ time and 2 is the sum

~ ~ Of oil execution times
T 4 ~ over path to the roOt

I---~--I 1 ' ~

GI~n Problem

Ti

0 ©

First inihol problem

• . T n

First remoinder problem

FIG 1.

G
Remoinder problem after
n-I time untts

2
The Muntz-Coffman algorithm is fl(n 2)

this strategy leads to overspecification of the times at which some of the tasks must be run.
Our algorithm succeeds in segregating the tasks into two classes. In one class there is what
can be termed the "backbone" of the problem, a superset of those tasks whose start and
finish times are fixed in any schedule in which schedule length is minimized. The other
tasks can in general be scheduled with some freedom. Our algorithm exploRs this freedom
to reduce the running time to O(n log m).

In contrast to the algorithm just described, our algorithm takes the given forest to be
initially rooted. Under this assumption we will make the notions of initial and remainder
problems more precise. We say that a pair of scheduling problems (P', P") is a consistent

A New Algorithm for Preemptive Scheduling of Trees 291

decompositzon of P if

(i) : = : ' u : " ;
(ii) < ' = < restricted to ,~ ' ;

(iii) < " = < restricted to ,~-";
(iv) if T, E J - ' and T~ ~ 9-", then (T~, T,) cannot be in <; and
(v) T(T,) = ~'(T~) + ~-"(T~) for all t.

We call P ' the initial problem of the decomposition and P" the remainder problem. As
indicated, our algorithm will repeatedly decompose remainder problems to find a schedule.
Proofs of correctness and optimality will rest in part on showing that the algorithm
constructs consistent decompositions; hence the above definition. We note for later use
that consistent decomposition is an associative operation.

Let the weight S, of a job J, be

S ,= ~ ~'(Tj) for t = 1 r.

Without loss of generality let the jobs be indexed so that S, _> S,+1 for i = 1 r - 1.
With this ordering, the crittcal index j* with respect to m identical processors is the greatest
j which satisfies (m - j)S: > ~-:+1 St, or 0 if there is no suchj . Jobs J1 Jj. are critical.
The remaining jobs are noncrttical. In general, there is some freedom allowable in
scheduhng the tasks in the noncritical jobs, and perhaps no freedom in scheduling the first
task in some critical job.

Our "critical weight" algorithm may be stated in simple form as follows.

1 Schedule the mmal task of each cnUcal job J, on processor t
2 Schedule (preempttvely and optunally) the set ofnoncnttcal jobs on processors j* + 1 through rn
3 Truncate th,s partml schedule on processors 1 through m at the Ume of the first of two events: termination of

an mmal task of a critical job or termmatmn of the schedule constructed on processors j* + 1 through m m
step 2, provtded this schedule ~s nonempty. Let the portmn of the gtven problem scheduled up to the point
of truncatton define an lmtml problem and the truncated partml schedule be its schedule.

4 Take the schedule for the mmal problem and follow tt by the schedule obtained by recurslve apphcatmn of
the procedure to the remainder problem

A proof of optimality rests on the fact that no task, scheduled when the j ob of which it
is the root ~s critical, can be scheduled earlier without violating the given precedence
constraints. We prove this fact later when the algorithm has been stated precisely enough
to do so.

Given this fact, optimality is easy to prove. I f the first initial problem generated by the
algorithm has fewer than m jobs, then the schedule for the initial problem is optimal. Since
no task from the remainder problem can be scheduled before the schedule for the initial
problem terminates, the condRions for application of the pnnciple of optimali ty are
satisfied. On the other hand, if the first initial problem has at least m jobs, then we take as
the initial problem (for purposes of our proof) the union of all imtial problems generated
by the algorithm up to but not including the first initial problem with fewer than m jobs.
In this case the schedule for the large initial problem so defined is optimal because it keeps
all processors busy. Also, any opt imal schedule for the remainder problem wdl begin with
tasks all of which belong to critical jobs. By the result mentioned above, no such task can
be scheduled earlier. Thus the conditmns for application of the principle of optimality are
satisfied in all cases and we may conclude that the algorithm produces optimal schedules.

It is easy to implement the algorithm to run in O(n 2) ttme in the worst case. In the
remainder of the paper we show how to achieve the O(nm) and O(n log m) running times
we clatm and also discuss the minimization of preemptions. To facilitate the exposition,
some of the straightforward but extensive programming details necessary for achieving the
running times claimed are presented in appendixes, as is the detailed correctness proof of
the basic algorithm. These detads are straightforward and could in principle be left to the
reader.

292 To F. GONZALEZ AND D. B. JOHNSON

2. Preliminary Results

Let M = {1 m} be a set o f m > 0 identical processors represented by their indices,
and let to and t r be real numbers satisfying to < tf, the starting time and finishing time,
respectively. For P, a scheduling problem, the set A = {([6, t2)j, T,)} is an assignment of M
to P in interval [to, tf) if

(a) for all ([tl, t2)], Tt) E A
(i) j ~ M ,

(ii) to_< tl < t2_< tr,
(iii) T, E ~,

(b) (interval assignments nonoverlapping) for i, j ~ M and Tk, T~ E J , (It1, t2),, Tk),
([t3, t4)~, T~) E A and (i = j or k = i) implies t4 -< tl or t2 -< t3;

(c) (interval assignments conform to ~,) for T, E J , ~,(T,) _> ~(t2 - tl I([tl, t2)~, Z) E A).

A complete assignment is one in which equality holds in (c) o f the definition for all
T, E ~. An assignment A is rectangular if for a l l j E M and for all t, to _< t _< tf, there exists
([t~, t2)j, T,) E A for which t~ _< t _< t2. I f to and tf both appear in elemems of A, then
tf - to is the length of A.

An assignment A of M to P in interval [to, tl) is feasible with respect to < if, for all
([6 , t2)t, Tk), (It3, t4)], Tz) ~ A, Tk < Tz implies t2 --< t3. Our algorithms will generate A in the
form of m lists A,, i = 1 m, where ([tt, t2),, Tj) ~ A, if and only if ([6, t2),, Tj) E A.
Also, if ([tb t2),, Tj), ([t3, t4),, Tk) ~ A,, then t2 _< t3 implies ([6, t2),, Tj) precedes (It3, t4),, Tk)
on list A,. I f A is complete, is feasible with respect to <, and is represented as described,
then A is a schedule. In such representations we will omit the interval subscripts, writing
element ([t l , t2),, Tj) as ([h, t2), Tj) if the element is known to be on list A,.

We have defined a preemption informally as an interruption in the service of a task.
The number of preemptions in an assignment A in which n distinct tasks appear is
card(A) - n, where card(X) is the number of elements in set X.

If P is a scheduling problem which satisfies mSj _< ~-1 S, f o r j = 1 r, then P is said
to be noncritical in M. I f P is noncritical, then for every to there exists a feasible rectangular
complete assignment of M to P for the interval [to, to + ~,~-~ S,/m) [11]. This result, which
we have alluded to in the introduction, employs a simple "bin packing" construction which
we now describe informally. Take the jobs in some order and, beginning with processor 1,
allocate time on this processor for the first job, beginning at to. The tasks of the job are
themselves allocated one at a time at the earliest free time in an order consistent with <.
Continue to allocate jobs on the first processor at the earliest free time until a job is
encountered for which the remaining time in the interval is insufficient. This job is split
between the first and second processors so that tasks of this job (and possibly a part o f a
task) occupy all of the remaining tune on the first processor. The remaining tasks (and
possibly a fraction of a task) are allocated time on the second processor, starting at to. The
tasks given to the second processor are chosen to come first in some order consistent with
<, so that < is not violated between processors 1 and 2. The procedure is then continued
on processor 2.

This procedure treats each job essentially as if it were a single task, but of course the
fmal schedule must be presented in terms of the tasks of the given problem. These
requirements are met by flattening jobs, that is, finding a total order for job J, consistent
with <,. In particular, for a scheduling problem P the list N = t.J~.~{(S,, ((~(T0, T~)
(¢(T,,), T,,))) I without loss of generality F, ffi {71 T,, } and Tj <, Tk impliesj < k for
T~, Th ~ ~ } is aflattened hstfor P. As the following lemma states, the ideas of [11] can be
embodied in a slightly more general procedure which accepts a scheduling problem in the
form of a flattened list, truncates this schedule at a cutoff time tc to define an lnitml
problem, and returns the truncated schedule in an assignment A and the remainder
problem in a list.

A New Algorithm for Preemptive Scheduling of Trees 293

LEMMA 2.1. Let 1~1 C M = { 1 m}, th = card(l~l), t~ > to, and A be any assignment
of M. I f P is a scheduling problem sati~ying rhS, _< ~ - 1 Sy, i ffi 1 r, and N is a flattened
list for P, then there exists a procedure R E C T A N G L E for which

(i) RECTANGLE(A, N, 1~1, to, to) ffi (A ', S ") is well defined;
(ii) there exists a consistent decomposition (P', P") of P for which A ' - A is a complete

feasible rectangular assignment ofl~! to P' in [to, min{tc, to + ~ - 1 Smith}) and N " is
a flattened list for P ' ;

(iii) (s, Q) E N " implies s _< to + ~r S,/rh - t¢.

PROOF. Parts (i) and (ii) follow from [11] and an examination of the procedure
RECTANGLE shown in Appendix A. The ideas have been outlined in the informal
discussion above. We omit further details. Part (iii) follows from the fact that if N " is
nonempty, it contains exactly the jobs and parts thereof which would be scheduled in the
interval [t~, to + ~ . ~ S,/rh) by the procedure of [1 l]. []

It should be noticed that when t~ is sufficiently large, R E C T A N G L E reduces to the
procedure of [11] as applied to noncritical scheduling problems.

Certain sets employed in R E C T A N G L E and the other algorithms of this paper are
lists on which certain primitive operations are defined. The operation pop deletes and
returns the last element inserted in the list by the operation push. The element itself is
the head of the list. In other words, for a list X and an element x, pop(push(x, X)) ffi x and
head(push(x, X)) = x. We will also use pointers to list elements and employ a pointer to
the head of a list as a pointer to the list itself. Thus ifp is a pointer, then elem(p) is the list
element pointed to byp. For lists X and Y and pointers p and q, where elem(p) ffi head(X)
and elem(q) = head(Y), the result of the assignment Y , - X will be elem(p) = head(Y).

3. The "'Critical Weight" Algortthm

As observed above, any noncritical scheduling can be scheduled by the procedure
RECTANGLE. However, when the noncriticality condition does not hold, this procedure
will fail in general to produce a schedule of minimum length. Noncriticality holds in no
case when the number of jobs r satisfies r < m, and noncritieality may not hold when
r >_ m. In the introduction the critical index for a scheduling problem P was defined as
j* ffi max{0,jl for all i =. 1 j, (m - 0S, > ~-,+1 Sk} where, without loss of generality,
S, _> S,+1 for i = 1 r - 1. A job J, is critical in P (for given m) i f i _<j*. Otherwise the
job is noncritical in P. Our strategy is to schedule, one to a processor, part of the initial
task of each critical job up to a cutoff time to. Such an assignment is always possible since,
as may be seen, j* < m. The remaining jobs (if any) are scheduled according to the
procedure RECTANGLE on the unused processors, of which there is at least one when
r _> m. The cutoff time tc is used as a parameter to RECTANGLE. Consequently, a
schedule is completed for an interval ending at to, and the remainder problem is scheduled
by a reapplication of the rule at time to.

We now gwe in detail the algorithm which embodies this strategy, establish its correct-
ness, and then (in Section 4) show how it can be implemented to run in O(n log m) time.
A simpler variant, which runs in O(nm) time, is given first. This variant is of use for
expository purposes and also because it leads to an O(nm) on-line algorithm for problems
with independent tasks and release times, a problem which Horn solved [6] with an
algorithm which runs in O(n 2) time.

At the start of each iteration of the algorithm, there will exist a consistent decom-
position (P', P") of P for which P ' will be scheduled in A and P" will not. For reasons
of efficiency it is important to store each job J f of P" in one of two forms, the flattened
list elements of the form (s,, Q,), already defined, and elements o f the form (s, uj, T0. In
the former case s, = S,", but m the latter case s, = S," + t for the "current" time t. To be
precise, for t >_ 0 and a scheduhng problem P, a list I is a list for P at t if I = IJ~.l {(s,, Q,)

294 T. F. GONZALEZ AND D. B. JOHNSON

or (s,, ui, T~)l(s,, Q,) is a f lattened list for J, and (s,, u,, T,) satisfies s, = S, + t, u, --
¢(Ti) + t, and T, is initial in J,} . W e assume there is available from a traversal o f P a
function o J - - > ~ , where o(TJ = ~'(Z) + ~(¢(Tj)] T~ < T:) for Z E J .

Algorithm C R I T 1 C A L . _ W T (P , m)

1. C~@,
2. N ~ @ ,
3. t ~-- 0;
4. S *-- 0;
5 L ~ LIt'.1 {(o(T,), ¢(Z), Z) [Z zs imtial in J~},
6. for i ~-- 1 until m do A, ~ O endfor
7 while card(C O L O N) > 0 do

(a) There exists a consistent decomposinon (P', P") of P for which
(i) A is a complete feasible assignment of M to P ' in [0, t), / (h) C O L U N ts a hst for P" at t,

H I - (| h) S -- V~(s , l (s , ,Q,)EN),
(b) For (s,, u,, Z) E C O L there exists {Z Z , - Z} where Z, is minal m

J,, E P a n d , f o r j = 1 k - 1, T , < T,j~, and ~ . 1 ¢(T0 ffi u,.

/ /Pa ruUon jobs with respect to j * and determine cutoff t ime t + 4 / /
8 C, L, N, S, 4) *-- SPLIT(C, L, N, S, 0;

(a) There exists a consistent decomposition (P' LI P") of P for w h c h
(0 A is a complete assignment of M to P ' m [0, t),

H2

10
11

12

13.
endwhile

14 return(A, 0
end C R I T I C A L _ W E I G H T

0 0 C U N ,s a hst for P" at t,
(ih) S = ~(s,I (s,, e,) E N),
(iv) (s,, u,, T,) ~ C lff J," is cnucal, where T, is imtlal m J,";

(b) L f f i ~ ;

(c) A = m m ~u . ({u, - tl(s~, u,, T,) E C} U {S / (m - card(C))}).
/ / E x t e n d schedule of critical tasks to t + A / /
for (s,, u,, T,) E C do push(([t, t + A), T,), A,) where, wtog, C = {(sl, ul, T0 , . , (s,, u,, T,)}
endfor
/ / E x t e n d schedule of noncritical tasks to t + A / /
if S > 0 then (A, N) , - RECTANGLE(A, N, {card(C) + 1 m}, t, t + A) endff
ff S > 0 then S *- S - A(m - card(C)) endif
/ / D e l e t e from C any jobs with initial tasks completed at t + A and put the successor jobs m L / /
for (s,, u,, T,) E C satisfying u~ - (t + A) ffi 0 do

C ~-- C - ((s,, u,, T,)};
for T~ satisfying T~ < Tj and, f o r no Tk, T, < Tk < Tj do

L ~ L U {(~T~) + t + a, ~(T~) + t + ~, T~)}
endfor

end for
//Update time//
t ~ - t + A

Figure 2 shows an example of a scheduling problem with 24 tasks. Algorithm CRITI-
C A L _ W T gives the schedule shown schematically in Figure 3 when m = 3. This schedule
contains 12 preemptions, 9 of which can be removed easily by further processing to be
discussed later.

Two assertions, HI and H2, are enibedded in the algorithm. It is easily verified that a
procedure SPLIT exists which returns an output satisfying H2 when supplied an input
satisfying HI. We discuss later an implementation which runs in O(n log m) time over the
entire execution of the algorithm. We defer further discussion of SPLIT until that time.

LEMMA 3.1. Assertion H1 :s invariant over every iteration o f the loop at step 7 o f
Algorithm CRITICAL__WT.

The proof of Lemma 3.1 is given in Appendix B.

LEMMA 3.2. Algorithm C R I T I C A L _ _ W T executes at most n iterations o f the loop at
step 7 on any scheduling problem P with m > O.

A New Algorithm for Preemptive Scheduling o f Trees

T4

295

"% b . \

.q

~ represents tosk Ti initiol in Ji where
T , r (T i) , S , S i

FIG. 2 An example scheduling problem

PROOf. Consider at the start o f an iteration of the loop at step 7 the consistent
decomposition (P', P") of P. I f P" = (~" , <", ~"), we notice that at least one task is
deleted from J-" during the ensuing iteration. Since ~ " = ~ implies C O L O N = ~ ,
termination must occur in at most n iterations. []

THEOREM 3.1. Given a scheduling problem P and m > O, CRITICAL__WT(P, m) is
well defined. I f CRITICAL__WT(P, m) = (A, tf), then ,4 is a schedule for P on M in interval
[0, tr) and for no t < tr does there exist any schedule for P on M in [0, t). The number o f
preemptions in A is less than or equal to 2nm - 4n - m + 3 for m _> 2.

PROOF. From Lemma 3.2 we have that C O L O N = O after at most n iterations. Since
HI must hold after line 13 is executed for the last time (Lemma 3.1), it follows that A is a
complete assignment of M to P in [0, tl). Examination of the algorithm verifies that A is
presented in the form of a schedule.

The proof of optimality follows from the discussion given in the introduction and the
invariance of part (b) of assertion H 1 established in Lemma 3.1.

In any interval [t, t + A) other than It, tr), preemptions may be generated in both critical
and noncritical jobs. The way the time increment A is chosen may cause as many as j *
preemptions on processors { 1 j*}. On processors {j* + 1 m} it is possible that
there will be m - j * - 1 preemptions internal of the interval [t, t + A) and m - j * - 1
preemptions at the end of the interval ff R E C T A N G L E produces N # ~3 (in which case
only j* - I preemptions are possible on the first j * processor). Notice that one preemption
at time t + A can be recovered in the next interval i f R E C T A N G L E schedules first the last
job it puts into N on the previous iteration and reverses from iteration to iteration the
order in which it schedules free processors.

The maximum number of preemptions chargeable to [t, t + A) for t + A < tr is
max0<j.<m {j* - 1 + 2(m - j * - 1)} = 2m - 4, where there are./* - 1 preemptions
possible on {1 j*} and 2(m - j * - 1) possible on {j* + 1 m}. Notice that
t + A < tf requires that j* >_ 1 and m _> 2. Otherwise only one interval occurs. In the

296 T, F. G O N Z A L E Z A N D D. B. J O H N S O N

~ ~ ~I ~

O ¸ .

- - - - tM ~O o

u U U

A New Algorithm for Preemptive Scheduling of Trees 297

last interval there can be at most m - j * - 1 preemptions for j * _> 0. Combining we get
(n - l)(2m - 4) + m - 1 = 2nm - 4n - m + 3. For m = 2, this bound reduces to 1. []

To obtain the bound of O(nm) on running time, we confine our attention to steps 8, 9,
10, and 12. All other steps can easily be seen to require O(n) time over the entire execution.
Let the set C = {(s, u, T~)} be kept in two binary heaps [1], one ordered on st and one on
u,. After execution of step 8, card(C) < m. With care, a bound of m can be maintained
throughout execution. We notice that each deletion of an element from C in step 12 can
be charged to a task. Thus over the entire execution of the algorithm, step 12 will cost
O(n log m). Continuing the analysis, it was established in the proof of Lemma 3.1 that no
element is ever moved by SPLIT from N to C. Thus SPLIT can be implemented to first
merge L into C, discarding smallest elements from C whenever card(C) = m. Then j* can
be found by the further moving of smallest elements from C to N. Each such movement
is charged to a unique task. The weight S of N can be computed as the calculation
proceeds. The heap ordered on u, may be used to discover A. Altogether, step 8 will run in
O(n log m) time.

The costly steps are 9 and 10. It is easily seen that step 9 will require O(nm) time m the
worst case. Each execution of step 10 is O(card(N)). Let N~ be the set N before step 10 on
the k th iteration, and let N~ be the set N output in step 10 on the k th iteration. It is clear
that Nk = N~-i O {elements rejected from C in step 8}. Since card(N') < 2m and the
number of elements rejected from C cannot exceed n in total, ~ - a Nk < 2mn + n. Thus
step 10 contributes O(nm) time over all iterations. This analysis supports the following
result.

THEOREM 3.2. Algorithm CRITICAL__WT can be implemented to run in O(nm) time.

As is evident from Figure 3, some preemptions can in general be eliminated from
schedules produced by Algorithm CRITICAL__WT. The elements of A can be collected
in O(nm) time into a list in which any pair ([h, t2),, Tk) and ([t2, t3)~, Tk) will be adjacent.
Segments of the lists At and A~ can then be swapped so that all preemptions in which a task
Tk is preempted and resumed at the same time t2 occur on the same processor. List elements
can then be coalesced to recover all such preemptions. In fact, this process can be
embedded in Algorithm CRITICAL__WT at an increased cost of only a constant factor.

In the next section we focus attention on steps 9 and 10 in order to cut the running time
to O(n log m). In the faster algorithm the easily recoverable preemptions discussed will not
be generated in the first place. A salient feature of Algorithm CRITICAL__WT, which we
now discuss, is its adaptat ion to on-line computation. Let there be given a scheduling
problem P in which the tasks are independent (< = 6) but each task T, E ~- has a release
time 0(T,). An assignment A of M to P is feasible with respect to p i f (It1, t2), T~) ~ A implies
ta --> 0(T,) for all T, ~ ~ . As mentioned, an algorithm is known which solves this problem
in O(n 2) time [6]. This algorithm is off-line in the sense that the entire problem must be
known before the interval between the first two release times can be scheduled, x Our
algorithm can be adapted to solve this problem on-line in O(nm) time. We assume that
the given scheduling problem is presented on-line in order of release time. Algori thm
CRITICAL__WT operates as before except that certain operations wait for parts of the
schedule to be executed before they are performed. In particular, the algorithm waits to
execute step 11 until the on-line time advances to t + A, since it is possible that A will be
redefmed on-line by the occurrence of a release. I f the algorithm is waiting to execute step
I l and a release occurs, A is immediately redefmed to let t + A equal the current on-line
time, and the results of steps 8-10 are adjusted to agree with this new value. In step 12,
tasks are deleted from C as before, but L is constructed from the new tasks released at time
t + A. Correctness, optimality, and run-time analysis are essentially as before. The number
of preemptions does not exceed 2nm - 2n - m + 2. I f our algorithm is used to solve this
problem off-line, it may be necessary to charge O(n log n) t ime to sort J " by p. The

l We are also aware of an O(n log nm) off-hne algorithm of Sahm [14]

298 T.F. GONZALEZ AND D. B. JOHNSON

analogous problem on independent tasks with due times can be solved off-line within a
time bound of the same order by transforming the problem into a release time problem
and reversing the schedule found.

4. A n O(n log m) Algorithm

In the analysis of Algorithm C R I T I C A L _ W T , steps 9 and 10 were idenufied as the only
steps requiring more than O(n log m) time. We now show how to modify the algorithm to
bring these steps within the desired bound. What we will do is postpone the action of step
10 and simply accumulate all the "new" members of N each time step 10 would be
executed. Associated with the jobs which would be scheduled will be the time t at which
they first would have entered N. This time will be called the release time for the given job.
Then when it first happens that S -- 0, all jobs saved will be scheduled in the interval
where S was greater than zero. It will always be possible to schedule tasks in the free time
in which CRITICAL__WT would have scheduled them in step 10.

The excessive time spent in step 9 arises from preempting initial tasks of critical jobs at
each time t when, in fact, these tasks may appear continuously over a larger interval in the
completed schedule. We show how to keep these tasks "on the same processor" and not
generate preemptions in the first place. Doing so involves two innovations. When an initial
task T, from C is scheduled on Aj at time t = tl, the assignment will be incompletely
specified. The element placed on Aj will be ([tl, oo), T,). When t equals the termination
time, either because ~(T,) is exhausted or J, becomes noncritical, the symbol oo ts replaced
with t. For purposes of efficiency the set C is partitioned into two sets C -- Ca U Ca, where
Ca is the set of active critical jobs and Cd is the set of dormant critical jobs. When an
element ([tl, oo), T,) is first placed on A j, (s,, u,, T j E Ca. The element (&, u,, T j is then
moved to Cd where it remains until ([t~, oo), T,) is terminated. The crucial point is that only
the elements of Ca need be considered in step 9.

We now present the modifications in sufficient detail to establish correctness and prove
a bound of O(n log m) on running time. It will no longer be possible always to schedule the
initial tasks o f the j* critical jobs on the first j* processors, so we will keep the indices of
the processors available to R E C T A N G L E on a list Z. (Later R E C T A N G L E is dispensed
with, but the list Z will still be needed.) Initially Z ffi { 1 m}. Processors become
unavailable when assigned in step 9. Under the modifications to be shown, a processor will
remain assigned until either the task scheduled is found in step 12 to terminate or the job
to which it belongs becomes noncritical in step 8. Also introduced is the set ZBR~ which
contains exactly those processors on which a critical task begins or terminates at time t.
The modifications are made in two stages in order to facilitate proof of correctness.

Our first modification will change steps 8-12 to reduce the running time of step 9. The
changes yield the following loop at step 7. It is assumed that initialization Z , - { 1 m}
and ZBRK *-- ~ is performed.

7 while card(Ca U Cd O L U N) > 0 do
//PartiUon jobs with respect to./* and determine cutoff Ume t + A//

8(a) (Ca, Cd, L, NNEw, S, A, Z, ZBRK) ~ SPLIT(Ca, Cd, L, S, t, Z, ZBRK),
8(b) N *- N t3 NNew,

//Extend schedule of critical tasks to t + A//
9 for (s, u, T, .) E C~do

i *-pop(Z),
push(([t, oo), T), A J;
let p sausfy elem(p) ffi head(A,),
C ~ C a - {(s, u, T, .)},
Cd*--CdU {(s,u, T,p)},
ZBRK *-- ZBRK U 0}

endfor
//Extend schedule of noncntwcal tasks to t + A//

10. if S > 0 then (A, N) ~-- RECTANGLE(A, N, Z, t, t + A) endif

A New Algorithm for Preemptive Scheduling of Trees 299

1 i if s > 0 then S ~-- S - A(m - card(Ca t.) Ca)) endif
//Delete from C. t.) Cd any jobs with initial tasks completed at t + A and put successor jobs in L//

12. (L, Cd, Z, ZBRK) ~ CLOSE(Ca, t, A, Z, ZBRK),
13 te--t+A

endwhile

The procedure SPLIT operates as before, with the following embellishment: When a
noncritical job ~s removed from Cd to be put into N, it is necessary to complete its entry on
the list schedule with the finish Ume t. The pointer field p in the element (s, u, T, p) E Cd
facilitates this operation. Completing such an entry frees a processor, so this event is
recorded in the set ZBRK and the processor is added to the set of free processors Z. Step 9
then proceeds essentially as before to generate new elements for the schedule list from the
newly critical jobs, all of which are in C,. To do this for (s, u, T, .) in Ca, a free processor
i is obtained from Z, the element ([t, oo), 7') is pushed onto list A,, and (s, u, T, p) is put in
Ca, where p points to the element just pushed onto A,. The commitment of processor i is
recorded by deleting its index from Z and entering the index in ZBraC. Steps 10 and 11 are
unchanged.

Step 12 is now implemented with a procedure CLOSE which operates only on Ca since
C, is empty when CLOSE is called. Jobs in Co with zero execution time remaining for
their initial tasks are processed as in step 12 of CRITICAL__WT, but, in addition, schedule
entries are completed with time t and the freeing of processors is recorded as in the new
procedure SPLIT.

It follows from the above discussion that steps 8(a) and 8(b) can satisfy the input-output
requirements defined by H 1 and H2 if Ca O Cd is taken as C and the additional pointer
field in elements of C U L is ignored. Reference to the realization o f SPLIT shown in
Appendix C allows this assertion to be verified in detail. It should be observed that the set
N is not needed as an input to SPLIT. The variable S contains sufficient information on
the contents of N.

It may be shown by induction that if (s, u, T, .) E Cd before step 9, then there is at that
moment an element (It1, co), t) in A. Thus it is correct for step 9 to reference only elements
of C,. The call in step 12 is not in fact restricted to a proper subset of C because, at this
point, Cd = C, t./Cd. The effect of putting "open-ended" elements of the form ([t, 0o), T)
into A in step 9 is to permute in each iteration the indices of the processors, so that the
several assignments which CRITICAL__WT in general makes to one task in conaguous
time intervals but on several processors are coalesced into one element in A on one
processor. The processors which are free to R E C T A N G L E in step 10 are recorded m Z.
Freed processors are put into Z in steps 8 and 12 and are removed in step 9, as described
above. It can be shown by induction that the modified algonthm does indeed schedule
critical tasks in the same time intervals as does CRITICAL__WT, and that Z contains
exactly those m - j * processors which are available to R E C T A N G L E in step 10. In order
to complete a proof of invariance of HI under these modifications, it is necessary only to
substitute the current value of t for each occurrence of oo in elements of A. The details are
a straightforward parallel of the proof of Theorem 3.1 and will not be discussed further.
We notice that p ~ A in any (s, ((A, 7')), p) E N is a pointer to an element ([h, t2), T)
in A, where t2 # oo. These pointers give us the potential to recover preemptions generated
when an initial portion of a task is to be scheduled as part of a noncritical job.

As we have just argued, the above modifications preserve optimahty of the schedule
produced. The complexity arguments already given for steps 8 and 10-12 remain un-
changed, as may be verified in detad by reference to Appendix C where realizations of
SPLIT and CLOSE are shown. We notice that confining the domain of step 9 to Ca reduces
the total time spent in step 9 to O(n) because no task repeats m Ca. The only step which
still exceeds the desired bound of O(n log m) is step 10.

We now replace step 10 with a statement which wall save noncritical jobs for scheduhng
later.

300 T . F . GONZALEZ AND D. B. JOHNSON

/ / S a v e new noncritical j o b s / /
10 for (s, Q,p) ~ NNew do push((t, s, Q,p), R) endfor

To schedule the tasks in the list R at the times when N would normally become empty by
the action of RECTANGLE, statement 14 is added.

/ / In i t t a t e scheduhng of accumulated noncritical j o b s / /
14. if S = 0 then

(A, R, Z) ~ PACK(A, R, Z, t);
Z~RK ~ 0

e n d i f

We notice that N becomes vestigial under the modifications. What remains to be shown
is that the deferred scheduling of noncritical jobs can be realized to run in O(n log m) time
overall. Of course, correctness is trivial if complexity is not an issue. The procedure PACK
could simply mimic the action of RECTANGLE at each release time when jobs were put
on the list R. It would suffice to insert at the appropriate places in R the sets Z of available
processors. Our plan, however, is to schedule jobs from later to earlier times in a way
which respects release times but introduces fewer preemptions. It in fact will not be possible
to obtain our time bound if the sets Z are stored in R. Just storing them would cost O (n m) .

Instead, we store ZBRK. The complete algorithm, FAST__CRITICAL__WT, is as shown
below.

Algorithm FAST..._CRITICAL__WT(P, m)
l(a) C, *--- O;
l(b) Ca , - O;
l(c) Z~O;
l(d). Znnr ~ ~;
l(e) for t ~ m by - 1 until 1 dopush O, Z) endfor
2. R ,~-- O,
3. t ~--- 0,
4. S ~ 0 ;
5. L ~ LI~.x{(o(T,), ~'(T,), T,, A)[T, ts #mttal m J,};
6 for i <--- 1 until m do A, *-- O endfor
7 while card(Ca U Ca U L) + S > 0 do

/ / P a r t m o n jobs with respect to j * and determine cutoff t ime t + A / /
8(a) (Ca, Ca, L, NNrW, S, A, Z, ZnnK) *-- SPLIT(Ca, Ca, L, S, t, Z, ZsnK),
8(b) if R # O then push(Znm~, R) endif
8(c). ZBnK *-- 0;

/ / E x t e n d schedule of cnttcal tasks to t + A / /
9. for(s, u, T, -) E Cado

*- pop(Z);
eush(([t, oo), ~, A,),
let p samfy elem(p) = head(A,),
C a ~ ' - C . - {(s,u, T, .)},
Ca ~ Ca U {(s, u, T, p)},
ZBR~ *-- Zsnx O 0)

endfor
/ /Save new noncrmcal j o b s / /

10 for (s, Q, p) E NNEw do push((t, s, Q, p), R) endfor
11 if S > 0 then S ~ S - A(m - card(Ca 0 Ca)) endif

/ /De le t e from Cd any jobs with mmal tasks completed at t + A and put the successor jobs m L / /
12 (L, Ca, Z, ZBnK) *-- CLOSE(Ca, t, A, Z, ZBRr),

/ / U p d a t e tune/ /
13 t * - t + A ,

/ / I n m a t e scheduhng of accumulated noncrmcal j o b s / /
14 i f S = 0 then

(A, R, Z) *-- PACK(A, R, Z, t),
ZBRK ~ 0

endif
endwhile

15 return (A, t)
end FAST__CRITICAL._WT

A New Algorithm for Preemptive Scheduling o f Trees 301

It is easy to show by induction that the fist R is o f the following form when P A C K is
called:

R ffi (((t, s, Q ,p) l t -- to), U(to), ((t, s, Q , p) l t = tl),
U(tl) U(tt-~), ((t, s, Q, p) lt = t,)),

where head(R) ffi (it, s, Q, p) and to, tl tt are the values of t at each iteration from the
last one in which S became nonzero through the iteration in which the call to PACK
occurs. The sets U(t O, i ffi 0 1, are the sets ZBRK at step 8(b) o f the main algorithm at
each value t, oft . For i = 0 l, U(t,) # 9 . However, it may be that ((t, s, Q, p) l t ffi t,)
is void for some values of i. The set p ffi (t,l((t, s, Q, p) l t ffi t,) is nonvoid} is the set of
release times in R. It is also easy to see for any release time t, that the set Z(ti), the value of
Z at step 10 of the iteration of the main algorithm when t ffi tl, satisfies Z(ti) C Z(ti) t_l
IJJ.l+~ U(6). Which of the processors in the superset just shown were actually free in
It,, 6'), where j ' is the least j satisfying 6 > t, and 6 E p, can be determined by examining
A. Notice that if [t,, 6') ffi [t,, t,+l), then we are guaranteed that any h E Z(t,) is free for the
entire interval [t,, 6') because the interval corresponds to one iteration of the loop at step
7 of the main algorithm. This property may not hold, however, for interval It,, 6") when
t,+~ ~ p. In this case we have the following lemma.

LEMMA 4.1. Let t,, 6" E p, where j ' is the least j satisfying t 1 > ti, and let [t,, h+l),
[t,+x, t,+2) [6"-~, 6") be the intervals corresponding to the iterations o f F A S T _ _
C R I T I C A L _ _ W T f r o m t ffi t, to t ffi 6"-1. For k = i, j ' - 1, i f h E Z(tk+~), then h ~ Z(tk).

PROOF. Let some processors become free (be put into Z) at some tk for i _< k < j ' . This
event occurs in CLOSE where the processors freed are pushed onto the list Z. By
assumption, in the next iteration no jobs are put into NNEW- Thus no processors are freed
in SPLIT, and for every processor freed by CLOSE at tk there is an element in Ca when
step 9 is reached at tk+l. Therefore each processor pushed onto Z when t ffi tk is reused in
the interval [tk, tk+~). []

The procedure PACK employs a rule similar to the one used by Sahni [14]. The rule is
apphed successively to each interval of the schedule already constructed which begins at a
release time and ends with t, the schedule time at which S ffi 0, triggering the call to PACK.
Intervals are processed in reverse order on release times in R, that is, "right to left" in the
schedule so far constructed. The jobs released at t~ are scheduled when the interval [t,, t)
is processed.

An assignment A is regular m [t~, tb) i f A ' = (([6, t2), .)It2 > t,} C A has the property
that A'~ = { (I l l , t2), "), (It2, t3), ") (I t / - 1 , tz),.)} and t~ >_ tb for i ffi 1 m. Figure 4
depicts a regular assignment which for convenience of exposition we show in ascending
order on the amount of idle time. In the interval over which regularity is defined, idle time
always originates at t, and is conUguous on any one processor. By Lemma 4.1, the schedule
in the first interval to be processed by PACK is regular, and this property is inherited by
the schedules of preceding intervals by virtue of properties assured by Lemma 4.1 and the
scheduhng rule.

Let us assume that the rule of procedure PACK is applied to a regular assignment such
as that shown in Figure 4. This rule schedules a very short job at the right o f the shortest
interval of idle time. A job too large to fit in the shortest interval o f idle time is placed on
the processor with the largest interval of idle time it can completely fill, the remainder
being put as late as possible on the next processor in order o f increasing idle time. These
alternative placements are illustrated in Figures 5 and 6. In the event a complete interval
of idle time is filled, the portions of the hsts for interval [t~, tb) are swapped, if possible, so
that an "uncovered" element in the interval ending with t~ is "covered" on the right. The
result of swapping the schedule in Figure 6 is shown in Figure 7. This swapping ensures
that the next interval processed will be regular. Swapping is also done to recover
preemptions.

In the example of Figure 2, S becomes nonzero m the execution o f Algorithm

302 T. F. GONZALEZ AND D. B, JOHNSON

to

i d l e ~
ti~ ~

!
I
I

I I
I

I I

FIG. 4 Example of regularity in [t~, tb)

to

×
×

idle~ time (

I I
I

I I

I

FIG 5 PACK schedules a short job

F A S T _ C R I T I C A L _ W T at t = 15. The one call to PACK occurs when S again becomes
zero at t = 100. Figure 8 shows A at the point when PACK is called and again when the
schedule is completed using the rule just discussed. In this example, the schedule produced
has 4 preemptions, none of which is easily recovered, compared to 12 under
CRITICAL_WT, 9 of which were recoverable at a cost of O(nm) time. The effect of
swapping lists in PACK may be noticed in the changes in processor for tasks Tg, T~4, and
T16. Tasks scheduled by PACK are shown lightly shaded in the figure.

THEOREM 4.1. Algorithm F A S T ~ C R I T I C A L _ _ W T generates schedules which mini-
mize f imsh time and contain at most n - 2preemptions f o r m _> 2. This bound on preemptions
is a best bound.

PROOf. Correctness and opttmality of the schedules produced follow directly from the
correctness of a realization of the procedure PACK and arguments presented earlier. This
realization and its correctness proof are given in Appendix D.

If the execution of PACK is ignored, FAST__CRITICAL__WT introduces at most one
preemption per task, which occurs when a task becomes noncritical. The execution of
PACK introduces at most one preemption of a task, but when it does, the initial task of the
job so scheduled begins execution at the time t at which it became noncnUcal during
execution of the loop of the main algorithm. The back pointers into elements preceding t
(which are on the lists for A defined in Appendix D) allow the first preemption to be
recovered by swapping the parts of the lists which begin at or after t (the B-lists), The
details may be seen in the procedure PACK. Thus, ignoring execution of PACK, at most
one preemption occurs for any one task.

A New Algorithm for Preemptive Scheduling of Trees

ta

I I
i

idle
time ~,~

FIG. 6.

I I

l
I
l

P A C K schedules a j ob too long to fit m the shortest interval.

303

to

×

)d le...~.
hme~

I

I

tb

I

I J
i

I !
I

FIG 7 Result o f swappmg processors m Figure 6.

To obtain the bound n - 2, three cases are considered. I f no jobs of the given problem
are critical, then the algorithm reduces to one execution of PACK in which at least two
tasks will receive no preemptions. In the case where there are critical jobs, let there be
fewer than two time intervals terminated by the termination of a critical task. I f there are
two or more such intervals, then at least two tasks are left unpreempted. In the case where
there are no time intervals terminated by a critical task, two tasks remain unpreempted in
the execution of PACK. If one time interval is terminated by a critical task, then one of its
successors wdl also remain unpreempted.

The case where no job of the given problem is critical establishes n - 2 as a best bound
on the number of preemptions. []

THEOREM 4.2. Algorithm FAST._SCHED___B ~._WT runs in O(n log m) time.

PROOF. Earlier discussion has reduced this proof to a proof that steps 10 and 14 run in
O(n log m) time overall. Over the enure execution of step 10, an element appears in NNEw
at most once for each task. Thus step 10 is O(n).

We have already argued a bound of n - 2 on the number of preemptions introduced.
Consider the execution of PACK (Appendix D). In steps 2, 9, 16, and 18 of PACK each
operation is chargeable to some task termination. No mdwidual operation is charged to
the same task twice. I f Z is kept as a height-balanced search tree [1], then step 12 costs
O(log m), and over the entire execution of the algorithm steps 11 and 12 cost O(n log m).
Steps 13-15 are linear in the number of tasks. Steps unmentioned in this discussion are
each constant and add up to O(n). []

304 T. F. GONZALEZ AND D. B. JOHNSON

0

O

O

0d

u3

O
i!

"O
ID

0

a .

C
U

C
' 0

0 U = C ~ u ~ -
~ 0

O

H - - N

- IS is ;5
= = =
U O

,.o
2

. , j

"O
u <

E

r~ <

<

2

O

0~

A New Algorithm for Preemptive Scheduling of Trees 305

5. Conclusion

The major result of this paper is an O(n log m) algorithm for scheduling forests composed
of n tasks on m identical processors. The schedules produced are optimal with respect to
schedule length, and in the worst ease the schedules have no more than n - 2 pxeemptions,
a bound which cannot be improved when m is large. The schedules produced are a set of
m lists, one for each processor, giving in order of execution the tasks to be executed on a
given processor.

Also presented is a simpler version of the algorithm which runs in O(nm) time, yielding
optimal schedules with no more than 2nm - 4n - m + 3 preemptions for m _> 2. When
m ffi 2, this expression reduces to 1. This algorithm is easily adapted to scheduling
independent tasks with release times on-line. The algorithm for the release time problem
also runs in O(nm) time, generating schedules with at most 2nm - 2n - m + 2 preemptions.
Virtually the same algorithm also schedules arbitrary forests on two uniform processors,
processors with uniformly different processing speeds. The only modification is to use the
bound of Liu and Yang [10] and the algorithm of Gonzalez and Sahni [5] t o schedule the
noncritical jobs.

Appendix A. Realization of Procedure RECTANGLE (See Section 2)

procedure RECTANGLE(A, N, M, to, to),
procedure SCHED((s, Q), A j, to, to t:);

/ / G i v e n the f la t tened hst (s, Q), p rocedu re S C H E D assigns tasks m the in te rva l [to, ra in (to tf)) A n y
tasks or p o m o n s the reo f w h i c h do not fit m the in te rva l a re r e tu rned m a f la t tened h s t . / /
wlog let Q ffi ((A1, T1) (Ak, Tk));
i ~--- 1,

t ~-- t0,

/ / S c h e d u l e task T, i f tt wi l l t e rmina te no la ter t h a n ram(to, t f) / /
while t + A, <_ ram{to tf} d o

push(([t, t + A,), T,), A j),
t * - t + ~,,
i~- .- t+ 1,
if ~ > k then r e tu rn ((0, 0) , A~) eml i f

endwhi le
i f t = m m { t o t f } t h e n r e t u r n ((s - t + t o , ((~ . , T ,) , . , (Ak, Tk))), Aj)
e l se push(([t, mm {to tr}), TO, A j),

re tu rn ((s - m m (t . t:} + to, ((4, - mm{to t:} + t, T,), (A,+l, T,+ 0 (Ak, Tk))), Aj)
e n d i f

e n d SCHED;
/ / G w e n a set o f tasks (represented by f la t tened hsts m N), the p rocedure wt!l schedu le t h e m on the set o f
processors M from t ime to to tune tc I f s o m e tasks need to be schedu led af ter t~: they wd l be saved m a t mos t
2k - 1 f la t tened hsts w h i c h wi l l be r e tu rned m N ' / /
wlog let M = { l, . , k } ,
N ' ~ O ;
t: ~-- to + ~(s I (s, Q) E N) /k ,
(s, Q) ~ pop(N);
t ~---to,
for t ~-- 1 unti l k d o

s r ¢-- O,
Q' ~-0,
while t + s _< t I d o

((s", Q"), A,) ~- SCHED((s, Q), A,, t, t . tf);

l
(s ' + s" , ((Ai, T~), , (A~., T~.), (Ai', T;'), , (A~',,, T,~-)))

(s ' , Q ') ~ (s ' + s" , ((a~, T~), , (A'k' + A;', T~,), , (A~-, Tg-)))
otherwtse where wlog

Q ' = ((a~, T~), , (A,~., T,~.))
Q " = ((~(' , T~'), , (A,~., T~-)),

t~--- t+~,
(s, Q) ~ pop(N)

endwhi le
push((s', Q'), N'),

3 0 6 T . F . GONZALEZ AND D. B. JOHNSON

if t < tf then
((s', Q'), a,+~) ~ SCHED((s, Q), A,+b to, to to + s - tf + t);
if t < t, then ((s', Q'), A J *-- SCHED((s ' , Q'), A,, t, to tt) ¢~Uf
push((s', Q'), N');
t * - t o + s - - t f + t ;

else t ~-- to
endif

endfor
return (A, N')

end RECTANGLE;

Appendix B. Proof of Lemma 3.1

PROOF. Prior to the first iteration of the loop at step 7 the partition (0, P) satisfies part
(a) of HI because S = 0, C LI N = 0 , and L is a list for P at t = 0. Part (b) is trivially
satisfied by the construction of L.

The proof of invariance is by induction. We first prove that part (a) holds after every
iteration. Then, with this result, we prove that part (b) holds as well.

Assume (a) of HI is satisfied before iteration k _> 1. We will show that (a) of HI is
preserved over iteration k. In order to develop the argument, we subscript program
variables with statement numbers to stand for the value of the variable before the statement
is executed in iteration k. For example, before statement 8 the value of set L is denoted Ls.
By the assumed correctness of SPLIT, H2 holds before step 9. Let (P~, P~') be the consistent
decomposition of P which satisfies H2. Since the jobs in C are disjoint from the jobs in N,
P~' has a consistent decomposition (Peg, PNg) where C9 is a list for Pc9 at t and N9 is a list
for PNg. Consequently, (P~ LI Peg, PNg) is a consistent decomposition of P at t. Let step 9
be executed. The time increment A is sufficiently small so that all tasks scheduled in step
9 are independent with respect to <. Thus P~ LI Pc. has a consistent decomposition
(PAso, Pc~0) where Alo is a complete feasible assignment of M to PA,o in [0, t + A) and Cm
is a list for Pc,o at t + A. It should be noted that Pqo is a pseudoproblem in the sense
that there may be (s, u, T) E Pc,0 fox which u - (t + A) = 0. Since N9 = N10, it follows that
(PA~, Pc~o U PN~) is a consistent decomposition of P where Cm is a list for Pc,~ at t + A and
Nlo is a list for PN~o.

Consider the execution of steps 10 and 1 I. From Lemma 2.1, the disjointness of C and
N, and the fact that Cm = Cm, it can be concluded that (PA,2, Pc,2 t.J PN,2) is a consistent
decomposition for P where A12 is a complete feasible assignment of M to PA,~ m
[0, t + A), C12 is a list for Pc,2 at t + A, and N~2 is a list for PN,2- It remains to observe that
step 12 replaces C~2 with the sets C~3 and L13 having the property that (Pco, Pc,~ O PLy3) is
a consistent decomposition for Pq2 where Pco is a pseudoscheduling problem for which T
is identically zero, Ct3 is a hst for Pc,~ at t + A, and L~8 is a list for PL,~ at t + A. Combining
results and noticing that A~3 = A~2 and N~z = N~2 give a consistent decomposition
(Pa,~, Pc,~ U PL,~ U PN,) of P, which satisfies (i) and (ii) of part (a) of H 1 at the start of
iteration k + 1. The effect of step 11 satisfies (iii). Induction on k completes the proof that
part (a) of H 1 is invariant.

In order to prove the invariance of part (b) of H 1, we must prove the following assertion:
At any iteration k _> 1, Na _C N9 and C9 .~. Ca I_J La. The proof is by contradiction. Assume
there exists (s, ((A~, T0)) E Na and that (s + t, A~ + t, T1) E C9 in satisfaction of H2.
Since N8 ~ 0 , it must be that k > 1 and card(Ca O La O Na) ~- m. The assumed
contradictory element must have been a member of N~2 in iteration k - I.

In proving part (a) of HI we identified a consistent decomposition (PA,2, Pc,2 t3 PN~) of
P prior to the execution of step 12. Let this decomposition occur in iteration k - 1. I f we
take C~2 t.J N~2 to be a list for Pc,~ 13 PN~ z a t tk = t~-i + Ak-~, where t, is the value of
program variable t at the start of iteration i, then without loss of generality we can write

= I.J~.lJ~. i s $1 ~ . . . _> Sj* -> S~ _> . . . _> S~ if Pc,~ LI PN,~ ~ Here j* the critical index of
iteration k - 1. Therefore (m - j*)S~. > ~ ' - t S,, but (m - I)S~ _< ~,r.t+~ S,. NOW consider

A New A lgorithmfor Preemptive Scheduling of Trees 307

the scheduling problem P~ of the consistent decomposition (P[, P~') which satisfies part (a)
of H1 before step 8 in iteration k. P~' is derived from Pc,~ O PN,~ of iteration k - 1 by the
execution of step 12. Without loss of generality let P6' = ~ J[' satisfy S~' --> . . . --> S[,',
_> . . . _> S'/-, where Jt = J[;, and thus St = S['-. We may assume that J~,', is a job which
contradicts N8 C_ N9 and C9 C C9 LI Ls. In this case the critical index in iteration k is
greater than or equal to l". Steps 12 and 13 in iteration k - 1 had no effect on jobs J~,

• , - - t p . ~ ~ . r
• • J r , s o {J t+l J~} C {J/"+l , . . Jr",,}. Consequently ~'-'r+~ S," _ ~,-z+a & . O u r

assumption is that

r"

(m - l ") S ~ ' > ~ S['.
~--/"+1

We consider two cases. Let I" satisfy l _< l" _< m. Our assumption clearly fails if 1" = m.
Therefore l" < m and

r r " S ¢ S~ < V
S~ ' -=S t - - < ~ m .-~- (m-- ,-t+l(- 1) - - , +1 1")'

which contradicts our assumption• Thus the other case, !" < l _< m, is the only possibility.
In this case at least (l - / ") j o b s from the set {J~ Jj.} have been split, so their weights
appear in the sequence St%l S~. Thus

X >
z - - l " + l ~ - - l+ l

S, + (! - l")Sl > (m - l)St + (1 - l")Sl = (m - l")Sz

a n d

r" S[' (m -- l")St
S t = S t ' x > ~ (m 1") > 1 ") - S t ,

t - - / " + l - - (m - -

a contradiction. All eases have been exhausted, so we conclude that N8 C N9 and C9 C
C8 U L8 over the execution of SPLIT, as claimed. It remains to notice that on all iterations
but the first, every job represented in C8 O L8 has a direct predecessor in set C9 of the
previous iteration, and part (b) of H 1 follows by induction on k. []

Appendix C. Realization of Procedures S P L I T and C L O S E (See Section 4)

procedure SPLIT(Co, Ca, L, S, t, Z, ZBRK)
N,--O;
for (s,, u,, T,, p,) E L do

//Move a job from L to Cd/
c , , ~ c ~ o {(s,,u,, T,,p,)},
let (s, u, T, p) mmirmze s m Ca 0 Ca,
/ / K e e p only criUcal jobs m C. O Ca / /
while card(Ca O Ca) -> m or (S > 0 and S _> (s - O(m - card(Ca O Ca))

and card(Ca O Ca) > 0) do
if(s, u, T,p) E Co then Ca * -Ca - {(s, u, T,p)}
e lse / /Complete schedule entry and record freeing of processor/ /

Cd~--Cd-- {(S, U, T,p)};
let head(An) = elem(p),
([th -), 7) ,-pop(a,);
push([h, O, T), A,),
push(k, Z),
Zs~x ~ Znnx 0 (k}

endif
/ / P u t job deleted from C. t.J Ca into N and update S / /
N ~ N 1.3 {(s - t, ((u - t, T), (~(TO, Tl) (~(Tk), Tk)), p) ~ where wlog T -< T, zff I _< ~ <_ k and

for l _< l,j_< k zf T~ < Tj then z < j } ,
S ~ - - S + s - t ;

308 T. F. GONZALEZ AND D. B. JOHNSON

if card(C~ U Cd) > 0 then let (s, u, T, p) minimize s in Co U Cd endif
endwhile

endfor
if card(C~ 0 Cd) ffi 0 then A ~- S/m
else A ~--min({u - tl(s, u, T,p) E Ca U Cd} IA (S/(m - eard(C~ U Cd))})
endif
return (C~, Cd, (~, N, $, A, Z, ZBRic)

end SPLIT;

procedure CLOSE(Cd, t, A, ZBRK);
L ~.-0;
/ / F o r each job m Cd for winch the nut~al task has zero executton ttme remaining, terminate this task m the
schedule and put successor jobs in L / /
whl]e Cd ~ ~ d o

let (s, u, T, p) mimmize u m Cd,
if u -- (t + A) > 0 then return (L, Cd, Z, Zm~g) endif
C d ~ - ' C d - {(S, U, T e e) } ;
let head(Ak) ~ elem(p);
([tl, oo), T~) ~-pop(Ak);
push(([tb t + A), T~), A~),
push(k, Z),
ZBRK ~-- ZSRK U {k},
for Tl satufying T < Tj and, for no Tt, T < Tl < Tj do

L *- L tA {(o(Tj) + t + A, ~.(T~) + t + A, Tj, A))
endfor

endwhile
return (L, Cd, Z, ZBRX)

end CLOSE;

Appendix D. Realization of Procedure PACK and Proof of Correctness (see Section 4)

Wocedure PACK(A, R, Z, t),
procedure SWAP(x);

/ / S w a p hst Bw wtth hst B~, fory ~ ZSWAP//

if tl < tR where head(Aw) ffi ([. , tl), .) then
let] E ZSWAF,
Bw ~ B~;
Z S W A P ~ Z S W A P - - (J) ;

w ~.-j
endif
lfpR ¢ A then

let elem(pR) ffi head(A,),
B~ ~ B~;
ff k E ZswAe then ZswAP ~-- (ZswAP 0 {w}) -- (k} endif

endif
end SWAP;
procedure SCHED(Q, B,, tl, t2, Bj, t3, tO

/ /Schedule Q so as to fill idle ume on B,, ff possible, with any overflow scheduled as late as possible on
B,/ /
wlog let Q ffi ((A~, T1),. , (At, Tt)),
L~ . -~ ,
t ~-- t l ,

k * - l ;
while t + Ak _< t2 do

push(([t, t + Ak), Tk), L);
t ~--- t + Ak;
k ~ - k + l

endwhile
f i t < t~ then

push(([t, t2), Tk), L),
while L ~,t ~ do push(pop(L), BJ endwhile
t ~ t3 '4" ~kk -- (t2 -- t);
push(([t3, t), Tk), L),
k ~ - - k + 1

A New Algorithm for Preemptive Scheduling of Trees ~ 0 9

else while L ~ 0 do push(pop(L) , B~) endwhile
t ~--- t3

endif
while k _< I do

push(([t, t + Ak), Tk), L),

k~-k+ I
endwhile

while L # O do push(pop(L), Bj) endwhile
return (B,, B~)

end SCHED;
//Accumulate ZSRK sets at the head of R//

I. Y~--~
2 while head(R)~ (I m} do Y~-- YUpop(R)endwhile
3. ifR ffi ~ then return (A, ~5, Z) endif

//Move prefix of each hst A,, up to any ~dle tune beginning at last release Ume, onto a new list B,//
4. ZSWAe ~ ~ ,
5 fiR, Sm Qm ps) ~ head(R),
6 for i~ Zdo B, <-- {(It, t), A));

while tn < tl = t2 where head(A,) = ([. , tl), .), head(B,) = (It2, .), .) do push(pop(A,) , B,)
endwhile
if tl = ts < t2 where head(A,) = ([. , tt), .), head(B,) = ([t2, -), .) then Zsw~w ~ Z s w a e LI {/}
endif

endfor
7 while R # ~ do

c a n
8 "head(R) = (. , . , . , .): / / M o v e prefix o f each list A,, where z was a m e m b e r o f ZsRm up to first gap m

A , / /
9 [fin, sn, Q m p n) ~.-pop(R);

for I E Y do
if ~ ~ Z then B, ~ {([t, 0, A)},

Z ~ Z U{t} endif
while tn < tl ffi t2 where head(A,) = ([- , tO, .), head(B,) - ([t2, .), .) do

push(pop(A,), B,)
endwhile

if tl = tn < t2 where head(A,) = ([. , tO, •), head(B,) = (Its, •), .) then
Zswae ~ ZswAp 0 0}

else ZswA. ~-- ZswAe - {0
endlf

endfor
10. Y ~-- ~ ,

/ / S ~ h e d u l e j ob (ts, sR, QR, p n) / /
!1 w l o g l e t Z = { I , . , q } , a n d

let ~r(Z) sattsfy
(O f o r I = l, , q, ~ 0 E Z

(u) f o r ~ = 1 q - 1, t.o~ --< t,~,+l),
head(B. .~) = ([t.,~, .), .),
head(B..+i)) ffi ([t~.+l), .), .)),

12 1 ~-- m m { l l t . ~ - tn >-- sn where 1 _< I _< q and head(B.u}) = ([t,,~, .), .)};
case

13 t.~t) - tn = sn [(B.~0, .) ~ S C H E D (Q n , B.~o, ts. t.~o, ", , . .) , S W A P (i)]
14 1 = 1 or t~t-~) ffi tn" [(B..), .) ~ S C H E D (Q m B.u~, tan - sR, l e o , . , . , .)]
15 'else. [(B.lt-l~, B.~o) ~ S C H E D (Q n , B.~t-]), tn, t.u-~l, B.io,

swae(t- l)]
endcase

16 "head(R) ~ { 1, , m } . / / H e a d o f R ~s a processor s e t / /
[Y ~ Y ~ pop(R)]

endcase
endwhile
/ / M o v e elements f rom B-11sts back to A - h s t s / /

17. X ~--- ~ ;
18. for i ~ Z d o

while head(B,) # ([t, t), .) do
([t~, t2), T~) ~--pop(S,),

310 T. F. GONZALEZ AND D. B. JOHNSON

if fi - t4 and Tj - Tk where head(A,) - (It3, t0, Tk) then
(its, tO, T,) ,-eoe(a,);
push(([t~, t~), Tk), A,)

else push(([t,, t2), T~), AJ
endif

endwhile
if t2 -- tthen X*-- XO {t) endif

endfor

19. return (A, R, X)
end PACK;

The proof of correctness of procedure PACK will be by induction over the execution
of the loop at step 7 of FAST CRITICAL__WT. It will be necessary to reference
the properties of Algorithm C R I T I C A L W T established in earlier sections. Let
CRITICAL__WT(P, m) ffi (A, .). For any value tk assumed by t during the execution of
C R I T I C A L _ W T (P , m), let A(tk) ffi (([tl, t2), .)]t2 <-- tk} C A, and let P(tk) be the scheduling
problem for which A(tk) is a complete feasible assignment of M to P(tk) in [0, tk). Also let
A t be any assignment A in which each instance of oo is replaced by t. Referring to
FAST__CRITICAL__WT, let R(tk) -- {(t, s, Q,p)l(s, Q , p) ~ NNEW(tk)} be the jobs put
into R when t = tk, and let S(tk) be the value of S before step 8 when t = tk. S(tk) is the total
weight of all jobs which become noncritical before tk and which CRITICAL__WT
schedules affter tk. NOW consider the execution of PACK.

Defme

ZtR ---- {i[([tl, h), ") ~ A, O B, implies t2 --< tR or tR ~- tl},

RtR = {(t, S, Q , p) l t ffi tR} c R,

S(RtR) ffi ~(sl(t, s, Q, p) ~ Rt,),

where R, tR, A,, B, are program variables in PACK. The following lemma may be proved
by induction over the execution of PACK.

LElVlMA 4.2. Zswap ffi {i[([tl, tR), ") E A, and t2 > t, where ([t2, t3), .) minimizes t2 in B,}
after step 10 in any iteration o f PACK.

ZSWAP be LEMMA 4.3. Let RtR = R(tR) after step l0 in some iteration o f PA CK, and let o
the value o f ZSWAP at this time. Then

S(R(tR)) > S(tR)
(0 card(Z$wAP) -- card(Z(tR) -- ZswaP)° ,

S(R(tR)) - s S(tR)
(iO card(Z~wap) - 1 > card(Z(tR) -- ZSWA~)O '

f o r any (t, s, Q, p) E R(tn).

PROOF. Part (i) is a consequence of the definition of job criticality implemented in
CRITICAL__WT. Part (ii) follows from the same arguments since s must be less than or
equal to the sum of the weights of all of the descendants of Q's predecessor job with respect
to <. []

Let G be the following proposition:

(a) z[ffi O?.~(A, IJ B,) is regular in [tR, t);
(b) ([tb t2), .) E A, ifft2 _< tR for i E Z;
(c) z, . c_ z;
(d) there exists A *, a complete feasible assignment of M to P* ffi I.I,.~ (L J (t,, s,, Q,, p,)

E R, Q, is a list for J~ and <,*is a total order) in [to, t) and A * t3 A t is a complete
feasible assignment of M to P(t) m [to, t).

A New Algorithm for Preemptive Scheduling o f Trees 311

LEMMA 4.4. G is invariant over the execution o f PA C K when G is evaluated after step 10.

PROOF. Consider the first execution of step 10. Steps 1-10 establish parts (a), (b), and
(c) of G. Part (d) follows from the correctness of Algorithm CRITICAL__WT. Let G hold
following some execution of step l0 and consider the next execution o f step 10. There are
two cases.

Case 1. The variable tR is unchanged. In this case exactly one iteration of the loop at
step 7 is executed. Part (b) is preserved by step 9. A trace of the remaining steps of the loop
will verify that parts (a) and (c) are preserved. It remains to show that part (d) will hold
when a job has been scheduled in the manner specified in steps 11-15. Because the
assignment in A is regular in [tR, t), the idle time on any processor i after time tR coincides
with an interval [tR, t,) where t, is the first time to show on the list B,. Every processor with
idle time in [tR, t) appears in the set Z as a consequence of part (c). Clearly the scheduling
rule in PACK preserves regularity, as was shown in Figures 5 and 6. Because the
precedence relations in each job in R are a total order, the jobs in R can be viewed as
single tasks. Consequently there is an interchange argument to show that .4 * assumed by
G can be constructed so that the job QR is scheduled as in PACK. Thus part (d) is
preserved.

Case 2. The variable tn assumes a new value. In this case one or more executions of
step 16 intervene after the iteration in which G is given as true. By the arguments above,
G certainly holds at the end of the iteration in which G is given as true. Now let tR assume
a new (smaller) value. Again, by the arguments in case l, part (d) must hold. Also, the
execution of step 9 reestablishes parts (b) and (c). The issue is whether part (a) (regularity)
is preserved.

Lemma 4.1 establishes regularity at all times except at the former tl. We must show that
G true after step 15, when (t, s, Q, p) ~ R implies t < tl, itself implies ([h, tR), .) ~ A, only
if ([tR, t2), ") E B,. The set ZswAP contains all processors which violate this property. Each
time the idle time on some processor is used up, a processor is removed from ZSWAP. Our
proof proceeds by induction o n card(ZswAP).

It follows by the proof of correctness of CRITICAL__WT that It s ffi ~,¢z,R(tl -
t,l([tl, tz), -) minimizes t~ m B,) = S(tR) + S(Rtl) after step l0 in any iteration o f PACK.
Let card(ZswaP) ffi I. Since ItR - min,~z,,{tl - tRl([t~, t2), .) minimizes tl in B,} _> S(tR),
PACK will surely remove a processor from ZSWAP while scheduling R(tR). So let
card(ZswAP) m a > l, and assume that PACK correctly reduces Zswav to O whenever
card(ZswAP) m a - 1. By the argument just presented for card(ZswAP) = 1, it must occur
that a processor is removed from ZSWAP. Part (i) of Lemma 4.3 is given. If the first
processor removed from ZSWAP is the one with minimum idle time, let ~ be the length of
that interval. By minimality of ~, a8 _< S(R(tR)). Thus

S(R(tR)) - ~ > S(R(tR))(I -- (l /a)) _ S(R(tR)) > S(tR)

a - 1 a - l a card(Z(t t¢)) - a'

and we can conclude from our induction hypothesis that PACK will correctly reduce
ZSWAP to O. If the first processor removed from ZswAv is not the one with minimum idle
time, we can let it be removed in the first iteration. If the weight of the job so scheduled
is s, then we have the relation of part (ii) of Lemma 4.3, and the proof is again completed
by induction on a. It should be noticed that in each of the arguments just presented, the
last job scheduled on the processor with least idle time was assumed to be split so that the
job scheduled exactly filled the idle interval. []

ACKNOWLEDGMENT. We wish to acknowledge a referee for calling the paper o f Davida
and Linton to our attention and suggesting we discuss the relation of this work to ours.

312 T. F. GONZALEZ AND D. B. JOHNSON

REFERENCES

1. Atlo, A.V., HOPCROt'T, J.E., AND ULLMAN, J D. The Design and Analysis of Computer Algorithms. Addison-
Wesley, Reading, Mass., 1974.

2. COFF~L~N, E.G. JR., ED. Computer and Job-Shop Scheduling Theory. John Wiley and Sons, New York,
1976.

3. CONWAY, R.W.~ MAXWELL, W.L., AND MILLER, L.W. Theory of Scheduling Addison-Wesley, Reading,
Mass., 1967.

4. Dxvw^, G.I., AND LINTON, D.J. A new algoritlun for the sc~duling of trc¢ structured tasks. Proc. 1976
Conf, Inform. S¢i. and Syst., Baltimore, Md., 1976, pp. 543-548.

5 GO~ZALEZ, T., AND SamqI, S Preemptive scheduling of uniform processor systems. J. ACM 25, 1 (Jan.
1978), 92-101.

6. HORN, W.A Some simple scheduling algontluns. Naval Res. Log. Quart. 21 (1974), 177-185
7 HORVATH, E.C., LAM, S., AND SETHI, R. A level algorithm for preemptive scheduling. J. ACM 24, 1 (Jan

1977), 32-43.
8. Hu, T.C Parallel sequencing and assembly hne problems. Operations Res. 9, 6 (Nov. 1961), 841-848.
9. L^M,S,ANDSETHI, R Worst ease analysis of two scheduling algodthms. SIAM J. Comptg. 6 (1977), 518-

536
10 Liu, J W.S., ^NO Y^NG, A. Optimal scheduling of independent tasks on heterogeneous computing systems.

Proc. 1974 ACM Annual Conf, 1974, San Diego, Calif., pp. 38-45.
!1. MCNAUGttTON, R. Schcduhng with deadhncs and loss functions. Management S¢i. 12, 7(1959), 1-10.
12. MtmTZ, R.R., ^No COFFMAN, E.G. JR Optimal preemptive scheduling on two-processor systems. IEEE

Trans. Comptr. C-18, 11(1969), 1014-.-1020.
13 MUSTZ, R.R., AND CGEEMAN, E G JR Preemptive scheduling of real-time tasks on multiprocessor systems.

J. ACM 17, 2 (April 1970), 324.--338.
14. SArlNI, S. Preemptive sehcxlulmg with due dates. Operalwns Res. 27, 5 (Sept.-Oct. 1979), 925-934.

RECEIVED AUGUST 1977; REVISED JUNE 1979; ACCEPTED JUNE 1979

Journal of the Assoostton for Computing Machinery. Vol 27. No 2, Aprd 1980

