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This paper examines the wavelength assignment problem for single, dual, and multimes-
sage multicasting over a star network with optical switching between fibers along the same
wavelength. The specific problem we consider is given any star network, a predetermined
number of fibers that connect its nodes, and a set of multicasts (or multidestination mes-
sages) to be delivered in one communication round, find a conflict free message transmission
schedule that uses the least number of wavelengths per fiber. When the least number of
wavelengths, A;in, €xceeds the number available, \,,;, one may transform the schedule
into one with [Ap;in/Aqe] communication phases or rounds over the same network, but
restricted to A,,; wavelengths per fiber.
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1. Introduction

The ever increasing need for faster data transmission has led to extended research
into the area of Optical Networks. Optical Networks allow much greater data trans-
mission speeds than Electrical Networks, and optical switching has allowed us to
retain these transmission speeds even when direct links between nodes are not
available.!'? Furthermore, Wavelength Division Multiplexing (WDM) allows mes-
sages to be transmitted on different wavelengths (or channels) over the same fiber.
In our star network the center node is a passive star coupler that joins the nodes
in the network, making transmission between all nodes along the same wavelength
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completely optical.? Our networks can be single, dual, or multifiber networks de-
pending on the number of fibers that connect adjacent nodes in the system. In dual
fiber and multifiber networks, messages can be switched from one fiber to another
along the same wavelength.?3

High transmission speeds are needed for applications such as video conferenc-
ing, distributed data processing, scientific visualization, high speed supercomput-
ing, and real-time medical imaging to name a few.? The need for these systems is
growing and it is likely that future communication networks will include a large
amount of multi-destination traffic.!"* Furthermore, since one of the biggest costs
when building an optical network is the actual physical laying of the optical fibers,
often many fibers may be installed at the same time, for about the same cost, re-
sulting in multifiber networks.> Wide area testbeds are currently being developed,
employing WDM technology to pass data over various wavelengths in real-time.®
The problem we consider in this paper is given an (n -+ 1)-node star network, a pre-
determined number of fibers, and a set of multidestination messages (or multicasts)
to be exchanged between nodes in one communication round, find a conflict free
transmission schedule that uses the least number of wavelengths per fiber. Hereafter
we abbreviate wavelengths per fiber by A/ f, since A normally identifies the number
of wavelengths and f signifies fibers. Note that when the least number of wave-
lengths, Amin, exceed the number available, A,,;, one may transform our solution
into one with [Anin/Aewr] communication phases or rounds over the same network,
but restricted to A, wavelengths per fiber. Because of this simple equivalence we
restrict our work to just finding a conflict free transmission schedule that uses the
least number of wavelengths per fiber.

When we talk about our communication model we use multicast to indicate that
a node sends a message to one or more nodes in the system (also called a unicast
when sending to only one other node and a broadcast when sending to all other
nodes). A star network is a set of nodes that communicate with each other by
sending messages through an internal routing node (the passive star coupler in our
case). The messages are then routed to all of the appropriate receiving nodes. The
benefit of multifiber networks is that even though nodes must receive messages on
the same wavelength from which they were sent, the receiving nodes are able to
receive the message on any fiber. We call this optical rerouting of messages onto a
different fiber, “switching” of the message. This is the central process that allows
for better utilization of individual fibers in dual and multifiber networks.

Our problem falls under the general category of the wavelength assignment prob-
lem (WAP) which is to determine the wavelengths on which to send the required
messages. A related problem is the scheduling and wavelength assignment (SWA)
problem. The goal of SWA is to schedule the required messages on the available
wavelengths in order to minimize the finish time. As we said before, for our prob-
lem one can easily transform a solution to the WAP to a solution to the SWA
problem when the number of wavelengths per fiber is bounded by some fixed con-
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stant. A closely related problem is the wavelength and routing assignment problem
(WRAP), in which both the routes and the wavelengths that each message uses
must be determined. In our problem, the routes are fixed.

1.1. Problem Definition

We are given an (n + 1)-node star network with each node i, other than the cen-
ter node or star coupler, sending s; multicasts. Every multicast requires the same
amount of time to reach any subset of its destinations. The 5% multicast sent from
node i, for 1 < j <'s;, is denoted by (i, 7) and has as destinations the set of nodes
d; ;. Since it does not make sense to send a multicast to the same node more than
once, we represent d;; by a set. Also, it does not make sense for a node to send
a message to itself, so V ¢ and j, it must be that ¢ ¢ d;;. Consider Example 1
with n = 4, and three fibers. The routing requests s; and d; ; are given in Table 1.
The first two entries in Table 1 have the following meaning. Node 1 needs to send
three messages. The first one is to be sent to node 2 and the other two messages
must be sent to nodes 2 and 3. Node 2 does not send messages. As we show later
on, under our communication rules all these messages can be transmitted in one
communication round using only 2 wavelengths per fiber.

Table 1. Values s; and d; ; for Example 1.

# Messages Message Destinations
81 = 3 dl,l = {2} d1,2 = {2, 3} d1’3 = {2, 3}
s9 =10
83 =3 d31 ={1,2,4} d3o={2} d33={4}
s4=1 dg1 ={1,2,3}

We now specify the communication constraints in our model. Nodes can receive
at most one message on each fiber-wavelength pair, and send at most one multicast
on each fiber-wavelength pair, but not both. L.e., nodes cannot both send and receive
at the same time along the same fiber-wavelength pair. At the central node in the star
network we can switch a message from one fiber to another on the same wavelength,
but we cannot switch the wavelength on which a message is sent. Therefore, it does
not make sense to send a message on multiple fibers using the same wavelength
because switching the messages across fibers can achieve the same result. However,
it might be advantageous to send the same message on different wavelengths so that
different nodes can receive the message on different wavelengths to avoid conflicts
with all the other messages being transmitted.

In Figure 1 we give a communication assignment for Example 1. The figure
depicts an assignment for each of the two wavelengths (w; and ws). The assignment
is represented in the rectangular box and indicates the switching that occurs in the
passive star coupler. The nodes are represented twice, on the left side of the rectangle
to signify sending of a message and on the right side to signify receiving of a message.
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On the left side of each of the rectangles, the node-fiber pairs are indicated by a
line segment that originates at a node and ends at the switching rectangle. For each
node, we use the top line segment to represent fiber 1 (f1), the next one is fiber
2 (f2), and the bottom one is called fs and represents the third fiber. When one
of these line segments does not continue inside the switching rectangle it indicates
that there was no message being sent on that node-fiber pair. If the line segment
continues as one or more line segments inside the switching rectangle, then the end
points on the right side of the rectangle indicate the node-fiber pair destinations for
that message. For example the message labeled A is transmitted to node 2, and the
one labeled C is transmitted to nodes 1, 2, and 4. The former message corresponds
to multicast (1,1) and the latter one corresponds to multicast (3,1). In Table 2
the multicasting messages (7,j) that need to be sent from each node are mapped
to the actual communications labeled A through H in the schedule given in Figure
1. The only multicast that is transmitted along both wavelengths is (4,1) which
corresponds to the message labeled D and H in Figure 1.

Wavelength 1 Wavelength 2

Sending Processor Switching Receiving Processor Sending Processor Switching Receiving Processor

A E

=
O
O

O O
E}éﬂb
O =0
ol o

Fibers

O

Fibers

Fibers

Fig. 1. Communication Assignment for Example 1.

For completeness, we now formally define assignments and communication sched-
ules. Readers may skip the remaining part of this subsection if they are comfortable
with our informal definitions. Given an n -+ 1 node system with g fibers, and the sets
of multicasts d;;, the assignment S} specifies all the node-fiber destination pairs
for a message originating at the i’® node and being initially transmitted through
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Table 2. Communication Schedule
for Example 1.

Multicasts in Transmission of
Example 1 Message in Figure 1

(1,1) A
(1,2) B
(1,3) E
(3,1) C
(3,2) F
(3,3) G
4,1) D and H

the [ fiber over wavelength w. Figure 1 depicts all the assignments that are suffi-
cient to transmit all the messages given in Example 1. For each wavelength w every
node-fiber destination pair may be in at most one assignment, i.e., one of the sets

i1~ The set S¢” denotes the node-fiber pairs that will not receive a message on
wavelength w. In other words, an assignment is a partition of the nodes-fiber pairs
for each wavelength w into sets as specified in (1.1).

Yw partition {1,2,... n}X {1,2,...,9}
into Séu, Siljl, ngl? veny ’Ill fO?" 1 S { S (11)

In Figure 1 we give an assignment for the two wavelengths (w; and ws). On
wavelength wy, the message labeled “A” is sent from node 1 on f; and received
by node 2 on fi. So, Si; = {(2,1)}. No messages are sent from node 1 on f5, so
Siz = (). The multicast labeled “B” is sent from node 1 on f3 and received by both
node 2 on fp and by node 3 on f, so St; = {(2,2),(3,2)}. Remember that since
nodes cannot send and receive on the same fiber-wavelength pair, once node 1 sends
on frw; it cannot receive on fiw;. The nonempty sets S}, for the assignment defined
in Figure 1 are given in Table 3. ,

Table 3. Assignments given in Figure 1.

Wavelength wq Wavelength wa
5(1] :{(L 1)’(1’ ) (3’ 1)’ 5(2] :{(L 1)}(1’2)’( ) )
(4,1),(4,2)} (3,3),(4,2), (4,3)}
51 1 =121} 51 1=1(2,1),(3,2)}
513*{(2 2),(3,2)} 531*{(2 2)}
531—{(12),(, 3),(4,3)} 533—{( 1)}
Sin=1{(3,3)} Sis={(1,3),(2,3)}

Note that if Sj9 # 0, then (4,1) € S¢’, since for each wavelength w a node-fiber
pair used to send a message cannot be used to receive a message. Additionally, for
every fiber [ the node-fiber pair (7,1) should not be in any set S} since nodes do not
need to send a message to themselves.
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A communication schedule for a problem instance is a partition of the assign-
ments such that each multicast can be realized by a distinct set of assignments in
the partition. In other words, a partition of the assignments S;’; into the sets ; ;
is a communication schedule if for every multicast (7, ) in the pr;)blem instance we
have that d;; is exactly equal to all the nodes in the node-fiber destination pairs
Sy, € t; ;. Table 4 shows the nonempty sets ¢;; for the assignments in Table 1 for
the problem instance given in FExample 1.

Table 4. Nonempty ¢; ; sets for Example 1..

Set t;;  Partition of S},  Message Destinations

t11 {s1 1} {2}
11,2 {Si,3} {2, 3}
1,3 {si3} {2, 3}
t3,1 {‘5%71} {L 2a 4}
39 {S3 1} {2}
t3.3 {53 5} {4}
ta1 {Si1, Sis} {1, 2, 3}

1.2. Related Work

The SWA problem was shown to be NP-Hard for both preemptive (operations can be
stopped or preempted, and resumed at a later time) and non-preemptive (operations
cannot be preempted) cases.” Bampis and Rouskas” developed efficient approxima-
tion algorithms for both cases. Li and Simha? consider the offline WAP over multiple
fibers in a unicast only environment. The main result in Ref. 3 is that in a multifiber
network, switching messages between the fibers increases wavelength utilization. For
star networks, WAP is known to be NP-Complete over a single fiber®, but in Ref. 3,
optimal polynomial time algorithms for the cases of dual and multifiber networks
are developed. For ring networks, the dual and multifiber cases are known to be NP-
Complete and upper bounds are established for both cases.? Several papers consider
multicasting environments over all optical single fiber WDM networks.!* Thaker
and Rouskas? survey multicast scheduling algorithms (MSAs) in single fiber star
networks.

In this paper we extend the above research by considering the offline version of
the WAP in multifiber multicast networks. We use an optical star network as our
model and develop bounds for single, dual, and multifiber networks using WDM.
As pointed out before, our results can be easily extended to the SWA version of our
problem.

1.3. Conventions and Outline

We introduce the notation (« | 5 | v ) to refer to subsets of problem instances as
follows. The first and second terms, o and 3, specify that every node in the system
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can receive at most o messages and send at most 5 multicasts. Additionally, there
is at least one node in the system that receives o messages and sends 8 multicasts.
We consider the cases where the values of a and 3 are 1, 2, or n. Corresponding
to the values of [, the cases are called single, dual and multimessage multicasting,
respectively. The number of fibers is v. We assume that all fibers have the same
number of wavelengths.

For every system, ( « | B | v ), we exhibit a lower bound and an upper bound
on the number of wavelengths required per fiber. By the lower bound x we mean
that there exists at least one problem instance, in this specific system, that requires
at least x wavelengths per fiber in order to achieve conflict free transmission of all
its messages. By the upper bound ¥y, we mean that every problems instance, in this
specific system, can achieve conflict free transmission of all its messages with at
most y wavelengths per fiber.

Throughout the paper we use the terms wavelength and color interchangeably.
Additionally, although the internal routing node is always present, in this paper
we simplify our descriptions and figures by ignoring it and showing all messages
going from one node in the system directly to another node in the system. We call
this representation the message directed multigraph. The message directed graph for
Example 1 is given in Figure 2. Strictly speaking it is not a multigraph because
there are thin lines joining (bundling together) directed edges (messages) in order
to represent multidestination messages. We corrupt existing notation and refer to
the graphs as multigraphs. The message directed multigraph is called the message
multigraph when all messages have a single destination (unicasting), and we ignore
the direction of the edges. A solution is an assignment of fiber-wavelength pairs
to both ends of each edge in such a way that the restrictions discussed above are
satisfied. E.g., the wavelength must be the same on both ends of an edge; no two
different messages originating or ending at the same vertex can be assigned to the
same fiber-wavelength pair; etc. When there is just one fiber and all messages are
unicasts, our problem corresponds to the chromatic index problem which is defined
below.

The chromatic index (or edge coloring problem) of a multigraph is the minimum
number of colors required to color the edges of a multigraph so that no two edges
emanating from the same vertex have the same color. The corresponding decision
problem is known to be NP-Complete® and there are several well known approx-
imation techniques for the edge coloring problem. The best-known approximation
algorithm appears in Ref. 9. Our problem is equivalent to the edge coloring problem
when all messages are unicasts and the number of fibers is equal to one. It is not
known whether or not our problem is NP-complete when there are two or more
fibers.

For every problem instance a trivial lower bound is simply PTM
per fiber. About half of the lower bounds we have obtained are equal to this trivial
bound and the remaining lower bounds are obtained using examples that range

W wavelengths
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Fig. 2. Message Directed Graph for Example 1.

from simple to very complex problem instances. Almost all of our results are given
in Table 5. LB stands for Lower Bound, and UB stands for Upper Bound in Table
5. When there is just one value it means we have tight bounds, i.e. LB=UB. It is
assumed that n > 2 and g > 2, except for problem ( 2 | n | g ) where the lower
bound is valid for ¢ > 4; and, the UB valid for ¢ > 3. Detailed proofs of all the
results appear in.'®

This paper includes the most interesting of the results in Table 5. The remaining
results listed in the table appear in Ref. 10 and were obtain by using similar argu-
ments to the ones used in this paper. The paper is organized as follows. In Section 2
we present our (simple) bounds for the (1|1 | g ) problem. In Section 3 we present
our lower bound of four for the (2 | 1 | 1 ) problem and then we show that every
such problem instance never needs more than 5 colors (wavelengths). Furthermore,
such coloring can be easily constructed in O(n) time. In Section 4 we present a
complex lower bound and a simple upper bound for the (n | 1| ¢ ) problem. A
lower bound for the (2|2 |2 ) problem is established in Section 5. Section 6 has an
interesting upper bound for the (n | n | g ) problem. We present our conclusions in
Section 7.

2. Bounds for the (1|1 | g ) Problem
2.1. One Fiber (LB = UB = 3)

Let us consider single fiber networks where every node can receive up to one message
and send up to one multicast. The lower bound and the upper bound are both equal
to 3 wavelengths when there is one fiber. To establish the lower bound, consider
the simple problem instance with three nodes forming a loop (Figure 3). It requires
three colors because each of the three edges must be colored differently than the
other two.

Next, we show that the upper bound is also three. Every problem instance with
nodes sending up to one multicast and receiving up to one message can be viewed
as a collection of disjoint subgraphs. Fach subgraph is a tree, plus there could be
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Table 5. Lower and Upper Bounds for the Number of Wavelengths required per Fiber.

- send<1 send<1 send<1
Fibers rec. <1 rec. <2 rec. <n
LB=4 LB=2n
1 3 o
UB=35 UB=2n+ B_]
2 1 2 n
i i [
g o—
: send<2 send<2 send<2
Fibers rec. <1 rec. <2 rec. <n
1 3 6 3n
LB=n
2 2 3 PI;]
UB=|=
2
1 | B
g o
: send<n send<n send<n
Fibers rec. <1 rec. <2 rec. <n
1 n+l 2n+2 n*+n
n+1 LB = Fiil LB = Zj']
2 5 2 22
—_ —_ +
UB =n+1 UB = FTE]
_ |2 - 52::1
. P i+ LB= g_] LB= gT
2n+ 2n?
& UB = r“{] UB = [_gzig
2 3
Fig. 3. Three Colorable Multigraph.
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a single additional edge in the network from a node to the root. We call the edges
in each tree, tree edges; and the single additional edge is called the back edge. We
color each of the disjoint trees with three colors as follows. Color the tree edges from
the first level to the second level with color 1. Color the tree edges from the next
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level to the following level with color 2. Repeat this process through all of the levels,
alternating between color 1 and color 2. Finally, color the back edge with color 3.
Clearly, this coloring is a valid one.

Theorem 2.1. The lower and upper bound for the (1 | 1| 1) problem is three.
Furthermore the upper bound can be generated for any problem instance in linear
time with respect to the input length.

Proof. The proof of the lower and upper bound follows from the above discussion.
It is simple to show that the above wavelength assignment procedure can be easily
constructed in linear time with respect to the number of nodes and edges in the
graph. O

2.2. Two or More Fibers (LB = UB = 1)

In this case, the lower bound and the upper bound are both equal to 1A/ f. The lower
bound is obvious since there is a node that receives a message and sends a multicast.
An algorithm to “color” the messages is a simple one. All messages are sent out on
fiwy (fiber one and wavelength one). Next, we will utilize the dual fiber network
and switch all the messages to fiber two, i.e., fow;. Since every message is sent out
on fiwi, received on fowg, and every node can receive at most one message, there
will not be any conflicts. Therefore, every problem instance can be colored with one
color per fiber. Note that when there are more than two fibers available the upper
bound does not decrease.

Theorem 2.2. The lower and upper bound for the (1|1 | g ) problem, for g > 2,
is 1 color per fiber. Furthermore the upper bound can be generated for in linear
time with respect to the input length.

Proof. The proof of this theorem follows from the above discussion. O

3. Bounds for the (2|1 |1 ) Problem

For single message multicasting where every node can receive up to two messages
over a single fiber, we show a lower bound of 4 A/f and an upper bound of 5 \/f.
It is important to note that all the figures in this section do not have the line that
bundles multidestination messages. The reason for this was to make the figures easier
to follow. This does not create an ambiguity because every node sends at most one
multicast.

Let us now establish the lower bound with the problem instance given in Figure
4. We now show that this network cannot be colored with 3 colors (which correspond

to fiwi, fiwe, and fiws).

Theorem 3.1. The lower bound for the (2| 1|1 ) problem is 4 colors per fiber.
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Fig. 4. Multigraph requires four colors.

Proof. The proof is by contradiction. Suppose that the above multigraph can be
colored with three colors. Without loss of generality we can assign color 1 to edge A,
color 2 to edge C, and color 3 to edge D. Since there are only three colors available,
it must be that at each vertex, the edges emanating from that vertex are colored
identically. Therefore, edge B must be colored with color 2, because edge C has been
assigned color 2. Similarly, edge H must be colored with color 1, and edge E must
be colored with color 3. Now edges F and G cannot be colored with any of the three
colors because it creates a conflict (Figure 5). ]

Fig. 5. Edges F and G cannot be colored with colors 1, 2, or 3.

Figure 6 shows a color assignment using 4 colors for the multigraph in Figure 4.

Fig. 6. Multigraph is four colorable.
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To show the upper bound of 5 A/ f we first consider the subproblem where every
node has exactly two outgoing edges (i.e., every multicast has two destinations) and
two incoming edges. We present a constructive proof that shows that every such
problem instance is colorable with 5 colors. Then we show how to use this result to
color all problem instances with 5 colors. The resulting algorithm takes O(n) time.

Lemma 3.1. FEvery problem instance where every node has exactly 2 outgoing edges
(i.e., each multicast has two destinations) and exactly 2 incoming edges can be col-
ored with 5 colors (which correspond to fiwy through fiws). Furthermore, this pro-
cess can be easily implemented to take O(n) time, where n is the number of vertices
in the multigraph.

Proof. Our proof is constructive. We consider each node one at a time. When
considering a node x we color its incoming edges and in some special cases, we must
recolor some previously colored edges. We will refer to the nodes where the two
incoming messages to node x originate the “parents” of node z and label them P1
and P2. If any of these edges have not yet been colored then assume (without actual
assigning) they have been colored with any one of the five colors without creating
a conflict with the other incoming edge to P1 or P2. Since both messages leaving
a node belong to the same multicast, they can be colored with the same or with
different colors. This allows us to ignore how the messages that nodes P1 and P2
send to nodes other than z are colored. There are three cases depending on the
number of different colors assigned to the incoming edges to P1 and P2. The proofs
for the first two cases are simple and similar to each other, while the proof of the
third case is more complex.

(®)

Fig. 7. The three different cases.

Case 1: The incoming messages to P1 have different colors than those incoming to
P2.

Without loss of generality assume that the incoming messages to P1 are col-
ored 1 and 2; and the incoming messages to P2 are colored 3 and 4 (Figure
7(a)). Now, without considering the edges emanating from node 2, the edge
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from P1 to z could be colored 3, 4, or 5; and the edge from P2 to z could be
colored 1, 2, or 5. The number of these available colors would be the least if
the edges leaving node x have been assigned two different colors. This could
eliminate at most two color choices from both of node 2’s incoming edges.
But even so, node x's incoming edges could still be colored with the remain-
ing colors, because in all cases there will be at least one color available in one
of the incoming edges to node z that is not available in the other incoming
edge. Given this we know it is possible to color node z’s incoming edges with
the remaining colors.

The incoming messages to P1 have one color in common with those incom-
ing to P2.

Without loss of generality, we may assume that the incoming messages to
P1 are assigned colors 1 and 2; and the incoming messages of P2 to colors
2 and 3 (Figure 7(b)). Now, without considering the edges emanating from
node z, the edge from P1 to x could be colored 3, 4, or 5; and the edge from
P2 to z could be colored 1, 4, or 5. The number of these available colors
would be the least if the edges leaving node x have been assigned two differ-
ent colors. This could eliminate at most two color choices from both of node
2's incoming edges; but in all cases either there will be at least one color
available in one of the incoming edges to node z that is not available in the
other and vice versa, or one incoming edge has at least one available color
and the other one has two. Given this we know node z’s incoming edges can
be colored with the remaining colors.

The incoming messages to P1 have both colors in common with those in-
coming to P2.

Without loss of generality we can assign the incoming messages of P1 and
the incoming messages of P2 each to colors 1 and 2 (Figure 7(c)). If an edge
leaving node z is an incoming edge to P1 or P2, then the incoming edges to
node z can be colored with the remaining colors, as in Case 2. In all other
cases, we proceed as follows. Without considering the edges emanating from
node z, the edge from P1 to z and the edge from P2 to x could each be
colored 3, 4, or 5. If the outgoing edges from node z are colored, then remove
such coloring. Those edges, leaving node z, may each be colored with two
colors in such a way that they will not conflict with the coloring of the other
edges at the nodes where they end. Let S; be the set of colors of which the
first edge leaving node z can be colored and let Ss be the set of colors of
which the second edge leaving node z can be colored.

If S1 and Sy have a color in common, then these edges (the edges leaving
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node z) can be assigned one such color and there will be at least two possible
colors that can be assigned to node 2’'s incoming edges. Therefore, a valid
coloring is possible in this case.

On the other hand, let us consider the case when S; and Sy do not have
a color in common. Since S7 and Sy have two colors each, there is at least
one color in S; or Sy that is not color 3, 4, or 5. Assume, without loss of
generality, that such color is s € S7. Now, assign color s to the first edge
leaving node 2, and assign one of the colors from S5, let us call it ¢, to the
second edge leaving node z. The incoming edges to node x may then be
assigned to colors {3,4,5} —t. Therefore, a valid coloring is also possible in
this case.

It is simple to show that the above process can be implemented to take O(n)
time, where n is the number of vertices in the multigraph. O

Let us now return to the more general problem where nodes can send up to one
multicast to any number of destinations, and receive up to two messages. We now
show that any such instance can be colored using 5 colors.

Theorem 3.2. Every instance of the ( 2 | 1 | 1 ) problem can be colored with
5 colors. Furthermore, this process can be easily implemented to take O(n) time,
where n is the number of vertices in the multigraph.

Proof. Let G; be any message directed multigraph. Every node in G; has an in-
degree of at most two and an out-degree of at most n. Consider any node 2« of out-
degree zero or one (see Figure 8). Given any 5-coloring of G1—{incoming edges to x}
we now show that the incoming edges to node x in Gy can be colored with the colors
available. For any node 2 of out-degree zero (Figure 8(a)) or out-degree one (Figure
8(b)) with in-degree two we can color its incoming edges without conflicts as follows.
The edge from node p to node 2 cannot be of the same color as the two edges being
received by node p (Figure 8). Similarly for the edge from node ¢ to node 2, two color
choices are not possible. This leaves at least 3 colors available to color 2 edges. The
number of available colors decreases at most by one when we color the outgoing edge
to node 2. In the worst case this leaves at least 2 colors available to color 2 edges.
Therefore, there is always a valid coloring for the two incoming edges to z in G;. It
is simple to see that the same argument holds for any node z of out-degree zero or
out-degree one with in-degree less than two, because there are fewer restrictions.
We now transform G into G such that every node in GG is such that either
the out-degree is one and the in-degree is zero, or the out-degree is at least two and
the in-degree is at most two. The message directed multigraph G2 is constructed
by using the above transformation as follows: Initially we define multigraph G4 to
be a copy of G;. Now, we delete from (G5 the incoming edges to every node with
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Fig. 8. Coloring a Multigraph with five colors.

out-degree zero or one. We repeat this process until no such vertex exists. Then we
delete the isolated vertices (nodes without any incoming or outgoing arcs), if any.
The resulting multigraph is such that for every node either the out-degree is one
and the in-degree is zero or the out-degree is at least two and the in-degree is at
most two.

Let id; be the in-degree of vertex ¢ in G5 and let od; be the out-degree of vertex
i in Ga. Clearly, ¥q,id; = ¥g,0d;. By construction, we know that for each 7 either
id; = 0 and od; = 1, or id; < 2 and od; > 2. In any multigraph with n nodes, let y be
the number of nodes with id; = 0 and od; = 1, and let n —y be the number of nodes
with od; > 2. Therefore, Y, id; < (0xy)+2(n—y) and Xg,0d; > (1xy)+2(n—y).

Since X, id; = Y, 0d;, it must then be that 2(n—y) > y+2(n—y) and therefore
y < 0. So, Ygyid; < 2n and Yg,o0d; > 2n. Now, since Y, id; = g, 0d;, it must be
that every node i is of in-degree 2 and out-degree 2. By Lemma 3.1, such a problem
is 5-colorable. Therefore, every problem instance where all nodes can send at most
one multicast and receive at most two messages can be colored with 5 colors.

It is simple to see that this process can be implemented to take O(n) time, where
n is the number of nodes in the multigraph. O

To demonstrate the constructive proof of Theorem 3.2, consider the problem
instance in Figure 9. Initially, ignore the numbers shown on the edges. The first
step is to delete the edges incident to nodes I and J in Figure 9(a) because these
nodes each have zero outgoing edges. We obtain the multigraph in Figure 9(b). Now
delete from the multigraph in Figure 9(b), the incoming edges to nodes G and H
because these nodes have an out-degree of one and zero, respectively. The resulting
multigraph is given in Figure 9(c). Next, from Figure 9(c), delete the incoming edges
to node F' and obtain Figure 9(d). We have reduced the problem to one in which
all nodes have an in-degree of two and an out-degree of two, when we ignore the
isolated vertices. Now, as illustrated in Figure 9(d), we color the edges using the
constructive proof of Lemma 3.1. We choose nodes one at a time in an arbitrary
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Fig. 9. (a) Example for constructive proof of Theorem 3.2. The steps of the constructive proof are
illustrated in (b), (c¢) and (d).

order and color the incoming edges with the smallest available color. Specifically,
we start with node A and color its incoming edges 1 and 2. Next, choose node E
and color its incoming edges 1 and 2. Node B is next, with its incoming edges being
colored 3 and 4. Node C follows, with its incoming edges being colored 3 and 5,
as does node D with its incoming edges also being colored 3 and 5. The process
continues with the coloring of the edges deleted during the first three reduction
steps. We color the edges incoming to nodes F', G, H, I, and J with the resulting
coloring shown in Figure 9(a).

4. Bounds for the (n |1 | g ) Problem

For the (n | 1 | g ) problem the lower bound and the upper bound are both equal to
[5251 A/f, where g > 2 is the number of fibers. To show the lower bound we give a
problem instance that cannot be colored using ([ ;2 ]—1)A/f. The problem instance
we construct is such that no matter what solution we provide using [ ;23] A/f, there
is a sequence of n-node sets that satisfy the following properties. Each of these n-
node sets has the same colors available for their multicasts. The last of these n-node
sets has less than % of such colors available. Furthermore, all of these nodes in this
last set will send a message to the same node x. Therefore, we will have a conflict
because there will not be enough color-fiber pairs available for the messages that
node  receives. Therefore, there is no solution that uses [ 2] A/f.

We now describe the structure of our problem instance. There are k + 1 levels
of nodes with ¢; nodes in level 4, for 0 < ¢ < k. There are n nodes at level zero
(po = n) and each of these nodes sends a message to all the nodes at level 1. The
arguments that we use require that there be at least n nodes in level 1, all receiving
their messages on the same n element subset of fiber-wavelength (fiber-color) pairs
no matter how the edges from level zero to level one are colored. Since each node
receives its messages in an n-element subset of the fiber-color pairs, then we will be

able to guarantee that at least n nodes at level 1 receive all their messages in the
same n-element subset of fiber-color pairs by letting ¢; = (([Q_LJ_QQ) (n—1)+1
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Inductively, our arguments will require that a set of n nodes at level 4, for 1 <i <k,
that receive their messages on the same n-element subset of fiber-color pairs will all
send their multicast to a set of nodes at level ¢ + 1 and that an n element subset
of those nodes receive their messages on the same fiber-color pair. Since we do not
know which subset of n nodes receives their messages on the same n-element subset
of fiber-color pairs, our construction will have every n-element subset of n nodes at
level i send its message to a set of ¢y distinct nodes at the next level. Therefore,
¢; = (¢;1)¢1 for 7 > 1. Note that this multigraph has a huge number of nodes;
however, this number of nodes is finite. The number of nodes could be decreased
because not all the colors will be available for the send operation of the special n
nodes identified at level i, but doing this would complicate our proof.

Suppose that there is a solution to the problem instance defined above using
([Q_Ll] —1) A/ f colors on g fibers. Let us now identify a set of n nodes, S;, at each
level 4, for i > 1. The first set Sy are n nodes in level 1 that receive all their messages
in the same n-element subset of fiber-color pairs, which we know exist. The set of n
nodes at level i, referred to by S;, for ¢ > 2, is an n-element subset of nodes at level
1 all of which receive their messages on the same set of fiber-color pairs at level i
and whose n incoming messages originate at the nodes in S;_;. By using arguments
similar to the ones above we can establish that such set exists. Let 3; be the colors
on which all the messages of a node in S; are received. Clearly, all the nodes in S;
receive their messages on the same n-element subset of fiber-color pairs, therefore
all the nodes in S; receive their messages on the same colors and therefore 3; is the
same for all of them. We will show that 3; > 3 > ... > B¢. Then by making %
large enough we will reach a contradiction since there will g fibers and fewer than
n/g colors which means that there will not be enough fiber-color pairs for the n
messages arriving at any node in Sg.

Before we prove this fact it is important to consider a problem instance of the
form given above with n = 21, ¢ = 3 and k£ = 4. We claim that the set of multicasts
cannot be delivered with ([g_il] — 1) = 10 wavelengths per fiber. Suppose there is
a solution. Identify the sets Sy, Ss, S5 by the procedure defined above. Now let us
consider the 21 nodes in Sy that all receive their messages on the same fiber-color
pairs. Assume without loss of generality that they receive them on all the 5; = 10
colors. Since there are three fibers, at least one color must be used on the three fibers.
Therefore the set of nodes S; must send all their messages on at most 9 colors and all
the nodes in S3 must receive their messages on the same 9 colors, i.e, B2 = 9. Since
there are three fibers, at least three color must be used on the three fibers. Therefore
the set of nodes Sy must send all their messages on at most 9 — 3 colors plus the
unused color (since only nine colors were used to receive the messages). Hence, all
the nodes in S5 must receive their messages on these 7 colors, i.e, 33 = 7. Since there
are three fibers all of these three colors must be used on the three fibers. So the set
of nodes S3 must send all their messages using at most 3 colors (the unused colors
since only seven colors were used to receive all the messages). But then there will
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be only 9 fiber-color pairs for every node receiving messages from all the n nodes
in S3. So there is a conflict which contradicts our assumption that all the messages
can be transmitted using 10 colors. In what follows we generalize these arguments
to show that it is impossible to use g < [ 7| — 1 colors on problem instances with
n nodes and g fibers. It is important to note that our argument will not hold on the
above problem instance when there are 11 colors. The reason for this is that all of
these colors will be available to send messages at every level because it is possible
to use each color in at most 2 fibers for the messages incoming to each set S;.

Let us generalize our argument to apply to problem instances with any number
of nodes and fibers. Let 3 be the number of colors in the g fibers in which all the
messages that node z in S; (at any level ¢ > 1) receives. Clearly, § < [g%l] -1
It must be that Bg > n, as otherwise there is no feasible coloring of the incoming
messages at the node. Therefore, [2] < 5 < [;Z5] — 1. The number of colors that
are available in the system and were not used in the input messages to node z is
([3251—1—p). Clearly all of these colors can be used for the multicast operation of
node x. In addition to these colors available for the messages to be sent out, we also
have some of the 3 colors used for receiving the messages. In particular, the colors
that were not used in all the fibers. We will bound the number of such colors.

We know that § < [;Z5] — 1 (or equivalently 5 < JZ3), which reduces to
(Bg— ) <nand therefore (Bg —n) < 3. Additionally, we know (g —n) > 0, since
B = [51. Therefore, the number of fiber-wavelength (fiber color) pairs that are not
used in the receiving end of node z is (8g — n). Since (Bg —n) < [3, we know that
at most (3g —n) of these unused fiber-wavelength pairs have a unique color and are
available for the multicast operation (sending messages) of node x. Therefore, the
maximum number of colors available for the multicasting send operation of node z

is:
Bg-m+ (|| -1-5) (1.1)

Lemma 4.1. If node z receives all its messages in (3 different colors, then, when
the number of fibers g is at least two, the maximum number of colors available for
its multicasting send operation is less than B, for [T] < B < [52%5] — 1. In other
words,

(Bg—m)+ ([ =51 = 1=/ <.

Proof. As established above, the maximum number of colors available for any
node’s multicasting send operation is (8g—n)+([ ;27| —1— /). Now, we need to show
that this expression is less than f3; or equivalently, 5(g —1) —n -+ [ L]l -1-p<0.
Let = [;25]—1—hforsome 0 < h < ([Z5]—[2]-1). Substltutmg in the above
expression, we have ([ 2;] —1—h)(g—1) —n+h <0. Next, we let n = c(g—1)+k
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for some positive integers ¢ and 0 < k < g — 1; so, the expression becomes:

([C(gg_#w—l—@(g—l)—nwmo (4.3)

If £ > 0, then Equation 4.3 becomes (¢c+1—1—h)(g—1)—n+h < 0. This expression
reduces to —h(g —2) —k < 0, and this always holds because ¢ > 2, h > 0 and k£ > 0.
On the other hand, if £ = 0, then Equation 4.3 becomes (¢c—1—h)(g—1)—n+h < 0.
This expression reduces to —(¢ — 1) — h(g — 2) < 0, and this always holds because
g>2andh >0.

Therefore, if a node receives all messages in 3 different colors, then the maximum
number of colors available for its multicasting send operation is less than S. O

It is important to note that when [2] < < [ 27] a lemma similar to the previous
one cannot be proved. We now establish our lower bound for the problem instance
defined above.

Theorem 4.1. For g > 2 the lower bound for (n|1|g)is [ 23] A//f.

Proof. By proving Lemma 4.1, we have established that, in our problem instance
when the number of fibers is greater than or equal to two (¢ > 2), 3; > (;41. Since the
number of colors which is used as input to the nodes in sets S; is always decreasing
as we increase 7, by having at most ([25] — [F]) levels of nodes, the number of
colors which are used for a subset of n nodes will fall below %. Therefore, there will
not be enough fiber-wavelength pairs to color the incoming message for these nodes.
This contradicts that our problem instance could be colored with [ 23] —1 A/f
colors. O

Theorem 4.2. For g > 2 the upper bound for (n |1 ]g)is [;2;] A/f. Further-
more, a color assignment can be constructed in linear time with respect to the input

length.

Proof. Now let us establish an upper bound for the maximum number of colors
per fiber which can be used to color all problem instances. To obtain the upper
bound of [ 2] A/f, color the incoming messages at every node (in any order) with
fiw; through flw[LJ, fowy through f2U)|’gL1'|, and so on up to fy—jw; through
= r
k3

fg—lwfrfﬁ' (Note: when 7-7 is not an integer, not all of these fiber-wavelength

pairs will be necessary.) Next, we will utilize fiber g for the multicasts and switch
messages to their appropriate fibers. Le., for every message to be received on f,w,
(fory=1,2,...,g—1land z = 1,2, ..., [g%l]), send it out on f,w, and then switch it
to fyw,. Clearly, our method establishes that every problem instance can be colored
with [-25] A/f. It is simple to show that this coloring can be constructed in linear
time with respect to the input length. O
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5. Lower Bound for (2|2 |2)

For this problem the lower bound is equal to 3 A/f. To establish our lower bound,
we give a problem instance with six nodes that requires at least 3 \/f (see Figure
10). We now show that it is not possible to color the problem instance in Figure
10 with 2 A/f. Figure 10 consists of all unicasts except for edges C and D, which
are part of the same multicast. Note that edges C and D must be sent on the same
fiber-wavelength pair in order for node 2’s edges to be colorable in 2 A/ f since there
are two fibers. Edges can be assigned to fiwi, fowi, fiws, or fows. Since we can
switch messages on the same wavelength from one fiber to another, for this example
we will ignore the fiber number and concentrate on the fact that every node can
have at most two edges on w; and at most two edges on ws. Since there are two
fibers and two wavelengths, it has to be that the messages C and D are sent on the
same wavelength in a feasible solution. To see the conflicts that arise, let us focus
our attention on edges A and C.

K

Fig. 10. Requires 3 \/f.

Edges A and C must either be assigned to the same wavelength or to different
ones. First, we consider assigning edges A and C the same wavelength (without loss
of generality we can choose wy). This forces edges F and G to be assigned to wa,
which in turn forces edge B to be assigned to w;. Furthermore, since edge D is on
wy (because edge C and D must be assigned to the same wavelength, see comment
above), edges H and I must be assigned to wg. This forces edges J and K to be on
w; which creates a conflict at node x. Therefore, assigning edges A and C the same
wavelength does not allow for a feasible solution.

Next, we consider assigning edges A and C to different wavelengths (without loss
of generality we can let edge A be w; and edge C be ws). This forces edges F and
G to be on different wavelengths, which in turn forces edge B to be assigned to ws.
Since edge D is on ws (because there are two wavelengths and two fibers only), edges
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H and I must be assigned to w;. This forces edges J and K to be assigned to wo
which creates a conflict at node 2. Therefore, assigning edges A and C to different
wavelengths does not allow for a feasible solution.

Theorem 5.1. The lower bound for (222 ) is to 3 A\/f.

Proof. By the above discussion. O

We should note that edge E, although not yet mentioned directly, is necessary.
Without edge E, the edges leaving node z could be viewed as unicasts, meaning
edges C and D could be sent on different fiber-wavelength pairs. We should point
out that, a multigraph that consists of only unicasts can always be colored with
2 A/ f. One such coloring can be generated by an elegant linear time algorithm. For
completeness, the following theorem establishes this result.

Theorem 5.2. The upper bound for the ( 2 | 2 | 2 ) problem when all the multi-
casts are unicasts is 2 A/f. Furthermore, a color assignment can be constructed in
linear time with respect to the input length.

Proof. Simply add edges to the system so that every node has 2 incoming and 2
outgoing edges. Then, we may view the edges as a set of node disjoint Fuler circuits.
Note that a circuit that goes through n nodes in the multigraph has 2n edges, so in
every Euler circuit every node is visited twice. We consider each Euler circuit one
at a time and traverse it. We assign wavelength w; to the first edge and ws to the
second one and continue alternating until we have assigned wavelengths to all the
edges. This will form a valid color assignment for the nodes in the circuit. Repeating
this operation on all the circuits generates a coloring for the message multigraph. O

6. Upper Bound for the (n | n | g ) Problem

_n?

oD A/ f, where i is any
positive integer such that 1 <1i < g — 1, for the (Zn | n | g ) problem. The value for

m is minimum when i = £ in which case m = gzz”_g which is less than two times the

lower bound given in Tabzle 5.

The following descriptions assume that the values of i, m, and n are such that
when used to assign wavelengths always result in integer values for the expressions
below. When this is not the case similar results have been obtained, so we refer the
reader to Ref. 10. The messages to be received by all nodes are assigned as follows.

The idea is to use i fibers (f1, f2, ..., fi) to receive the messages at every node.
We will use each fiber for % of the messages. Since each fiber has m wavelengths, we

will allow the use of 7 wavelengths for each message. So the first incoming message

In this section, we establish an upper bound of m =

at every node can be Lassigned to fiber one (f1) and any of the wavelengths from set
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S (see Figure 11). The second incoming message at every node can be assigned to
f1 and any of the wavelengths from set Sa; and so on up to the (%)th message which
can be assigned to fi and any of the wavelengths from set S». The next Z messages
are assigned similarly, but using fs. This coloring process continues until the last
set of 2 messages which use f; and the same sets of wavelengths. At this point,
using this technique, all of the incoming messages at every node can be assigned a
unique fiber-wavelength pair. The appropriate wavelength to use for every incoming

im
im im 2im
F+1 F+2 T SZ
n im n im
(1) R (F-1)0e2) - m Sﬂi
T] Tz Tim

n

Fig. 11. Sets of wavelengths S; and T;.

message will be determined based on the multicast’s wavelength assignments, which
are described below. Note that we have used a total of ¢ fibers and m A/f to assign
the messages received at every node.

Next we discuss the multicasts sent from every node. In order to avoid conflicts
every message in every multicast must be sent using a wavelength in each of the
sets S, 59, ..., Sn on some fiber; and no other multicast emanating from this node
can use these ﬁﬁer-wavelengths pairs. To accomplish this we define a set T'; as the
set of all of the j elements in each of the sets Si, Sa, ..., S% (when viewing these
sets as order sets). Figure 11 gives a possible definition of the sets S and 7T'. Clearly,
there are % different T" sets. So, each fiber can be used for % different multicasts.
Therefore, the total number of fibers needed to send the n multicasts at every node
is % (fibers fit1, fita, s fi+?‘—2)' Therefore g =i + % which implies m = 7;(;——21)'
Theorem 6.1. An upper bound for the (n |n | g ) problem is m = R;—Ll) A f, for
any positive integer i such that 1 <7 < g — 1. The number of wavelengths per fiber
is minimum and equal to 322% A/f when i = £. Furthermore, a color assignment
can be constructed in linear time with respect to the input length.

Proof. By the above discussion. O

7. Conclusion

We determined lower and upper bounds on the number of wavelengths required per
fiber for star networks where the messages are routed using Wavelength Division
Multiplexing. Single, dual, and multimessage multicasting were considered along
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with single, dual, and multifiber optical networks. If, as networks develop, the avail-
able fibers increases beyond the amount of traffic in the network, (i.e. g > n), many
of our results reduce to 1 A/ f; however, this seems unlikely to happen given current
trends. Future work could include continued efforts to obtain tight bounds for all
of the remaining systems within star networks along with finding bounds for ring
networks and more general network topologies.

The most interesting open problem is to tighten the lower and upper bound for
the (2] 1] 1) problem. We generated a huge number of problem instances all of
which could be colored with four colors. However, it does not seem possible to make
our algorithm that use five colors to only use four colors, even when every multicast
has two destinations. Another interesting problem is to narrow the gap between the
lower and upper bound for the (n | n | g ) problem. It is not known whether our
problems are NP-hard when there are multicasts, we conjecture they are NP-hard.
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