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In this paper the complexity of a number of path cover problems in acyclic digraphs, 
acyclic structured digraphs, and rooted trees is considered. The problems deal with finding 
path covers of a certain size for (a) some elements of the digraph (e.g., required pairs, vertex 
subsets) or (b) the vertices of the digraph when restrictions are placed on the members of the 
path cover (e.g., impossible pairs, length-constrained covers). An attempt is made to charac- 
terize the complexity of path cover problems in general and a connection between the 
complexity of a path cover problem and the existence of a reachability relation on the 
elements that are to be covered in the digraph is pointed out. 0 1984 Academic Press, Inc. 

I. INTRODUCTION 

A path cover in a digraph is a set of paths that covers certain features of the 
digraph. One important application of path covers is in the area of program testing. 
Two commonly used testing strategies are segment and branch testing, in which we 
guarantee that all statements or branches in a program are executed, respectively. If 
we model the program as a digraph, these strategies correspond to finding path 
covers for the vertices or edges of the digraph, respectively. In many cases we want a 
more extensive test set in a program. For example, we may want to test certain 
interactions between program statements. This situation can be modelled by 
introducing the notion of required pairs, i.e., [vi, Vi] is a required pair if we want 
some test path to visit both statements i and j in the program [I]. Then, testing 
corresponds to finding a path cover for the required pairs in the digraph. A 
shortcoming of the digraph model is that paths in the digraph do not always 
correspond to execution sequences in the program. This gives rise to a second class of 
path cover problems in which restrictions are placed on the paths that can be in the 
path cover. We will consider a number of path cover problems with applications in 
program testing as well as some problems of theoretical interest in trying to charac- 
terize the complexity of path cover problems in general. 

Let G = (V, E) be an acyclic digraph. We will assume that G has a unique source 
vertex s and a unique sink vertex t such that there is a path from s to any vertex in G 
and from any vertex in G to t. A path cover for the vertices of G is a set of s-t 
(source-to-sink) paths P = { p1 ,pz ,..., p,} such that for each vi E V there exists at 
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FIG. 1. Acyclic structured digraphs. 

least one path pj E P that visits ui. P is a minimum path cover if there exists no path 
cover P’ such that IP’I < IPI, where /X( is the cardinality of set X. A vertex vi 
reaches a vertex vj if there exists an s-t path that visits Vi and then Vi* Vertex vi 
dominates vertex vj if every s-t path that visits Vj also visits vi. Vertices Vi, Vj are 
said to be incomparable if neither one reaches the other. Dilworth [2] showed that 
the cardinalities of a minimum path cover for the vertices of G and a maximum set of 
mutually incomparable vertices are equal. A similar result holds for path covers for 
the edges of G. Minimum path covers for V can be found efftciently using maximum 
matching and minimum flow techniques [ 1; 31. 

In the next section we will consider a number of path cover problems in acyclic 
digraphs and study their complexity. In general, there are two types of problems. In 
the first, we are looking for a path cover for certain features of the digraph (e.g., 
required pairs, vertex subsets); in the other, restrictions are placed on the paths that 
can be included in the path cover and we are looking for a legal (where the meaning 
of “legal” depends on the specific case) path cover for the vertices of G. We consider 
these problems for three progressively more restricted types of digraphs: acyclic 
digraphs, acyclic structured digraphs, and rooted trees. Structured digraphs are 
introduced to model the programming methodology known as “structured 
programming.” For the purposes of this paper, we define an acyclic structured 
digraph to be any digraph that can be constructed by sequencing and nesting of the 
basic alternation control structure (IF-THEN-ELSE) shown in Fig. 1. 

In the third section we consider the general problem of finding path covers in an 
acyclic digraph. It is shown that the complexity of a path cover problem is related to 
whether or not a reachability relation for the elements that are to be covered can be 
defined in the digraph. We also attempt to formulate Dilworth-type theorems for each 
problem. 

II. PATH COVER PROBLEMS 

1. Required Pairs and Paths 

Let G be an acyclic digraph with a single source and a single sink. A required pair 
in G is a pair of vertices [vi, vj] such that vi reaches vj. Let the set of required pairs 
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of G be: R = {rl, r2,..., k r } E {[vi, vj] 1 vi, uj E V, vI reaches Vj}. The required pair 
problem may be stated as follows: 

REQPR. 
INSTANCE: Acyclic digraph G, set of required pairs R in G, positive integer 

m<lR]. 
QUESTION: Is there a path cover of size m for the required pairs in R? 

In [l] it was shown that REQPR belongs to the class of M-complete’ problems 
[4]. In fact, REQPR remains NP-complete even if G is an acyclic structured digraph 
[5]. If G is a rooted tree, in a required pair [21i, Vi], ui always dominates Uj and there 
is a unique path that covers uj and [Vi, uj]. Thus, REQPR reduces to the problem of 
finding a minimum path cover for a set of vertices in a rooted tree which can be 
easily solved. 

Consider next the required path problem [ 11. A required path is a path qi in G that 
we want covered. An s-t path p, is said to cover qi if qi is a subpath Of pi. Let the set 
of required paths of G be R,, = {q,, q2,..., qk}. Then we have 

REQPR: Find a minimum set of s-t paths P = { p1 ,p2 ,...,p,) such that for all 
qi E Rth there is a path pi E P and qi is a subpath of pj. 

Without loss of generality we may assume that no required path is a subpath of 
another required path. Let qi = uil(uil, ) .-a ( , uil) uit and qj = u~~(u~,, ) a-* ( , Ujt) Ujl 

be required paths. As shown in [ 11, we can define the following reachability relation 
for the required paths: Required path qi reaches qj if 

(I) uit reaches Ujl or UiI = Ujl, or 

(2) qi=qilqi2, qj=qjiqjzy and qiz=qjr* 

Then we can solve REQPTH by constructing the acyclic digraph G, = (V,., E,), 
where V,.= {vi, u2,..., uk} and (Vi, Uj) E E, if qi reaches qj in G. Note that for each 
required path in G there is a vertex in G, and for each path in G, there is a 
corresponding path in G. Then, REQPTH is equivalent to finding a minimum path 
cover for the vertices of an acyclic digraph and can be solved in polynomial time. 

2. Impossible and Must Pairs/Paths 

A second class of minimum path cover problems arises when restrictions are 
placed on the members of the path cover. For example, if we model a computer 
program as a digraph, it is not uncommon that some paths in the digraph do not 
correspond to executable sequences in the program. To model this situation, Krause 
et al. [6] introduced the notion of impossible pairs. A vertex pair [Ui, uj] is an 
impossible pair if, because of external considerations, no s-t path is allowed to visit 
both Vi and Uj although vi reaches uj. Similarly we can define impossible paths, must 

’ A problem A is N-complete (A E NPC) if: (a) A can be solved by a nondeterministic Turing 
machine in polynomial time (A E NP) and (b) some known W-complete problem i? can be 
polynomially transfored to A. 

S71/29/2-1 
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pairs, and must paths [ 11. An impossible path in G is a path p(Ui, Vi) that is not 
allowed to be a subpath of any s-t path. A must pair [vi, vj] is a vertex pair such 
that if an s-t path visits vi, it must also visit vj. We will discuss must paths later in 
this section. Gabow, Maheshwari, and Osterweil [7] showed that finding a legal s-t 
path in the presence of impossible pairs is iVP-complete even if G is an acyclic struc- 
tured digraph. Also, finding a legal path in the presence of must pairs is N&complete 
[l; 51. 

Let I,,, I*th, and M,,r be sets of impossible pairs, impossible paths, and must pairs 
specified for an acyclic digraph G. Then we have the corresponding path cover 
problems IPR, IPTH, and MPR, dealing with determining whether or not there exists 
a legal path cover of certain size for the vertices of G. Note that the path cover 
problems IPR and MPR are distinct from the corresponding legal path problems 
since the existence of a legal s-t path does not imply the existence of a legal path 
cover in a digraph. In practice, one would expect that finding a legal path in a 
program is relatively easy. In the following discussion we will assume that a legal 
path cover exists in each case. 

We now show that IPR and MPR are NP-complete even if G is an acyclic struc- 
tured digraph by transforming the 3-COLORABILITY problem to each of them. 

3-COLORABILITY [4]. 
INSTANCE: Graph G’ = (I”, E’). 
QUESTION: Is G’ 3-colorable, i.e., does there exist a function 

f: V’ + { 1, 2,3) such thatf(vi) #f(vj) whenever {vi, vj} E E’? 

Given an instance of 3COLORABILITY we construct the acyclic structured 
digraph G = (V, E) shown in Fig. 2. To each vertex vi in G’ corresponds a subgraph 
Gi in G that contains vertices vi and vi’. The digraph G has 3 1 V’( + 1 vertices and 
thus it can be constructed in polynomial time. Then we have 

THEOREM 1. IPR E NPC even if G is an acyclic structured digraph. 

Proof: Clearly IPR E NP. Given an instance of 3-COLORABILITY we specify 
the following set of impossible pairs in the digraph G: I,,. = {[vi, Vj] 1 (Vi, vi) E E’}. 
Then G’ is 3-colorable if, and only if, there exists a legal path cover of size 3 for the 
vertices of G. Given a 3-coloring in G’ we construct a legal path cover 
P = {p,,pz,p3} for V by letting path pi visit either vertex vi in G if vi is assigned 
color j in G’, or vertex vf in G if vi is not assigned color j in G’ for 1 < i < 1 VI. 
Conversely, given a path cover P = {pl ,p2 ,p3} for V we obtain a 3-coloring in G’ by 
assigning color j to all vertices Vi E Y’ such that vi Epj in G and vi hf p, for any 
a <j. Clearly, since a legal path can not visit two vertices Vi, vk E V if {Vi, vk} E E’ 

the resulting coloring is a proper coloring. 
A similar result holds for must pairs in acyclic structured digraphs. 

THEOREM 2. MPR E NPC even if G is an acyclic structured digraph. 

ProoJ: Again we use the digraph of Fig. 2 and transform 3-COLORABILITY to 
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FIG. 2. The acyclic structured digraph of construction- 1. 

MPR. We specify the following set of must pairs in G: Mpr = {[vi, vj] ) {Vi, vi E E’}. 
Then G’ is 3-colorable if and only if there exists a legal path cover of size 3 for the 
vertices of G. The proof is similar to that of Theorem 1. 

Next we consider the impossible path (IPTH) problem. In [l] it was shown that 
IPTH is NP-complete for general acyclic digraphs. We will show that IPTH is NP- 
complete even if G is an acyclic structured digraph by transforming the 3- 
dimensional matching (3-DM) problem to IPTH. 

3-DM [4]. 
INSTANCE: A set M s W x X x Y, where W, X, Y are disjoint sets having 

the same number q, of elements. 
QUESTION: Does M contain a matching, i.e., is there a subset M’ of M such 

that IM’ I= q and no two elements of M’ agree in any coordinate? 

FIG. 3. The digraph G for the transformation of 3-DM to IPTH. 
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Given an instance of 3-DM we construct the acyclic structured digraph G = (V, E) 
shown in Fig. 3. The digraph has 9q + 2 vertices and thus it can be constructed in 
polynomial time. Then we have 

THEOREM 3. IPTH E NPC even if G is an acyclic structured digraph. 

ProoJ It should be clear that IPTH E NP. To show that IPTH E NPC we 
transform 3-DM to it. Given an instance of 3-DM we specify the following set of 
impossible paths in the digraph of Fig. 3: 

I,,,={s-v;-.*. I, -v;-vui-v;-...-v, 

_u; - . . . I, -uj-uj-u;-...-ul 

_t; - . . . - t; - t, - t; - . . . - t’l’ 1 

(wivxj,Y,)E WXxX Yand (Wi,Xj~Yk)~M}v 

where the paths are described as vertex sequences for brevity. 
We now show that M has a matching of size q if, and only if, there is a legal path 

cover of size q for the vertices of G. Let 44’ = ((We,, Xj,, yk,), (Wi2, XjZ,yk2) ,..., 
(wip, xjg, ykg) s M be a matching for M. We construct a path cover P = {p, ,p2 ,...,pp} 
for the vertices of G by letting 

pm=s-2);- . . . -q!,-vim-v// . . . -u; 

_u;-..._Ujlm_U, I, 

Jlll 
-_u. I, 

Jill 
- . .._ u, 

_t; _... _$/ttk _q - . .._ t; 
m m 

for m = 1, 2,..., q. Clearly P is a legal path cover for V. Conversely, given a legal path 
cover P = {pl ,p2,..., p,} for V we obtain a matching M’ for M as follows: 

M’ = { (wi,7 Xj,,Yk,) I Pm visits vi,3 uj,9 tk,}. 

Since the triples not in M correspond to impossible paths in G, it follows that 
M’ s M. Since P is a path cover for V, all vertices are included in P and therefore all 
elements in X, Y, W are included in M’. Hence, M’ is a matching of size q for M. 

We have shown that IPR, IPTH, and MPR are NP-complete even if G is an 
acyclic structured digraph. If we restrict G to be a rooted tree, all three problems 
become trivial. 

Consider next the must path problem. We will consider two alternative ways of 
specifying must paths. In MPTH-1 we let a must path p(v,, Vj) be a path in the 
digraph such that (for external reasons) if an s-t path visits Vi then it is required to 
contain p(vi, vj) as a subpath [ 11. Note that if an s-t path visits Vi it will always 
cover all the vertices in p(vi, vj). As shown in [I], we can treat p(v,, Vj) as a single 
vertex vu, so that all edges directed into vi are now directed into Vii, all edges 
directed out of vj are now directed out of Vii’ the intermediate vertices Ofp(Vi, Vj) are 
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removed and the edges incident on these intermediate vertices are replaced by new 
edges so that the reachability relations of the original digraph are preserved. Then the 
must path problem reduces to the problem of finding a minimum path cover for the 
vertices of an acyclic digraph which can be solved in polynomial time. 

We may also specify must paths of the form p((vi, vi), YJ, i.e., if an s-t path 
contains the edge (Vi, Uj) then it must contain P((v,, Uj)’ uk) as a subpath. Let MPTH- 
2 be the resulting decision problem. 

MPTH-2. 
INSTANCE: Acyclic digraph G, set of must paths IV,,!,, C_ 

{p((Vi, Vi), v,J 1 (vi, vj) E E} and positive integer L. 
QUESTION: Is there a legal path cover of size L for the vertices of G? 

We show that MPTH-2 is NP-complete by transforming the 3-DM problem to it. 

THEOREM 4. MPTH-2 E NPC. 

Proof. Clearly MPTH-2 E NP. We give a polynomial transformation of 3-DM to 
MPTH-2. Let M = { (wi,, xj,, y,J 1 1 < z < m} be an instance of 3-DM. We construct 
the digraph G shown in Fig. 4 and specify the following set of must paths in G: 

Mpl,, = {p((s, c,), t) 1 1 < z < m and p(s, t) visits vertices 

S,CZ,S~,U~,,S~,U~~,S~,~~,, t in G} 

U (p((s, p), t) ( p(s, t) visits vertices 

s, P, Cl , c2 ,*-*, c, and t in G}. 

Note that the must paths in the first subset of Zkfplh correspond to the members of 
M. Clearly, G and Mpt,, can be constructed in polynomial time. We next show that M 
has a matching of size q if, and only if, there is a legal path cover of size less than or 
equal to q + 1 for the vertices of G. 

Let M’ = { (wl,, xj,&) )...) (~6, $, yl,)) E A4 be a matching for M. We construct a 
path cover P= {p,,p2 ,..., pq+ 1} for the vertices of G as follows: 

p, = s - c, - SI - vf, - s2 - ujz - sj - v;, - t for 1 fz <q, 

and 

P q+l=S-~-cc,-c2-**.-c,-t, 

where the paths are given as vertex sequences for brevity. Clearly, P is a legal path 
cover of size q + 1 for the vertices of G. 

Conversely, suppose that there exists a legal path cover of size L, L <q + 1 in G. 
Since any legal path that visits vertex /3 can not visit any of the vertices vli, v12,..., Vi* 
and since no path can visit more than one u-vertex, it follows that any legal path 
cover in G must contain exactly q + 1 paths. In a legal path cover, the q paths that 
do not visit vertex /I must each visit one u-vertex, one u-vertex, and one w-vertex in G. 



232 NTAFOS AND GONZALEZ 

FIG. 4. The digraph G for the transformation of 3-DM to MPTH-2. 

Furthermore, these three vertices must correpond to a triple in M. Then, the set of 
triples in M that correspond to the q paths in the legal path cover in G that do not 
visit p, forms a matching of size q for 44. 

We showed that MPTH-2 is NP-complete. If G is an acyclic structured digraph we 
note that in a must path of the form p((u,, vi), ok), either Vi dominates Vj or Vj 

dominates Vi a Then, the must path p(( vi, vi), v,J is equivalent to one of the must paths 
p(ui, u,J or p(uj, v,J. Then, we can replace the must paths in MPTH-2 with equivalent 
ones and construct an instance of MPTH-1 which can be solved in polynomial time. 

3. Subgraph Covers 

Let S= {V,, V2 ,..., I’,} be a set of vertex subsets of an acyclic digraph G = (I’, E) 
and consider the problem of covering a representative from each subset. A set of s-t 
paths P covers S if, for every subset Vi of S there exists at least one vertex Zlj E Vi 
that is visited by some path in P. Then we have the following problem: 

SUBCOVER. 
INSTANCE: Acyclic digraph G, set of vertex subsets S, positive integer k. 
QUESTION: Is there a path cover of size m for the vertex subsets in S? 

We will show that SUBCOVER E NPC even if G is restricted to be a binary 
rooted tree. Clearly SUBCOVER E NP as we can arbitrarily select k paths in a 
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rooted tree and determine in polynomial time whether or not every subset is covered. 
To show that SUBCOVER E NPC we will transform a version of the VERTEX 
COVER problem to it. 

VERTEX COVER [4]. 
INSTANCE: Graph G = (V, E) with no vertex degree exceeding 4, positive 

integer k < 1 VI. 
QUESTION: Is there a subset I” s V with 1 VI = k such that for each edge 

(Vi, Vi) E E at least one of ~)i, Vj belongs to I”? 

Given an instance of VERTEX COVER we construct an instance of SUBCOVER 
by constructing a rooted tree T, where a vertex vi with degree d,. in G corresponds to 
a path from the root to a leaf of T and the last di vertices of this path correspond to 
the d, edges incident on Vi. Figure 5 illustrates the construction. Note that because no 
vertex in G has degree greater than four, the tree has at most [log(J I-‘\)] + 4 levels or 
at most 32 1 VI vertices and thus the construction is polynomial. The set of vertex 
subsets specified for T is S = {{Vi, vj} ( vi, vj correspond to the same edge in G}. Then 
we have 

THEOREM 5. There is a vertex cover of size k in G is, and only if, there is a path 
cover of size k for the vertex subsets of S. 

Proof: Given a vertex cover of size k in G we construct a path cover for S by 
selecting the k paths in T that correspond to the vertices in the vertex cover. Clearly, 
these paths will cover all subsets in T. 

Conversely, suppose that there exists a path cover of size k for the subsets in T. 
We can partition the paths in the path cover into two disjoint subsets P, and P,, 

“4 

“I 

G: m v3 

“2 
“5 

FIG. 5. The transformation of VERTEX-COVER to SUBCOVER. 
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those that correspond to vertices in G and those that do not respectively. Let p E P. If 
p E P, , we include the corresponding vertex in G in the vertex cover. If p E P,, we 
can always find a path p’ that corresponds to a vertex in G and covers the same 
subsets as p. Then we include the vertex corresponding top’ in the vertex cover. The 
set of vertices thus obtained will have cardinality k and clearly is a vertex cover since 
covering the subsets of S is equivalent to covering the edges of G. 

Consider next the SUBCOVER problem when we require that each vertex subset 
Vi induces a connected digraph in G. The digraph induced by Vi, denoted (Vi), is the 
subgraph of G obtained by removing from G all vertices not in Vi and all edges with 
an endpoint outside Vi. We will refer to the problem of finding a path cover in this 
case as CON-SUBCOVER. To show that CON-SUBCOVER is NP-complete we use 
the NP-complete problem known as THREE-SATISFIABILITY (3-SAT). 

3-SAT [4]. 
INSTANCE: A set U of variables, collection C of clauses over U such that 

each clause contains three literals, no variable appears more than once in a 
clause and every literal appears at least once in C. 

QUESTION: Is there a satisfying truth assignment for C (i.e., is there an 
assignment of binary values “ 1”) “0” to the variables in U so that C = 1 )? 

THEOREM 6. CON-SUBCOVER E NPC. 

Proof. Clearly, CON-SUBCOVER E NP. To show that it is NP-complete we will 
transform 3-SAT to it. Let k be the number of variables in C and II the number of 
clauses. Given an instance of 3-SAT we produce an instance of CON-SUBCOVER 
as follows. We construct the acyclic digraph G = (V, E), where V = {U/l, viz 1 
l<i<kk)u{s,f} and E={(s,v,,), (~,~,~)}U{(~ij,~~~)(l~iilIk, 1G.L 
t?Z < 2) U { (Vkl , t), (Vk2, t)}. Vertices Vi, 9 Vi2 correspond to literals xi, ffi, respectively. 
Then we specify the set of vertex subsets S = {vertex triples that correspond to the 
literals in a clause of C}. By construction, these triples induce connected subgraphs. 
Then, C is satisfiable if, and only if, there is a path cover of size one for the vertex 
subsets in S. Given a satisfying assignment for C we construct a path that covers S 
as follows: The path visits exactly those vertices that correspond to the literals 
assigned to value “1,” i.e., if Xi = 1 then the path visits vii, if xi = 0 then the path 
visits Vi*. Clearly this path covers all vertex subsets since every clause in C will 
contain at least one literal assigned the value “1.” Conversely, given a path that 
covers all the vertex subsets in S we obtain a satisfying assignment by letting xi = 1 if 
the path visits vi, or letting xi = 0 if the path visits viz. If the path visits neither vi, 
nor vi2 we make an arbitrary assignment to xi. The resulting assignment satisfies C 
since the path covers all triples corresponding to the clauses of C, i.e., at least one 
literal in each clause is assigned the value “1.” 

If we restrict G to be an acyclic structured digraph or a rooted tree, CON- 
SUBCOVER can be solved in polynomial time. In a rooted tree, a vertex subset that 
induces a connected subgraph must induce a rooted tree and therefore there exists a 
vertex in the subset that dominates all other vertices in it. Then covering the vertex 
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subset is equivalent to covering the root of the subgraph induced by the vertex subset. 
Similarly, in an acyclic structured digraph, each subset Vi will contain at least one 
vertex that dominates all vertices in Vi. This can be easily seen if we define levels of 
dominators in G [5]. Let the O-dominators at G be the vertices that are visited by 
every s-t path in G. Then, we recursively define the i-dominators of G to be those 
vertices that are O-dominators of the digraphs obtained by removing from G all 
vertices that are j-dominators for j < i. Clearly, if vertex subset Vi induces a 
connected subgraph, and vj is a k-dominator with least k in Vi, every path that 
covers Vi must visit vj. Thus, we can replace the vertex subsets with appropriate 
representative vertices and CON-SUBCOVER reduces to the problem of finding a 
minimum path cover for a set of vertices of G which can be solved in polynomial 
time. 

4. Length Constrained Path Covers 

Another class of constrained path cover problems is obtained when an upper limit 
is placed on the length of the paths that can be included in the path cover. Let l(e) be 
the length of edge e and let the length of an s-t path be the sum of the lengths of the 
edges traversed by the path. Then we have 

MAXLENGTH-COVER. 
INSTANCE: Acyclic digraph G = (V, E), integer lengths l(e) for all e E E 

and integers L, M. 
QUESTION: Is there a path cover P for the vertices of G such that 1 PI < IM( 

and for all p E P, the length of p does not exceed L? 

We will show that MAXLENGTH-COVER E NPC by transforming the 3- 
PARTITION problem to it. 

3-PARTITION. 
INSTANCE: A finite set A of 3m elements, integer bound B and integer size 

s(a) for each a E A with B/4 < s(a) < B/2 and CaeA s(a) = mB. 
QUESTION: Can A be partitioned into m disjoint sets S,, Sz,..., S, such that 

c llE.S, s(a) = B and 1 Sil = 3 for 1 < i < m? 

Given an instance of 3-PARTITION we produce an instance of MAXLENGTH- 
COVER by constructing the acyclic structured digraph shown in Fig. 6. The digraph 
G consists of 3m similar subgraphs connected in series. The ith subgraph corresponds 
to the ith element of the set A. Then we have 

THEOREM 7. There is a path cover P for the vertices of G with I PI < m and 
1 (pi) < B + 9m - 1 for all pi E P if, and only if, 3-PARTITION has a solution. 

Proof: Given a partition A = S, US, U me. US, such that COESi s(a) = B we 
construct a legal path cover for the vertices of G as follows. We use m paths each 
corresponding to a subset Si, 1 < i < m. Path pi visits the three edges corresponding 
to the members of Si in the appropriate subgraphs of G. In the remaining subgraphs, 
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FIG. 6. The subgraph G corresponding to the ith element of S in the transformation from 3- 
PARTITION to MAXLENGTH-COVER. 

pi will visit the vertex of degree two that is not associated with a member of A. The 
length of p, is (s(u~~) + s(Uiz) + s(cJ) + 2(3m) + (3m - 1) = B + 9m - 1 <L. 

Conversely, suppose that we are given a legal path cover P for the vertices of G 
with IPI = m. Note that no path pi E P can visit more than three edges associated 
with a member of A (if it does, its length is at least B + 1 + 9m - 1 = L + 1 > L). 
Then, since there are 3m edges associated with members of A and each path cannot 
visit more than three such edges, it follows that each path pi E P, visits exactly three 
edges associated with members of A. Also, we have that the sum of the lengths of 
these three edges must be L - 2(3m - 3) - 6 - (3m - 1) = B, which means that the 
weights of the corresponding members of A sum up to B. Thus, the m paths in the 
path cover produce a 3-partition for A. 

COROLLARY. MAXLENGTH-COVER E NPC even if G is an acyclic structured 
digraph . 

Proof The digraph described in Fig. 6 is an acyclic structured digraph. Then the 
result follows from Theorem 6. 

Consider next the MAXLENGTH COVER problem when l(e) = 1 for all edges in 
the digraph. Then we have 

COROLLARY. MAXLENGTH COVER E NPC even of G is an acyclic structured 
digraph and l(e) = 1 for all e E E. 

Proof. The 3-PARTITION problem is NP-complete in the strong sense, that is it 
remains NP-complete even if the sizes s(a) are polynomially related to the number of 
elements in A [4]. Then we can modify the digraph of Fig. 6 so that an edge of length 
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x is replaced by x edges of unit length by adding the appropriate number of vertices 
of degree two. Since, the maximum length in G is polynomially related to IA 1, the 
new digraph G can be constructed in polynomial time. Then, Theorem 6 holds for G 
and MAXLENGTH-COVER E NPC even if all edges have unit length. 

If G is a rooted tree, the MAXLENGTH COVER problem reduces to finding the 
longest path in the tree which can be done in polynomial time. 

III. THE GENERAL PROBLEM 

In the previous section we have considered a number of path cover problems and 
studied their complexity. In this section we look at path cover problems in general 
and point out a relation between the complexity of such problems and the existence of 
a reachability relation on the elements that are to be covered. 

Let X= {x1,x2,..., xm} be a set of elements in an acyclic digraph. The members of 
X may be vertices, edges, required pairs, etc. Element Xi is said to be path-related to 
element Xj (xi R, Xi) if there exists an s-t path in G that covers both Xi and Xj. Then, 
the problem of finding a path cover for X can be stated as follows: 

PATH-COVER. 
INSTANCE: Acyclic digraph G, set X of elements of G, a path relation R, on 

elements of G and positive integer k. 
QUESTION: Is there a path cover of size k for the elements in X, i.e., is there 

a set of paths P = {p, ,..., pk } such that for all Xi E X, there is a path pj E P 
that covers xi and for any two elements xi, xj E X such that xi, xj E pi for 
some p, E P, we have that xi R, xi? 

Clearly, the problems discussed in the previous section are special cases of PATH- 
COVER. Then we have 

COROLLARY. PATH-COVER E NPC. 

Proof: PATH-COVER E NP since we can arbitrarily select k paths in G and 
determine in polynomial time whether or not they constitute a path cover for X. Since 
REQPR is a special case of PATH-COVER, if PATH-COVER E P then 
REQPR E P. But REQPR E NPC and therefore PATH-COVER E NPC. 

In examining the path cover problems for which it is known that polynomial time 
algorithms exist (e.g., MPTH-1, REQPTH) we note that they reduce to the problem 
of finding a path cover for the vertices of an acyclic digraph. This reduction is made 
possible because the path relation R, can be replaced by a reachability relation 
(partial order) on the elements that are to be covered. In general, suppose that a 
reachability relation on the elements of X can be defined in polynomial time. Then, 
we have 

THEOREM 8. If a reachability relation on the elements of X can be defined in 
polynomial time, then PATH-COVER can be solved in polynomial time. 
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Proof: We find a minimum path cover for X by constructing the acyclic digraph 
G’ = (V’, J?‘), where 1 V’ I= 1x1 and ( oi, ui) E E’ if xi reaches xj in G. Then, finding a 
minimum path cover for X in G is equivalent to finding a minimum path cover for 
the vertices of G’ which can be done in polynomial time. 

Consider next the path cover problems that have been shown to be NP-complete. 
For each of them there is a natural definition for reachability on the elements that are 
to be covered. For example, in REQPR we can say that required pair rl = [Vi, uj] 
“reaches” required pair r2 = [u,, u,] if ui reaches V, (Uj reaches U, if Zli = urn) and 
there is an s-f path that covers both rl and r2. This however, is not a valid 
reachability relation (i.e., a partial order) as it is not transitive. For example, in 
Fig. 7, required pair [vi, u8] reaches [03, v,], [v3, u,] reaches [u3, u,], but [o,, us] 
does not reach [tag, u,]. Also note that the cardinalities of a minimum path cover and 
a maximum set of mutually incomparable required pairs are not necessarily equal. In 
Fig. 7, the cardinality of a minimum path cover for the required pairs is 3 but there is 
no set of three mutually incomparable required pairs. As a second example consider 
the SUBCOVER problem. A natural definition for reachability between vertex 
subsets is derived as follows. First, we assign an index to each vertex so that i <j if Ui 
reaches vi. Then we order the vertices in each vertex subset in order of increasing 
index and order the vertex subsets themselves in lexicographical order of their index 
sequences. Then a subset Vi reaches a subset Vi if i <j and there is an s-t path that 
covers both I’, and Vj. Again, this definition does not lead to a valid reachability 
relation. In the digraph of Fig. 8, vertex subset {u, , u j} reaches {u, , u6}, and { vl, us} 
reaches {zJ~,~)~}, but {u,,v3} does not reach {u2,u4}. Finally, consider the 

R,, = 

FIG. 7. Example for REQPR. A minimum path cover is (s-u, -ug -us -us-f, 
s - v2 - v4 - V6 - v, - t, s - v, - vj - v5 -v, - t). 
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FIG. 8. Digraph for SUBCOVER. 

MAXLENGTH COVER problem. We can define that a vertex vi L-reaches vertex Uj 
if vi reaches vj and there is an s-t path of length no greater than L that visits both Ui 
and uj. Again, L-reachability is not a partial order. In the digraph of Fig. 9, let 
L = 3. Then vi L-reaches v,, v2 L-reaches vj, but v, does not L-reach v3. Similarly, 
in all other path cover problems that were shown to be NP-complete, what seems to 
be the natural way to define reachability on the elements that are to be covered does 
not produce a partial order. Thus, there appears to be a strong connection between 
the NP-completeness of a path cover problem and the existence of a valid reachability 
relation on the elements that are to be covered. Then we propose the following con- 
jecture: 

I_= 3, P(e) =I 

FIG. 9. Example for MAXLENGTH-COVER. 
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Conjecture. A path cover problem is N&complete if, and only if, no valid 
reachability relation (partial order) on the elements that are to be covered can be 
defined in polynomial time (assuming P # NP). 

To disprove the conjecture we need to produce a path cover problem which can be 
solved in polynomial time and in which no reachability relation on the elements that 
are to be covered can be defined in polynomial time. The main difficulty in producing 
a counter example to the conjecture is pointed out by the MPTH-1 problem. To 
reiterate, in MPTH-1 we are looking for a legal path cover for the vertices of an 
acyclic digraph where a path p is legal if for any must path p(Ui, vi) if Ui Ep then 
p(vi, uj) is a subpath of p. We can define reachability as follows: Vertex Vi m-reaches 
vj if vi reaches vi and there is a legal s-t path that visits both vi and vj. This relation 
is not a partial order (see Fig. 10). However, note that for each must path p(Vi, Vj), 

the initial vertex vi in a sense dominates all other vertices in p(vi, vj) since if a path 
covers vi it necessarily covers all other vertices in p(vi, vj). Since vi is one of the 
elements to be covered we can disregard the remaining vertices in p(Vi, Vi). That is, 
we can replace a must path p(vi, vj) with its initial vertex Vi by an appropriate 
modification of the edge set. Then, a reachability relation can be easily defined and as 
was shown in [I], MPTH-1 can be solved in polynomial time. In the case of MPTH- 
1 it is fairly easy to modify the problem so that a valid reachability relation can be 
defined. However, this may not always be the case and that complicates the search 
for a counterexample. 

Let P be a minimum path cover for the set X of elements of an acyclic digraph in a 
path cover problem A and let I be a maximum set of mutually incomparable vertices 
with respect to an appropriate definition of reachability on the elements of X in 
problem A. Then, if the reachability relation is a partial order we have that 1 PI = IZ(, 
i.e., a theorem similar to Dilworth’s holds for problem A. If the reachability relation 
is not a partial order we can only state that 1 PI > 111. 

Mpth = {“I-Vs-“5) 
FIG. 10. In the digraph above, u, m-reaches o,, V, m-reaches u4, but v, does not m-reach u4. 
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IV. CONCLUSIONS 

We have considered a number of path cover problems in acyclic digraphs and 
pointed out a connection between the complexity of such a problem and the existence 
of a valid reachability relation on the elements that are to be covered in the digraph. 
Table I summarizes the complexity results for path cover problems. The optimization 
problems (i.e., finding minimum path covers) corresponding to the NP-complete 
problems of Table I, are N&hard. In practice, one may be interested in near optimal 
path covers. Reductions similar to the ones used in the proof of the NP-completeness 
of IPR and MPR can be used to show that the approximation problems for IPR, 
MPR (i.e., find a path cover P such that ) PI < c 1 Poptimum 1) for any constant c, 
1 < c < 2) are also NP-hard. Also, the problems IPR, IPTH, MPR, and 
MAXLENGTH COVER remain NP-complete if we require a path cover for the 
edges (instead of the vertices) of the digraph. This follows from the fact that in an 
acyclic structured digraph a path cover for the vertices is also a path cover for the 
edges of the digraph. 

We conjecture that a path cover problem is NP-complete if, and only if, a valid 
reachability relation (i.e., partial order) on the elements to be covered can be defined 
in polynomial time. If this conjecture is shown to be true, we would have a charac- 
terization of the complexity of path cover problems in acyclic digraphs. A 
shortcoming of this characterization is that the reachability relation in question is not 
specified precisely. As pointed out in the case of the MPTH-1 problem, although the 
natural definition for reachability on elements that are to be covered may not be 
valid, it may be possible to perform a polynomial time transformation that reduces a 
path cover problem into an equivalent problem for which a valid reachability relation 
can be defined. Further research is needed to clarify the connection between the 
existence of a valid reachability relation and the complexity of path cover problems. 

TABLE I 

Digraph G is: Acyclic 
Structured 

Acyclic 
Rooted 

Tree 

REQPR 
REQPTH 
IPR 
IPTH 
MPR 
MPTH-1 
MPTH-2 
SUBCOVER 
CON-SUBCOVER 
MAXLENGTH 

COVER 

NPC 
P 

NPC 
NPC 
NPC 

P 
NPC 
NPC 
NPC 
NPC 

NPC 
P 

NPC 
NPC 
NPC 

P 
P 

NPC 
P 

NPC 

P 
P 
P 
P 
P 
P 
P 

NPC 
P 
P 
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