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We consider the multimessage multicasting over the n processor complete (or fully con-
nected) static network when the forwarding of messages is allowed, and initially each
processor only knows the messages it needs to send and their destinations. We present an
efficient distributed algorithm to route the messages for every degree d problem instance
with total expected communication time O(d + log n), where d is the maximum number
of messages that each processor may send (or receive). Our routing algorithm consists
of three phases. In the first phase the processors exchange messages to learn some basic
global information. In the second phase each processor forwards its messages to transform
the problem to a multimessage unicasting problem of degree d. The third phase uses a
well known distributed algorithm to transmit all the resulting unicasting messages.

Keywords: Approximation algorithms, Multimessage multicasting, Forwarding, Random-
ized algorithms, Fully connected networks.

1. Introduction

The Multimessage Multicasting problem over the n processor static network or sim-
ply a network, MM, consists of sending messages in such a way that all the commu-
nications can be carried in the least total number of communication steps for every
given set of messages. Specifically, there are n processors, P = {P}, P,,...,P,},
interconnected via a fully connected network N. Each processor is executing pro-
cesses, and these processes are exchanging messages that must be routed through
the links of N. We assume that processors alternate between computation and com-
munication in a synchronous way. Our objective is to find specific times when each
of these messages is to be transmitted so that all the communications can be carried
in the least total number of communication steps. Forwarding, which means that
messages may be sent through indirect paths even though a single link direct paths
exist, allows communication schedules with significantly smaller total communica-
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tion time. This version of the multicasting problem is referred to as the MMF¢
problem, and the objective is to transmit the messages so that all the communi-
cations can be carried in the least total amount of time. In this paper we study
the distributed version of the MMF, which we refer to as the DMMF¢ problem.
In this version of the problem each processor initially knows the value of n and d,
plus the messages it will be sending and their destinations. The non-distributed
(or off-line) version is simpler because there is a preprocessing phase where all the
information is available in one processor and this information is used to construct
communication schedules that are subsequently distributed to the individual proces-
sors. In this paper we assume that each of the (original) messages to be transmitted
is at least n bits long. This assumption allow us to send n-bit messages, other than
the original ones, to specify forwarding information. At the end we just report the
total number of messages, rather than having to report counts for the two type of
messages separately. Our introduction is a condensed version of Gonzalez’'* which
includes a complete justification for the multimessage multicasting problem as well
as motivations, applications, and examples.

We formally define our problem. Each processor P; holds the set of messages h;
and for each of its messages m; ; it knows the set of processors s; ; that must receive
the message. From this information one can compute for each processor P; the set of
messages it needs to receive, n;. Note that our algorithm does not compute the n;s,
but at the end each processor P; will have all the messages it needs. We define the
degree of a problem instance as d = max{| h; |,| n; |}, i.e., the maximum number
of messages that any processor sends or receives. Consider the following example.

Example 1: There are nine processors (n = 9). Processors P;, P, and P
send messages only, and the remaining six processors receive messages only * The
messages each processor holds and needs are given in Table 1. For this example the
density d is 3. Note that processors Pj, P, and P3 do not need any messages, but
the remaining processors each need three messages each.

Table 1. Hold and Need vectors for Example 1.

Initial messages held at each processor.

hy ha hs ha hs hs hr hs ho
{a,b} {c,d} {e,f} ] 0 ] 0 L] ]

Messages needed at each processor.

n ng ns n4 ns s

nr ns N9
0 ] 0 {a,c,e} {a,d,f} {b,c,e} {b,d,f} {c,d,e} {cd, f}

*Note that in general processors may send and receive messages.
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One may visualize problem instances by directed multigraphs. Each processor P;
is represented by the vertex labeled %, and there is a directed edge (or branch) from
vertex ¢ to vertex j for each message that processor P; needs to transmit to processor
P;. The set of directed edges or branches associated with each message are bundled
together. The problem instance given in Example 1 is depicted in Figure 1 as a
directed multigraph with additional thick lines that identify all edges or branches
in each bundle.

Fig. 1. Directed Multigraph Representation for Example 1. The thick line joins all the edges
(branches) in the same bundle.

The communications allowed in our complete network for the distributed version
of the problem must satisfy the restrictions given below. For the non-distributed
versions studied in the past!®:11:1413:15 ryle 2 given below is simpler because those
algorithms made sure that each processor received at most one message at a time.
We should also point out that the last part of rule 2 is needed only for the third phase
of our procedure, solving the resulting multimessage unicasting problem, because
all the communications in the first two phases are predicatable with the information
available, and thus communication conflicts can be avoided.

1.- During each time unit each processor P; may transmit one of the messages it
holds (i.e., a message in its hold set h; at the beginning of the time unit),
but such message can be multicasted to a set of processors. The message will
remain in the hold set h;.

2.- During each time unit each processor may receive at most one message. The
message that processor P; receives (if any) is added to its hold set h; at the
end of the time unit. If two or more messages are sent to a processor at a time
period, then the messages are garbled and the processor does not receive any
of the messages. The sending processor will know at the end of time period
whether or not the message it sent reached all its destinations. Note that if
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the message does not reach all its destinations, then the processor will not
know the processors that received the message.

The communication process ends when each processor has n; C h;, i.e., each
processor holds all the messages it needs. Note that at each time unit the hold set
h; for each processor will increase by one message or remain the same depending
on whether or not a new message arrives. Our communication model allows us to
transmit any of the messages in one or more stages. IL.e., any given message may
be transmitted at different times. This added routing flexibility allow us to bound
by O(d?) the total communication time!4. In the former communication model one
cannot bound the total communication time by O(f(d)) for any function f(d)'°. The
problem instance given in Example 1 requires six communication steps if one restricts
each message to be transmitted only at a single time unit, but allowing messages to
be transmitted at different times one can perform all communications in four steps,
and if forwarding is allowed it can be further reduced to three steps'*!5. When
forwarding is allowed all the communications can be carried out in 2d steps!3:15.

A communication mode C is a set of tuples of the form (m,l, D), where [ is
a processor index (1 < I < n), and message m € h; is to be multicasted from
processor P; to the set of processors with indices in D. In addition the set of tuples
in a communication mode C must have the property that each processor sends at
most one message at a time, and if some processor is sent two or more messages,
then neither of these messages are received.

A solution to our problem instance I is a sequence of communication modes
such that after performing all of these communications n; C h; for 1 < i < n, i.e,
every processor holds all the messages it needs. The total communication time is
the latest time at which there is a communication which is equal to the number of
communication modes, and our problem consists of each processor sending messages
in a synchronized mode so that all messages reach their destination in the least total
number of communication steps. From the communication rules we know that every
degree d problem instance has at least one processor that requires d time units to
send, and/or receive all its messages. Therefore, d is a trivial lower bound for the
total communication time.

2. Previous Work

The basic multicasting problem (BMc) consists of all the degree d = 1 MM¢
problem instances, and can be trivially solved by sending all the messages at time
zero. There are no conflicts because d = 1, i.e., each processor sends at most one
message and receives at most one message. The communication schedule has only
one communication mode.

Gonzalez!'* also considered the case when each message has fixed fan-out k (max-
imum number of processors that may receive a given message). When k& = 1 (multi-
message unicasting problem MU¢), Gonzalez showed that the problem corresponds
to the Makespan Openshop Preemptive Scheduling problem which can be solved in



Distributed Algorithm for Multimessage Multicasting 307

polynomial time, and each degree d problem instance has a communication schedule
with total communication time equal to d.

It is not surprising that several authors have studied the MU¢ problem as well
as several interesting variations for which NP-completeness has been established,
subproblems have been shown to be polynomially solvable, and approximation algo-
rithms and heuristics have been developed. Coffman et. al.” studied a version of the
multimessage unicasting problem when messages have different lengths, each proces-
sor has y(P;) ports each of which can be used to send or receive messages, and mes-
sages are transmitted without interruption (non-preemptive mode). Whitehead?
considered the case when messages can be sent indirectly. The preemptive version of
these problems as well as other generalizations were studied by Choi and Hakimi%?5,
Hajek and Sasaki'®, Gopal et. al.!”. Some of these papers considered the case when
the ports are not interchangeable, i.e., it is either an input port or an output port.
Rivera-Vega et. al.?0 studied, the file transferring problem, a version of the multimes-
sage unicasting problem for the complete network when every vertex can send (re-
ceive) as many messages as the number of outgoing (incoming) links. The distributed
version of the multimessage unicasting problem with forwarding, DMU F¢,has been
studied in the context of optical-communication parallel computers®2:922. Valiant??
presented a distributed algorithm with O(d + logn) total expected communication
cost. The algorithm is based in part on the algorithm by Anderson and Miller?. The
communication time is optimal, within a constant factor, when d = Q(logn), and
Gereb-Graus and Tsantilas® raised the question as to whether a faster algorithm
for d = O(logn) exits. This question was answered in part by Goldberg et. al.®
who show all communication can take place in O(d + loglog n) communication steps
with high probability, i.e., if d < logn then the failure probability can be made as
small as n® for any constant o. Gereb-Graus and Tsantilas® presented distributed
algorithms without forwarding with ©(d + lognloglogn) expected communication
steps. With the exception of a few papers!®11:1413:1512.21 research has been lim-
ited to unicasting and all known results about multicasting are limited to single
messages. Shen?! has studied multimessage multicasting for hypercube connected
processors. His procedures are heuristic and try to minimize the maximum number
of hops, amount of traffic, and degree of message multiplexing. The MM prob-
lem involves multicasting of any number of messages, and its communication model
allows the concurrent transmission of a large set of messages.

The MM problem is significantly harder than the MUg. Gonzalez!* showed
that even when k& = 2 the decision version of the MM problem is NP-complete.
Gonzalez!? developed an efficient algorithm to construct for any degree d problem
instance a communication schedule with total communication time at most d2, and
presented problem instances for which this upper bound on the communication time
is best possible, i.e. the upper bound is also a lower bound. The lower bound holds
when there is a huge number of processors and the fan-out is also huge. Since this
situation is not likely to arise in the near future, the MM problem with restricted
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fan-out has been studied!%!!.

Gonzalez!'* developed an algorithm to construct a communication schedule with
total communication time 2d — 1 for the case when the fan-out is two, i.e., £k = 2.
Gonzalez'* developed an O(q - d - €) time algorithm, where e < nd (the input size),
to construct for degree d problem instances a communication schedule with total
communication time qd+ ka (d—1), where q is the maximum number of time periods
where each message can be sent and k > g > 2. Gonzalez'%!! also developed several
fast approximation algorithms with improved approximation bounds for problems
instances with any arbitrary degree d, but small fan-out. The approximation bound
for these methods is about (v + 1)d, where k is the fan-out.

It is simple to show that the NP-completeness reduction for the MM problem!*
can be easily modified to establish the NP-completeness for the MMF problem.
All the approximation results for the MM¢ problem also hold for the MMF¢ prob-
lem. However, for d > 2 it is impossible to prove that there exists an instance of
the MMF¢ problem that requires d? communication steps. Gonzalez'31® presents
efficient algorithms to construct for every degree d problem instance a communica-
tion schedule with total communication time at most 2d, where d is the maximum
number of messages that each processor may send (receive). We should point out
that previous approximation algorithms'®!! are faster than these ones. However,
these algorithms generate communication schedules with significantly smaller total
communication time. These algorithms consists of two phases. In the first phase a
set of communications are scheduled to be carried out in d time periods, and when
these communications are performed the resulting problem is a degree d multimes-
sage unicasting problem. The second phase generates a communication schedule
for this problem by reducing it to the Makespan Openshop Preemptive Scheduling
problem which can be solved in polynomial time. The solution is the concatena-
tion of the communication schedules for each of these two phases. For 2 <[ < d,
Gonzalez!® defined the I-MMF¢ as the MMF¢ in which each processor has at most
ld edges emanating from it and presented an algorithm to generate a communica-
tion schedule with total communication time at most |(2— 7)d| +1 for the I-MMF¢
problem.

In this paper we study the DMMF¢ problem. In this version of the problem
each processor initially knows the value of n and d, plus the messages it will be
sending and their destinations. The algorithm is a combination of algorithms in-
cluding the classic parallel prefix algorithm!®, the message forwarding phase of Gon-
zalez’ algorithm!® for multimessage multicasting with complete information, and
Valiant’s?? distributed algorithm for the multimessage unicasting problem. The re-
sult is a distributed algorithm to route all messages with O(d + logn) expected
communication steps. One can also use Goldberg et. al.® algorithm instead of
Valiant’s?? algorithm. We use the latter because it is simpler.
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3. Approximation Algorithm for the DMMF: Problem

Given an instance of the DMMF problem we present our strategy based on
the classic parallel prefix algorithm'®, the message forwarding phase of Gonzalez’
algorithm!® for multimessage multicasting with complete information, and Valiant’s??
distributed algorithm for the multimessage unicasting problem. The result is a dis-
tributed algorithm to route all messages in O(d + logn) expected communication
steps. Remember that we have assumed that the (initial) messages have length at
least n bits long, and that every processor knows the value of d and n.

Our strategy is to use the classic parallel prefix algorithm!® to compute and
exchange information, and then use this information to run a distributed version
of Gonzalez’ algorithm!® with partial global information. By forwarding all the
messages, Gonzalez’ algorithm!® transforms the problem to a multimessage unicas-
ting problem. All of the resulting communications can be performed by Valiant’s®?
distributed algorithm.

Before we proceed it is important to understand the message forwarding phase
of Gonzalez’ algorithm!® that reduces the problem to a multimessage unicasting
problem. We explain how this phase works by applying it to the problem instance
given in Figure 2. The problem instance consists of 12 processors, 11 messages, and
has degree d = 2.

Fig. 2. MM problem instance (I, G).

In Figure 3 we show all the processors with a list of labels assigned to the bundles
and edges that are defined as follows. The top set of numbers is the bundle number
which is defined by labeling the bundles emanating out of processor P, then the
one emanating out of P, and so forth. The next label is the message for the bundle
and the third one is the bundle number modulo (d) plus 1. This third number is the
time at which the message associated with the bundle will be forwarded. From the
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way these labels are generated, we know that no two bundles emanating out of a
processor will forward a message at the same time. The edges are labeled beginning
with the ones emanating out of the first bundle, then the second one, and so forth.
These labels are shown in the fourth line. The last set of numbers is the ceil of
the edge number divided by d. This last row indicates the processor index where
the message will be forwarded. It is simple to see that each processor will receive
at most d messages and all these messages will be received at different times. In
what follows we explain in detail the application of this procedure to the problem
instance in Figure 3.

AR T

123 456 789 1011 12 13 1415 161718 19 21 22
112 233 445 56 6 7 78 899 10 10 11 11 12

Fig. 3. Labeling performed by procedure FORWARD.

At time 1 message a is multicasted from processor P; to processors P; and P».
Obviously one does not actually need to send the message to processor P;, since
P, holds that message. Our algorithm could be modified to detect cases like this
one, but in general the total communication time will not decrease. In what follows
we will only make minor comments when this type of situations arises. At time 1
message ¢ is multicasted from processor P, to processors P4 and Ps; message e is
multicasted from processor P3 to processors Ps; and Pr; message g is multicasted
from processor P4 to processors Pg and Py; message ¢ is unicasted from processor
P; to processor Pjj; and message k is unicasted from processor P2 to processor Pjo
(superfluous operation). All of these communications are represented by the forest
labeled T'1 in Figure 4. The specific communication operations for time 2 are given
in the forest labeled T2 in Figure 4.

The resulting unicasting problem (I, G) of degree d is given in Figure 5 (all ob-
jects). Since the leftmost two edges in the bundle B; were forwarded to processor P
(superfluous operation), then message a is to be sent from processor P; to processor
Py and Ps in (I, G); the rightmost edge in bundle B; was forwarded to processor
P,, therefore message a needs to be sent to processor Py from P,; the leftmost edge
in bundle By was forwarded to processor P,, therefore message b needs to be sent
to processor Py from Po; the rightmost two edges in bundle B, were forwarded to
processor P3, therefore message b needs to be sent to processors Py and P> from
Ps; the leftmost two edges in bundle Bs were forwarded to processor Py, therefore
message ¢ needs to be sent to processors Ps and P from Py; the rightmost edge in
bundle Bs was forwarded to processor Ps, therefore message ¢ needs to be sent to
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Fig. 4. Communications at time one (T'1) and time two (T'2).

processor P; form Pj; the two edges in bundle B4 were forwarded to processors P;
and P, therefore message d needs to be sent to processors P and Py from Pg; and
so on. The resulting unicasting problem (I, G) of degree d is given in Figure 5.

Fig. 5. MUg problem instance (I, @) constructed from (I,G) in Figure 2.

Remember that Gonzalez’ algorithm!® is non-distributed and all the information
is known globally. However, the algorithm in this paper is distributed and the only
information every processor knows initially are the messages it needs to send and
their destinations, and the values for n and d. We now discuss our algorithm.
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1. Compute and Broadcast Basic Information. Each processor P; needs
to know the total number of messages that processors P;, Py,...,P;_; need
to send as well as the total number of destinations for all of these messages.
Le., the total number of bundles and the total number of edges emanating
out of all of these processors. This information is needed to label the bundles
and edges emanating out of P;, and it can be easily computed via the classic
parallel prefix!® in O(logn) communication steps.

2. Transform to the Multimessage Unicasting Problem via Gonzalez’
Algorithm!S.

We transform Gonzalez’ algorithm!® into a distributed one.

Procedure FORWARD for P;
/* the value of n and d are known in every processor */
/* The following information computed in Step 1 is available in P;
np: total number of bundles emanating from processors Py, P, ..., Pj_;.
ne: total number of edges emanating from processors Py, P, ..., Pj_;.
*
/
Label B, ; the it" bundle visited while traversing the bundles
emanating from Pj;
Define t(ny + 2) as (np + i — 1) mod (d) + 1;
/* The message associated with bundle By, ;; will be forwarded at
time t(ny + 7). */
Label ey, ,; the i** edge visited while traversing the bundles emanating
from P; in the order By, i, Bpy4it1, -- -3
Define the function g(n. + i) as [25];
/* Edge en,+; will be forwarded to processor Py, +i) */
for every bundle By, ;; emanating from P; do
Let Sn,+i = {9()ler € Bn,+i}s
endfor
fort=1,2,...,ddo
if there is a bundle emanating out of P; with t(ny + i) ==t then
At time ¢ processor P; multicasts message By, to the set of
processors Sp, y; (if |Sp,+i| = 1, the operation is unicasting).
Appended to this message one sends a bit vector of size n
indicating the processor indices of the processors that will
eventually receive this message, as well as the first processor
that will receive this forwarded message and the number of
edges that such processor must forward.
/* This info is used by the forwarding processors to compute the
destinations of the messages being forwarded. */
endfor
end of Procedure
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3. Solving the resulting Multimessage Unicasting Problem Instance.

At this point each processor just runs Valiant’s algorithm?? and all the mes-
sages are delivered to their destinations in O(d + logn) expected communica-
tion steps.

Lemma 3.1. The pair (I, &) is a problem instance of the MU problem and once

all its messages are transmitted will solve the original multimessage multicasting
problem (I, G).

Proof. The proof of the lemma is based on the observations that the () and g()
labels computed by our procedure are identical to the one that Gonzalez’ algorithm?!®
would have computed for this problem instance. This implies that the messages will
be forwarded exactly as in Gonzalez’ algorithm!5. Therefore, solving the resulting
multimessage unicasting problem solves the original problem. 0

Theorem 3.1. Our algorithm performs all the multicasting for every instance of
the DMMF¢ problem with O(d + logn) expected communication steps.

Proof. The proof of the theorem is based in the previous lemma, and the cor-
rectness proof of the subprocedures used by our algorithm. The total number of
communication steps in phase 1 is O(logn), and in phase 2 is O(d). The number of
expected communication steps for phase 3 is O(d + logn). O

4. Discussion

The most important open problem is to develop an efficient distributed algo-
rithms with similar performance guarantees but for the case when the processors
are connected via a dynamic network where the communication elements can repli-
cate data. The non-distributed version of this problem has already been solved by
Gonzalez'®. The main difficulty in extending that work to the distributed case is
the construction of the routing tables with only local information.
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