
www.elsevier.com/locate/parco

Parallel Computing 30 (2004) 973–998
n-Cube network: node disjoint shortest paths
for maximal distance pairs of vertices q

Teofilo F. Gonzalez *, David Serena

Department of Computer Science, University of California at Santa Barbara,

Santa Barbara, CA 95064, United States

Received 21 December 2002; revised 20 July 2004; accepted 22 July 2004

Abstract

In parallel and distributed systems many communications take place concurrently, so the

routing algorithm as well as the underlying interconnection network play a vital role in deliv-

ering all the messages efficiently. Fault tolerance and performance are often obtained by deliv-

ering the messages through node disjoint shortest paths. In this paper we present two efficient

algorithms to construct, under certain conditions, pairwise node disjoint shortest paths for

pairs of vertices in an n-cube in the presence of faulty nodes. The first algorithm has O(m2)

time complexity, where m is the number of input bits, and the second one takes O(m3), but

it solves more general problem instances. We also present an efficient algorithm for the

extreme version of the edge disjoint shortest paths problem when n is odd.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Fault-tolerance; Hypercube; n-cube; Pairwise node disjoint shortest paths; Routing
1. Introduction

The n-cube is a fundamental structure for parallel computing. Several systems

with this communication architecture have been built. The SGI Origin computer
0167-8191/$ - see front matter � 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.parco.2004.07.006

q Preliminary versions, without the proofs, of this work appear in [2,5].
* Corresponding author.

E-mail addresses: teo@cs.ucsb.edu (T.F. Gonzalez), dserena@cs.ucsb.edu (D. Serena).

mailto:teo@cs.ucsb.edu
mailto:dserena@cs.ucsb.edu

974 T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998
system is a recent computing platform whose interconnection network is a

variation of the n-cube. There are many algorithms for several different routing

problems that arise while executing code on an n-cube connected machine. In this

paper we present efficient algorithms for routing problems which are common to

many applications. Our problem has applications when network traffic endpoints
are defined by empirically observed flows; or are specifically initiated by the indi-

vidual nodes in the network to designated destinations.

The p-pairwise node disjoint shortest paths problem for the n-cube is given p pairs

of nodes and q blocking nodes denoted by

X ¼ fX 1;X 2; . . . ;Xp;Xpþ1;Xpþ2; . . . ;Xpþqg;

where Xi = (si, ti), for 1 6 i 6 p, and Xi = (ai) for p + 1 6 i 6 p + q, find node disjoint

shortest paths in the n-cube for all the pairs Xi, i.e. the paths do not include blocking

nodes and no two such paths have a node in common. Each pair Xi = (si, ti) consists
of two endpoints which are called the source and target, respectively. The nodes ai (or

blocking nodes or faulty processors) may also be included as part of the input. Every

node in the n-cube is represented by an n-bit string and there is an edge between two

nodes if their bit representation disagrees in exactly one bit. The distance between the

source and target nodes of pair Xi (or pair distance) in the n-cube is denoted by

d(Xi) = d(si, ti) and it is the number of bits that differ in the bit representation of si
and ti. The distance d(a,b) is frequently referred to as the Hamming distance between

nodes a and b in the n-cube. By a shortest path for the pair Xi we mean any path from
si to ti with length equal to d(Xi), i.e. the path must be a shortest path in the graph

between the two nodes independent from any other paths, blocking nodes or end-

points of the other pairs. The edge disjoint shortest paths problem is given X (without

faulty nodes or q = 0) in the n-cube, find shortest paths connecting each si to ti such

that no two paths have an edge in common. The edge disjoint shortest paths problem

is said to be a partial half permutation routing request because every vertex in the

n-cube is occupied by a source or target, but not both. However, the node disjoint

shortest paths problem defined above is said to be a partial half permutation routing
request with singletons.

Both the decision problem and the search problem are important for analysis. In

the (undirected) n-cube there are ‘‘yes’’ and ‘‘no’’ instances of the k-pairwise node

disjoint shortest paths problem. The algorithms presented herein are search algo-

rithms in the sense that they construct for yes instances a set of node disjoint shortest

paths.

In the context of undirected graphs the order of the source to target in the routing

request is irrelevant. Therefore, we consider the undirected pairs Xi = {si, ti},
1 6 i 6 p, in lieu of the directed pairs Xi = (si, ti), 1 6 i 6 p. Directed pairs are rele-

vant for directed n-cubes and graphs. In the 2-cube X = {{00,11},{01},{10}} has

no solution because every (shortest) path between 00 and 11 must go through 01

or 10. On the other hand, Y = {{00,11},{01}} does have a solution with pair

{00,11} yielding route 00 M 10 M 11. For problem instance Y given above the only

possible routing generated by a search algorithm would be 00 M 10 M 11. Note that

T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998 975
while problem instance Z = {{000,011},{001},{010}} has no shortest path solution,

it does have a routing with arbitrary length paths: 000 M 100 M 101 M 111 M 011.

To clarify the problem the possible shortest path routings are 000 M 010 M 011

and 000 M 001 M 011. Though these paths are shortest paths by our definition, nei-

ther of these paths may be traversed due to the blocking nodes in the input: {001}
and {010}. For edge disjoint shortest paths both of those paths are possible, because

we do not have blocking nodes. However the problem instance Z = {{00,11},

{10,01}} does not have edge disjoint shortest paths.

In this paper we present efficient algorithms for versions of the k-pairwise node

disjoint shortest path problem, as well as for the k-pairwise edge disjoint shortest

path problem, in the n-cube. Before we outline our results in more detail we discuss

previous work related to our problems.

Many of the message routing problems mentioned above are known to be com-
putationally difficult for general graphs when one allows arbitrary length paths,

rather than just shortest ones. Karp [9] analyzes the k-pairwise disjoint paths

problem in general graphs and establishes NP-completeness. Shiloach [15] pre-

sented a polynomial time algorithm to construct node disjoint paths in a graph

for two pairs of vertices and Watkin [16] showed that (2k � 1)-connectedness is

a necessary condition for a graph to admit disjoint paths for a set of k pairs of

vertices.

The related problem where one seeks to find p-pairwise node disjoint paths (arbi-
trary distance pairs) from vertices in set {s1, s2, . . ., sp} to vertices in set {t1, t2, . . ., tp}
is called the set-to-set node disjoint paths problem. In this problem one needs to

find p node disjoint paths from one set to the other such that the paths are from

si to t/(i) where /:{1,2, . . .,p}! {1,2, . . .,p} and / is any 1–1 function. Whereas in

the k-pairwise problem / is the identity function, namely /(i) = i. The undirected

vertex version of Menger�s theorem is applicable to the former problem, but not

the latter [13]. It is not applicable to the set-to-set node disjoint shortest paths prob-

lem as Menger�s Theorem may imply arbitrary length paths. Note that for the arbi-
trary length k-pairwise node disjoint paths problem a separating set of nodes of

degree k need not imply that k pairwise node disjoint paths exist. The counter exam-

ple in Fig. 1(b) shows that although the separating set for vertices has cardinality

two, there do not exist two pairwise node disjoint paths for the routing request

X = {{s1, t1},{s2, t2}}.
(a) (b)

Fig. 1. Even though there is a 2 node separating set (circled) the routing request X = {{s1, t1},{s2,t2}}

shown in (a) has a solution to the node disjoint paths problem while the graph in (b) does not.

976 T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998
Madhavapeddy and Sudborough [11] developed an O(n3 logn) time algorithm to

find disjoint paths for k pairs in an n-cube when 2 < k 6 dn=2e and n P 4. Note that

this algorithm finds arbitrary length paths, but each path is of length at most 2n.

Subsequently, Gu and Peng [6] presented an algorithm that takes O(kn logn) time

to find node disjoint paths for k pairs; even if there are n � 2k + 1 faulty clusters
of diameter 1, and the value of k is at most dn/2e.

The main difference between the work mentioned above and ours is that we are

interested in finding either node or edge disjoint shortest paths rather than just node

or edge disjoint paths (i.e. for each pair Xi the length of the path must be d(Xi)).

Rabin [14] proposed an algorithmic strategy which addresses fault-tolerance, security

and load balancing. While the paper is an interesting starting point, it is clear that in

general, three arbitrary parameters of optimization may sometimes be contradictory

or at least mutually interdependent.
Gu and Peng [7] address the problem of constructing set-to-set node disjoint

paths. The main difference between their problem and ours is that they just need

to find a path from each vertex in one set to a (different) vertex in the other set;

whereas, in our problem one constructs shortest paths for a given set of pairs of ver-

tices. Gu and Peng�s paper [7] also presents algorithms for the node-to-set node dis-

joint paths problem. Gao et al. [1] presented an algorithm for finding node-to-set

node disjoint shortest paths. They exploit the fact that local n-cube constraints,

the existence of a first step in a path, dominate in determining the existence of
node-to-set node disjoint shortest paths. Namely, the existence of a system of distinct

representatives (SDR) is a necessary and sufficient condition for the existence of

node disjoint shortest paths. We have observed to some extent, similar characteristics

in restricted versions of our problem. Greedy algorithms typically exploit non-path

dependent characteristics of a problem. The path search algorithm in [1] can be prop-

erly characterized as just such an approach since once the SDR nodes are found one

may easily construct the paths. Node-to-set approaches in the n-cube are highly

pragmatic in the sense that they have applications in the context of fault-tolerant dis-
tributed networks. Latifi et al. [10] also address this issue for the n-cube. The node-

to-set problem reduces to the set-to-set problem after finding the first link for each

path. Finding k disjoint paths between two nodes in the hypercube has also been

studied [6].

Madhavapeddy and Sudborough [12] show that the k-pairwise edge disjoint paths

problem in the hypercube is NP-complete. Unfortunately they did not include the

proof that the problem is in NP and we were unable to independently validate that

proposition. Their problem allows for vertices in the n-cube to be the source and
destination for many pairs. Gonzalez and Serena [4,3] recently showed that the k-

pairwise edge disjoint shortest path problem is NP-complete even for the partial half

permutation routing request and d(Xi) 6 3. This result has been extended to arbi-

trary length paths and d(Xi) 6 3 [3]. Madhavapeddy and Sudborough [12] conjec-

tured that the k-pairwise node disjoint paths problem is NP-complete. Recently,

this problem has been shown to be NP-complete by Gonzalez and Serena [4,3]. They

showed that the k-pairwise node disjoint shortest path problem is NP-complete even

for the partial half permutation routing request and d(Xi) 6 3. Since the general

T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998 977
problems are computationally intractable, we present in this paper efficient algo-

rithms for restricted versions of these problems. Gonzalez and Serena [3,4] have also

developed polynomial time algorithms for the node (and also the edge) disjoint

shortest paths problem when d(Xi) 6 2.

Sections 2 and 3 present polynomial time algorithms for the extreme version of
our problems. The extreme version of the p-pairwise node disjoint shortest paths

problem for the n-cube requires that d(Xi) = n for every pair Xi. The extreme version

of the p-pairwise edge disjoint shortest paths problem is defined similarly. Remember

that the path for each pair Xi must have length equal to d(Xi). For this version of the

problems the endpoints of every pair Xi are complements ((2n � 1)) of each other in

the n-cube, i.e., �si ¼ si 	 ð2n � 1Þ ¼ ti, where ‘‘	’’ is the bitwise ‘‘exclusive or’’

operation.

In Sections 2 and 3 we present algorithms for the extreme version of the p-pairwise
node disjoint shortest path problem. The algorithm in Section 2 takes O((p2 + pq)n2)

time, and solves problem instances such that p 6 dn/2eand 2p + q 6 n + 1. The algo-

rithm in Section 3 is for the case when p + q 6 n � 1, and therefore applies to a larger

set of problem instances. This algorithm has time complexity O((p2 + p q)n3). In

Section 4 we present an efficient algorithm for the extreme version of the edge dis-

joint shortest paths problem. The time complexity for the algorithm is O(k n), and

works for all 1 6 p 6 2n�1 and n odd. For the case when n is even we show paths

do not always exist for some values of k.

1.1. Notation and definitions

Our previous definitions imply that all the endpoints and blocking nodes must be

different, i.e., the cardinality of the set denoted by e(X) is 2p + q, where

eðX Þ ¼ fall endpoints and blocking nodes in Xg ¼
[pþq
i¼1

X i:

Let us now define some basic terminology for the n-cube or equivalently the n dimen-

sional hypercube. The n-cube is an undirected graph G = (V,E) with vertex set

V = {0,1, . . ., 2n�1} represented by a string of bits in the range 1

00 � � � 0|fflfflffl{zfflfflffl}
n2

¼ 0 6 v 6 2n � 1 ¼ 11 � � � 1|fflfflffl{zfflfflffl}
n2

:

The undirected edges E are given by the set {{a,b}jd(a,b) = 1}.

Since shortest paths in the n-cube are analyzed in this paper, it is instructive to

define a shortest path predicate. C(s, t,u) is true if and only if there exists a shortest

path in the n-cube from s to t inclusive of u. Formally,

Cðs; t; uÞ ¼ ðs	 t ¼ s	 u bitwise or u	 tÞ;
where ‘‘	’’ is the bitwise ‘‘exclusive or’’ operation.
1 Hereafter binary numbers will appear without the subscript ‘‘2’’.

978 T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998
This predicate may be defined equivalently as

Cðs; t; uÞ ¼ ðdðs; uÞ þ dðu; tÞ ¼¼ dðs; tÞÞ:
The subcube defined by the source and destination nodes s and t is defined by

Kðs; tÞ ¼ fu j Cðs; t; uÞ is trueg:
Note that when s = t the subcube is s = t = u. Vertices in K(s, t) are all the nodes

which reside on a shortest path from s to t, inclusive of the endpoints.

Qualitatively the 1-bits in the ‘‘bitwise exclusive or’’ (s	 t) operation can be

viewed as bits which change as we move from one node to the next along a shortest

path from s to t. Note that due to the topology of the n-cube, at each step only one
bit changes, as in the ‘‘Gray Code’’.

An alternate representation can be found in the paper [1] where ordered sets are

used to denote a transition from a node to the next in a shortest path. For example

the path

000! 010! 011! 111

is denoted by the ordered set O = (1,0,2). There are many other equivalent notations
in the literature. We utilize this notation as an output format for the algorithm in

Section 4.
2. The simple approach: p < dn/2eand 2p + q < n + 1

In this section we prove that when n > 2, p 6 dn/2e, and 2p + q 6 n + 1 node dis-

joint shortest paths exist for the extreme version of our problem. As shown in
Section 2.1, our constructive proofs can be easily implemented to take O((p2 + pq)n2)

time.

Our algorithmic strategy which we call the 1-bit approach is defined as follows.

First we find an integer k which represents the position of one of the bits in the bin-

ary representation of the vertices. The bit satisfies the property that for each end-

point x 2 Xi in every pair Xi, 1 6 i 6 p, and its neighbor g(x) = x 	 2k (x and g(x)

differ only on bit k) in the n-cube are such that all the g(x) nodes are distinct and

every g(x) 62 e(X). In Lemma 2 we show that a bit k satisfying this condition always
exists when p + q < n. The selection of this bit k is very important because we use it

to reduce our original problem of finding node disjoint paths in an n-cube for p pairs

of vertices with q blocking nodes to two independent problems. One subproblem,

which is rather simple, is in the subcube where bit k is zero and the other one in

the subcube where bit k is one. The first subproblem consists of finding a path for

one pair in the presence of a number of blocking nodes. One isolates this subproblem

by making a transition on an endpoint of one pair using bit k. Lemma 1, whose con-

structive proof is rather simple, establishes that a solution exists for this subproblem.
The other subproblem has p � 1 pairs of vertices with another set of blocking nodes.

This subproblem is solved recursively.

Let us illustrate our 1-bit approach with the following example. The value of n is

3, X1 = {000,111}, and X2 = {100,011}. Transitioning on the bit k = 2 is not allowed

T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998 979
because the neighbor of 000 along bit 2 is 100 2 e(X), but bit 0 and bit 1 are possible

choices for k. Using bit k = 1 our approach is to select from X1 the endpoint e1 = 000

and from X2 the endpoint e2 = 011. Their corresponding neighbors are g(e1) = 010

and g(e2) = 001. Now the problem is to find a shortest path from 010 to 111 and

one from 001 to 100. Since both paths have to go through nodes in which bit one
is never changed (the bit is always one for the first subproblem and zero for the sec-

ond one), it follows that the resulting problems are independent of each other. There-

fore, we may refer to the two resulting problems as finishing up the path for X1 in the

subcube K(010,111) with blocking node 011 and finishing up the path for X2 in the

subcube K(001,100) with blocking node 000. By deleting bit k the resulting two inde-

pendent problems reduce to finding a path in K(00,11) with blocking node 01 and

finding a path in K(01,10) with blocking node 00. Once we find these paths we

add the bit just deleted as well as the previous transition introduced on bit k to pro-
duce the node disjoint shortest paths in the 3-cube.

Lemma 1 shows that a node disjoint shortest path exists for a pair in the presence

of at most n � 1 blocking nodes. The proof of the lemma provides us with a fast

algorithm for finding a shortest path for the pair.

Lemma 1. Given X consisting of one pair X1 = {s1, t1} with d(X1) = n and q 6 n � 1

blocking nodes in an n-cube for all n P 1, a node disjoint shortest path exists for X1

that does not include any of the q blocking nodes.

Proof. We prove this lemma by induction for all n P 1. The base case, n = 1 trivially

holds because s1 = 0, t1 = 1 and q = 0, so the path 0 M 1 is valid since there are no

blocking nodes.

Assume the lemma holds for all values less than or equal to n � 1 and let us now
prove that it holds for all n > 1. Since the interchange of the 0s and 1s along any

subset of dimensions does not change the problem, we may assume without loss of

generality that X1 = {s1, t1}, s1 = 0 and t1 = 2n � 1. Let a‘ be the number of blocking

nodes Xj = {xj} such that d(0,xj) = ‘. Clearly a‘ < n for all ‘. Let ‘ 0 be the minimum

value of ‘ for which a‘ 5 0. There are two cases: If ‘ 0 = 1, then since a‘ 0 < n and there

are n possible neighbors of s1 = {0} in the subcube K(0,2n � 1) one may always

choose one of the neighbors of s1 to be the first node in the path from X1 that we

construct. Let this vacant node be 2k. Since a‘0 is nonzero the subcube K(2k, 2n � 1)
contains at most q � a‘ 0 6 n � 2 nodes and the resulting problem reduces to finding a

path for the pair of nodes {2k, 2n � 1} in the subcube K(2k, 2n � 1) with at most n � 2

blocking nodes. The proof for this case follows by the induction hypothesis after

eliminating bit position k.

On the other hand, when ‘ 0 > 1, one may move from node 0 to a node in level 1

unimpeded. By the topology of the n-cube there are n possible choices: nodes

20,21, . . ., 2 n�1. By definition all the blocking nodes are distinct and are different

from s1 = 0 or t1 = 2n � 1, so it follows that each blocking node has at least one bit
with the value zero and another one with the value of one in its binary

representation. Let k be the position of a 0-bit of x, where X2 = {x}. Since ‘ 0 > 1

one may choose node 2k to be the first node in the path that we construct for X1.

980 T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998
Since x is not in the subcube defined by K(2k, 2n � 1), the resulting problem reduces

to finding a shortest path for a pair of nodes {2k, 2 n � 1} in the subcube K(2k, 2n � 1)

with at most n � 2 blocking nodes. The proof follows by the induction hypothesis

after eliminating bit k. h

The constructive proof of Lemma 1 can be used to develop an O(n2) time algo-

rithm to generate the path for the single pair in the presence of at most n � 1 block-

ing nodes. As we said before, we assume without loss of generality that

X1 = (000 � � �0,111 � � �1). The algorithm builds a vector (v[1,n]) with the number of

blocking nodes at a distance i, for 1 6 i < n, from 000 � � �0 and for each value of i
in [1,n � 1] it constructs a list of all the blocking nodes at a distance i from

000 � � �0. If the entry v[1] is nonzero, then the path for pair X1 makes the first tran-

sition to a node that is not a blocking node. Since there are at most n � 1 blocking

nodes, it follows that such a node exists. The resulting problem is now solved recur-

sively. Otherwise (v[1] = 0) we select any blocking node and find the position of one

of its 0-bits. Let us say it is position j. Then the first node for the path for pair X1 is

the node 2j. The resulting problem is solved inductively without having to generate

the data structure again. The algorithm can be easily shown to take O(n2) time.
As we said before, our algorithmic approach is to find a bit k on which it is pos-

sible to make a transition. But our selection for such a bit is actually more restricted

than we need. This added flexibility simplifies the process of selecting the endpoints

where we will be making the transition for each pair. We find a bit k, such that if

every endpoint of a pair makes a transition on bit k, then no endpoint of a pair

or blocking node will be overlapped after making the transition. Note that in our

algorithm we only make a transition on one endpoint for each pair. Transition on

the same dimension k for both endpoints of a pair, Xi, in an n-cube would not result
in a shortest path.

Lemma 2. Let X = {X1,X2, . . .,Xp} be pairs of vertices inside an n-cube with d(X i) = n

for 1 6 i 6 p, and {Xp+1,Xp+2, . . .,Xp+q} be a set of blocking nodes such that
1 6 p 6 p + q < n and n > 2. There exist at least n � p � q + 1 bit position(s) k such

that the cardinality of the set

eðX Þ
[
fsi 	 2k j 1 6 i 6 pg

[
fti 	 2k j 1 6 i 6 pg

is 4p + q. This means that no two such vertices are identical and thus one may use bit k

to be the starting transition for the paths for all pairs.

Proof. First we consider the case wherein q = 0 and p = n � 1. For all 0 6 l < n

define the set

Sl ¼ ffi; jg j x 2 X i; y 2 X j and x	 y ¼ 2l; 1 6 i 6 p; 1 6 j 6 pg:
Note that since n > 2, we know that i 5 j. The meaning of these Sl sets is as follows.

If Sl 5 ;, then the neighbor of at least one endpoint of {X1,X2, . . .,Xp} using the l-bit

transition is an endpoint in X. Therefore bit l cannot be used by our algorithm to
reduce the problem to two independent problems of the previously established form.

T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998 981
To prove the lemma we show that for any problem instance there are at least

n � p + 1 empty sets Sl when p 6 n � 1.

For each l, 0 6 l < n, such that Sl 5 ; select a tuple al 2 Sl. Since n > 2 we know

that if {i, j} 2 Sl, then fi; jg 62 Sl0 for all l 0 5 l simply because if there exists x 2 Xi,

y 2 Xj such that x 	 y = 2l and �x	 �y ¼ 2l (remember that the bit complement of x is
�x), then dðx; �yÞ > 1 and dðy;�xÞ > 1. This precludes {i, j}�s membership in any

Sl0, l 5 l 0.
Therefore, all the tuples al are distinct. Define the graph G 0 with the vertex set

V 0 = {1,2, . . .,p} and edge set E 0 = {aij0 6 i < n}. We claim that the graph G 0 does
not have a cycle. Let us prove this claim. Suppose there is a cycle C with nodes

h1,h2, . . .,hr. Clearly r 6 p < n. Since there are no self or multiple edges between

node(s) in G 0 we know that r > 2. Without loss of generality assume the edge {h1,h2},

with label k1, exists because sh1 	 sh2 ¼ 2k1 and thus fh1; h2g 2 Sk1 . Now, for
i = 2,3, . . ., r � 2, we claim the edge {hi,hi+1} exists because shi 	 shiþ1 ¼ 2ki . The

reason is that the endpoints of pair Xi+1 can be relabeled. Now for the last edge in the

cycle {hr,h1} there are two possibilities. Either it exists because of shr 	 sh1 ¼ 2kr or

shr 	 th1 ¼ 2kr .

The former case is impossible because in an n-cube every cycle must make at least

two transitions using the same bit, which is not possible in C because each edge is

from a different set Sl. In the latter case, we know that a path between the endpoints

of pair Xhi , in the n-cube (G) has p edges (or transitions). Since we make each
transition on a different bit and dðXh1Þ is equal to n, it must then be that p = n. But

p < n, so there is a contradiction.

Therefore the graph G 0 is a tree. Since there are p pairs and hence at most p nodes

in V 0, then the maximum number of edges in G 0 is p � 1. Thus, the number of empty

sets Sl is at least n � p + 1. Therefore the lemma holds for the case when q = 0 and

p = n � 1. By adding pairs to any given problem input the lemma is seen to hold for

q = 0 and p < n. The lemma holds for the criteria p + q < n, since when q P 1 just

convert the blocking nodes to pairs. If a is a blocking node, then node a 	 (2n � 1) is
either a blocking node or not part of the given input e(X). In the latter case the

condition trivially holds. In the former the number of pairs in the resultant input is

one less. Thus the lemma holds. h

We are now ready to establish the main theorem in this section.

Theorem 1. Given X consisting of p pairs of nodes and q blocking nodes in an n-cube

for n > 1. Node disjoint shortest paths exist for all i and j such that

1 6 i 6 p < j 6 p + q, d(Xi) = n, d(Xj) = 0, p 6 dn/2eand 2p + q 6 n + 1.

Proof. The proof is by induction on n. The base case is when n = 2 and it is covered

by Lemma 1. Assume the theorem holds for all n � 1 and let us prove it for n.

The case when p = 0 is trivial and when p = 1 it falls under the conditions of
Lemma 1 since 2p + q 6 n + 1 implies that q 6 n � 1. So assume that p P 2.

Using Lemma 2 we know there exists a bit k where every endpoint in a pair can

make a transition without a conflict. We make a transition for one pair from 1 to 0

982 T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998
along the kth bit and make p � 1 transitions from 0 to 1 for the remaining pairs.

Therefore, the subproblem in which all the kth bit positions are 0 will have one pair

(the one making the transition from 1 to 0) plus the blocking nodes with a zero in the

kth bit position plus one blocking node for each of the remaining pairs (the

endpoints of such pairs that have a zero in the k bit position). Therefore the resulting
problem in the (n � 1)-cube has 1 pair and q 0 blocking nodes, where

q 0 6 n + 1 � 2p + p � 1 = n � p < n � 1. This problem can be solved by using our

constructive proof for Lemma 1. The other subproblem in which all the kth bit

positions are 1 will have the p � 1 pairs that make the transition from 0 to 1, plus the

blocking nodes that have a one in the kth bit plus one endpoint for the pair that

makes the transition from 1 to 0. This resulting problem is in the (n � 1)-cube, has

p 0 = p � 1 pairs and q 0 6 n + 1 � 2p + 1 blocking nodes. Therefore, p 0 + q 0 6
p � 1 + n + 1 � 2p + 1 6 n � 1 which holds for p P 2. Hence, the resulting problem
falls into the induction hypothesis. The theorem follows by induction. h
2.1. Algorithm for the simple approach

The following algorithm assumes that solutions are calculated for dimen-

sion n = 2, forming a base case of the recursion. The algorithm uses the proof of

Theorem 1 to partition the problem. The program is called initially with

Find_Paths(n,X).

Find_Paths(n,X = {X1,X2, . . .,Xp,Xp+1, . . .,Xp+q})
{

assume that n = d(X1) = d(X2) = � � � = d(Xp), d(Xp+1) = d(Xp+2) = � � � = d(Xp+q) = 0,
all Xi are in the same n dimensional subcube, p 6 dn/2e and 2p + q 6 n + 1

if p = 0 return;

if p = 1 construct path using the proof of Lemma 1, output and return;

if n 6 2 return appropriate base case;

k Find_Bit(X); // using the proof of Lemma 2 find an unobstructed bit.

X 0 OneToZeroTransition(k,X);

X00 ZeroToOneTransition(k,X);

Output_Paths(k,X);
Output path for X 0 using the proof of Lemma 1.

Find_Paths(n � 1,X00);

}

Output_Paths(k,X) prints out a link for each path for a given transition on k.

OneToZeroTransition selects one path per the proof of Theorem 1 for making the

transition from 1 to 0 on bit k; and the blocking nodes (as well as the endpoints

of the remaining pairs) with a 0 in the kth bit position are selected. ZeroToOneTran-

sition selects p � 1 paths for making a transition from 0 to 1 on bit k; and the block-

ing nodes (as well as the endpoints of the remaining pairs) with a 1 in the kth bit

position are selected.

T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998 983
Theorem 2. Given X consisting of p pairs of nodes and q blocking nodes in an n-cube.

If for all i and j such that 1 6 i 6 p < j 6 p + q, d(Xi) = n, d(Xj) = 0, p 6 dn/2e,
2p + q 6 n + 1, then algorithm Finds_Paths constructs node disjoint shortest paths for

X and can be easily implemented to take O((p2 + pq)n2) time.

Proof. The proof of correctness follows directly from the constructive proof of

Theorem 1.

All the steps can be implemented to take O((p + q)n) time except for procedure

Find_Bit and the procedure that constructs a path using the proof of Lemma 1. The

procedure that constructs a path for one pair using Lemma 1 takes O(n2) as we have

seen just after the proof of that lemma. Procedure Find_Bit is implemented by using

a binary trie 2 to represent nodes in the n-cube. The approach is to insert in the trie

the 2p nodes in the pairs, the q singletons and then insert the 2p nodes resulting from
making a transition on bit k for each of the endpoints in each pair. If there are no

conflicts for the 4p + q insert operations, then the bit k for making a transition has

been found. Otherwise one needs to try another bit. Since there are n bits and each

node consists of an n-bit number, the total time required for this operation will take

at most O(n2(p + q)) steps. Therefore the overall time complexity for the algorithm is

given by

T ðn; p; qÞ ¼ T ðn; p � 1; qþ 1Þ þ cn2ðp þ qÞ; p > 1;

n2; p ¼ 0:

�

The solution of T(n,p,q) is O(p n2(p + q)). h

Since the number of input bits is m = (2p + q)n, then the overall time complexity

of the algorithm is O(m2).

2.2. Limitations of the 1-bit approach

We use (n,p,q) to represent all problem instances in an n-cube with p paths and q

blocking nodes. Note that this collection of problem instances are not all ‘‘yes’’ or all

‘‘no’’ instances of the p-pairwise node disjoint shortest paths problem. There are

problem instances of (4,2,3) that do not have node disjoint paths whereas others

do. For example {{0000,1111}, {0011,1100}, {0101}, {1001}, {1010}} does not

have a solution for a reason similar to the one given for Example 1 given below.

But {{0000,1111}, {0011,1100}, {0001}, {0110}, {1001}} does (0000 M 0100 M

0101 M 0111 M 1111, and 0011 M 0010 M 1010 M 1000 M 1100).

For the case when n = 4 it is impossible to strengthen our results in the previous

subsection because for p = dn/2e + 1 = 3 none of the problem instances have a solu-

tion, i.e., node disjoint shortest paths do not exist. One such instance is given in

Example 1.
2 A binary trie is a binary tree in which we locate any n-cube vertex by following its bit sequence

representation [8].

984 T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998
Example 1. The instance of (n,p,q) = (4,3,0) with

X ¼ ff0000; 1111g; f1100; 0011g; f1010; 0101gg;
does not have a solution in the 4-cube. i.e., node disjoint shortest paths do not exist
for this problem instance.

The proof that Example 1 does not have node disjoint shortest paths is simple. We

define the level of a node as the number of 1-bits in its binary representation. The

only two nodes at level 2 that are not endpoints of the pairs in the 4-cube are
1001 and 0110. Therefore every path from 0000 to 1111 must go through one of these

two nodes. Assume without loss of generality that the path goes through 0110 (the

other case is identical after applying ‘‘exclusive or’’ with 1111 to all the endpoints).

There are four possibilities for the path associated with pair X1 as indicated by all the

simple paths from 0000 to 1111 in Fig. 2.

Nodes 0000, 0110 and 1111 must be part of any shortest path for pair X1. We

claim that the path for pair X2 must visit node 1001. Suppose not. Suppose that

the path for X2 does not visit node 1001. Then the path for pair X2 must either re-
main above or below the nodes on level 2 (i.e. at levels 0 and 1, or at levels 3 and 4).

Without loss of generality assume it remains above. Inspection of all the possibilities

demonstrates that the path must include the node 0000 2 X1, but this is not allowed.

Therefore every path for pair X2 must use node 1001. Considering now the path for

pair X3. Clearly it must either remain above or below level 2. But as in the case for

pair X2 there is no node disjoint shortest path of this form for pair X3. Therefore no

solution exists for this problem instance.

However note that there is a bit k = 3 for making a transition (i.e.
0000 	 23 = 1000) as noted in the proof of Lemma 2. Applying the 1-bit step we

end up with the problems {X1 = {000,111}, X2 = {100}, X3 = {010}}, and

fX 01 ¼ f100; 011g, X 02 ¼ f010; 101g, X 03 ¼ f000gg. The former problem has a solu-

tion, but the latter problem does not simply because there are not enough vertices

in a 3-cube for two paths of length 3 and a blocking node.

One may find stronger conditions than the ones in Theorem 1 when the value of n

is larger. Example 2 gives a problem instance with n = 5 and p = 4 for which node

disjoint shortest paths exist while the proof technique behind Theorem 1 does not
cover this scenario.
Fig. 2. Remaining possible paths in the 4-cube for routing request X = {{0000,1111},{1100,0011},

{1010,0101}}. Note for this request there are no node disjoint shortest paths for all pairs in the

request.

T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998 985
Example 2. Consider the instance of (n,p,q) = (5,4,0) with the pairs defined by

X ¼ ff00000; 11111g; f00001; 11110g; f00010; 11101g; f00100; 11011gg:

A set of disjoint paths for this problem is given by

00000$ 01000$ 01001$ 01011$ 01111$ 11111

00001$ 00011$ 00111$ 00110$ 01110$ 11110

00010$ 01010$ 11010$ 11000$ 11001$ 11101

00100$ 00101$ 10101$ 10111$ 10011$ 11011

It is interesting to note that our proof technique for Theorem 1 (algorithmic ap-

proach) will not work for this problem instance. The reason is that a transition

can be made only on bit k = 3 or k = 4. Since both cases are identical, under inter-

change of dimensions, we only discuss the case when we make a transition on bit
k = 4.

When a transition on bit k = 4 is made according to our 1-bit step, one pair makes

a transition form a 1 to a 0 (pair {00000,11111}) and the remaining pairs make a

transition from a 0 to a 1 as follows.

11111! 01111

00001! 10001

00010! 10010

00100! 10100

In the resulting problem the subcube in which bit k = 4 is always a one has the pairs

X ¼ ff0001; 1110g; f0010; 1101g; f0100; 1011gg:
‘‘Exclusive or’’ing the input with 0001 yields the equivalent problem

X ¼ ff0000; 1111g; f1100; 0011g; f1010; 0101gg:
This is just Example 1 which we know does not have a solution. The reason why our

algorithmic approach does not work in this case is that our approach finds a solution

with a special structure, but one such solution does not exist for the instance given in

Example 2. In general there are problem instances that are not amenable to the 1-bit

change approach, so we seek to improve the sufficiency conditions required to insure

that node disjoint shortest paths exist for larger values of n. As the number of edges

increases exponentially in the n-cube as n increases linearly, one would expect that a

much stronger sufficiency condition exists. Section 3 incrementally improves the suf-
ficiency criteria by exploiting an extended version of Lemma 2.

In Example 3 we give a larger problem instance which has a node disjoint shortest

path solution, but the algorithm given in this section does not work for this instance.

In the next section we give an improved algorithm that works not only for this in-

stance, but for all instances in (n,p,q) = (7,6,0), as well as in more general cases.

986 T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998
Example 3. Instance of (n,p,q)=(7,6,0) with the pairs defined by

X ¼ ff0000000; 1111111g; f0000001; 1111110g;
f0000010; 1111101g; f0000100; 1111011g;
f0001000; 1111011g; f0010000; 1101111gg:

Let us now show that our 1-bit algorithmic strategy does not work for this prob-

lem instance. The only bits where transitions are allowed are on bits k = 5 and k = 6.

Suppose we apply first our transformation with bit k = 6 and reduce the problem to

the instance of (6,5,1) that includes the first five pairs without bit 6. Now the only
possible transitions are on bits k = 4 and k = 5. If we apply our transformation with

bit k = 5 we reduce the problem to the instance of (5,4,2) that includes the first four

pairs without bits 6 and 5. This is the problem instance given in Example 2 with two

additional blocking nodes. Since the instance given in Example 2 does not have a

solution, neither does this one.
3. The balanced approach: p + q < n � 1

Given n and X = {X1,X2, . . .,Xp+q} we claim that node disjoint shortest paths exist

for the extreme version of the problem when p + q 6 n � 1 (Theorem 3). An algo-
rithm based on the proof of Theorem 3 is given in Section 3.1.

Consider an instance of the (8,7,0) problem. If we apply the 1-bit approach de-

scribed in the previous section we end up with instances of (7,1,6) and (7,6,1).

Let us suppose now that the instance of (7,6,1) has a bit where a transition is pos-

sible. If we apply again the 1-bit approach we end up with instances of (6,1,7) and

(6,5,2). Both of these instances do not always have a solution so we cannot prove

that this approach is feasible. This is why we have to introduce an additional trans-

formation which we call the 1-bit balanced transformation. This approach is similar in
nature to the 1-bit step given in the previous section. The main difference is that the

resulting problems are balanced with respect to p. However this transformation

alone is insufficient to make the resulting problems fall into the inductive hypothesis.

For example if we start with an instance of (8,7,0) we may end up with two instances

of (7,4,3) in the partitioned subproblem. For these instances one cannot guarantee

the existence of a bit k as described in Lemma 2. We introduce an additional trans-

formation which we call the q-dependent transformation to reduce our problems to

ones that fall within the induction hypothesis.
The 1-bit balanced transformation begins by selecting a bit k which we know

exists by Lemma 2 since p < n. The reduction makes a transition on dp/2eof the

p pairs from 1 to 0 along the kth bit and makes a transition on bp/2c from 0 to

1 on the remaining pairs. The subproblem in which all the kth bit positions are

1 will have the bp/2c pairs that make the transition from 0 to 1, plus one endpoint

for each of the dp/2epairs that make the transition from 1 to 0. Therefore the result-

ing problem is an instance of (n � 1,bp/2c,dp/2e). The other subproblem in which

all the kth bit positions are 0 will have the dp/2e pairs that make the transition from

T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998 987
1 to 0, plus one endpoint for each of the bp/2c pairs that make the transition from 0

to 1. This resulting problem is an instance of (n � 1,dp/2e,bp/2c). The resulting sub-

problems do not fall into the induction hypothesis and do not satisfy the conditions

of Lemma 2.

The above situation arises when considering the following instance of (8,7,0):

X ¼ ff00001111; 11110000g;
f01000111; 10111000g;
f01100011; 10011100g;
f01110001; 10001110g;
f10110000; 01001111g;
f10011000; 01100111g;
f10001100; 01110011gg:

Applying the 1-bit balanced transformation we obtain instances of (7,4,3) and

(7,3,4). The former instance is obtained by making the transition from 1 to 0 along

bit k = 7 in the first 4 pairs and the transition from 0 to 1 in the remaining pairs. The
resulting problem instance of (7,4,3) is X = {{0001111,1110000}, {1000111,

0111000}, {1100011,0011100}, {1110001,0001110}, {1001111}, {1100111}, {1110

011}}. This instance does not have a conflict free bit k as the one which is identified

by Lemma 2.

The example above can be easily extended to higher dimensions. To solve our

problem we establish in Lemma 3 that a bit k with more restrictive properties always

exists and it can be used in an additional transformation which we call the q-depend-

ent transformation. The main difference between Lemma 2 and 3 is that in Lemma 3,
p + q could be equal to n and in that case a bit k exists, but such a bit may cause a

conflict when making one transition from an endpoint in a pair to a blocking node.

Lemma 3. Let X = {X1,X2, . . .,Xp} be pairs of vertices inside the n-cube with

d(Xi) = n for 1 6 i 6 p, and {Xp+1,Xp+2, . . .,Xp+q} be a set of blocking nodes such

that 1 6 p 6 p + q 6 n, p < n and n > 3. There exist at least n � p � q + 2 bit positions

k such that the cardinality of the set

eðX Þ
[
fsi 	 2k j 1 6 i 6 pg

[
fti 	 2k j 1 6 i 6 pg

is 4p + q � 1 (conflict or blocked case) or 4p + q (conflict-free or unblocked case). This

means that for each of these bit k positions there is at most one transition that causes a
conflict. Furthermore the conflict is incident on a blocking node: for fixed k it occurs due

to one unique ‘ 2 {1, . . ., p} and either s‘ 	 2k, or t‘ 	 2k, but not both, is a conflicting

blocking node.

Proof. By Lemma 2 we know that if p + q < n, then there exists n � p � q + 1 bit

positions k such that

eðX Þ
[
fsi 	 2k j 1 6 i 6 pg

[
fti 	 2k j 1 6 i 6 pg

988 T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998
is of cardinality 4p + q. So let us consider now the case when p + q = n. Since p < n

then q P 1. Suppose that we delete one of the blocking nodes, z. Then Lemma 2

holds and we know that n � p � q + 2 conflict-free bits exist. Let us now con-

sider each of the n � p � q + 2 conflict-free bits just identified. Let k be one such

bit. When the blocking node z is added back, then it remains conflict-free or it
introduces conflicts. If node z causes a conflict along bit k, then for some ‘,
s‘ 	 2k = z, or t‘ 	 2k = z. Note that if both are true, then s‘ = t‘ which is precluded.

Without loss of generality assume s‘ 	 2k = z. We claim that no other ‘ 0 5 ‘ exists

such that s‘ 	 2k = s‘ 0 	 2k, or s‘ 	 2k = t‘ 0 	 2k, since either case implies that

s‘ = s‘ 0, or s‘ = t‘ 0 which contradicts the problem definition. Therefore s‘ is unique

and there is one conflict for bit k. The cardinality of set e(X) for bit k is either

4p + q � 1, or 4p + q. The lemma follows from the fact that the above state-

ment holds for all the n � p � q + 2 bits k identified when we deleted blocking
node z. h

Before we establish our main result, we explain in detail the q-dependent transfor-

mation. In the proof of our theorem we apply this transformation when p P q. In the

q-dependent transformation, as in the 1-bit step, we start by selecting the bit k which
we know exists by Lemma 3 since p + q 6 n and p < n. First let us discuss the case

where there is a bit k that is conflict-free. Let i be the number of q blocking nodes

with a one in the kth bit position. Without loss of generality one may assume that

i 6 bq/2c. Because if this is not the case all the vertices may be complemented with

2n � 1 and the new value for i will be at most bq/2 c.
The transformation makes i transitions from an endpoint of p pairs from 1 to 0

along the kth bit and p � i transitions from an endpoint for all of the remaining

pairs from 0 to 1. Therefore, the subproblem in which all the kth bit positions are
1 will have the p � i pairs that made the initial transition from 0 to 1, plus the i

blocking nodes with a one in the kth bit position plus one endpoint of the i pairs

that made the transition from 1 to 0. The resulting problem is an instance of

(n,p � i, 2i). The other subproblem is one in which all the kth bit positions are 0s

and will have the i pairs that made the transition from 1 to 0, plus the q � i blocking
nodes with a zero on the kth bit position plus one endpoint of the p � i pairs that
made the transition from 0 to 1. This resulting problem is an instance of

(n, i,p + q � 2i).
Now let us consider the case when each possible bit k given by Lemma 3 has a

conflict with a blocking node. By definition when i = 0 all the q blocking nodes have

a zero in the k-bit position. Therefore the transition from a 0 to a 1 along bit k in a

pair will not have a conflict with a blocking node. Since all pairs make this type of

transition, it follows that our transformation rules are valid. When i > 0 one may al-

ways select pairs for making the transition from 1 to 0 on bit k that do not have the

conflict and such a pair exists because at most p/2 pairs make the transition from 1 to

0. Therefore the above q-dependent transformation is valid in all cases. The two
most important properties of the q-dependent transformation are avoiding the con-

flict when making the transition on bit k, and making the resulting subproblems fall

within the induction hypothesis.

T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998 989
Theorem 3. Given X consisting of p pairs of nodes and q blocking nodes in an n-cube.

If for all i and j such that 1 6 i 6 p < j 6 p + q, d(Xi) = n > 6, d(Xj) = 0, p + q 6 n � 1,

then node disjoint shortest paths exist for X.

Proof. The base case of an induction proof is given by proving that the theorem
holds for n 2 {7,8}. In the case of n = 7 the initial problem is an instance of

(7,6,0) and through the application of the balanced transformation becomes two

problems which are instances of (n 0,p 0,q 0) = (6,3,3). Each of these subproblems sat-

isfies the conditions of Lemma 3, therefore a bit k for making the transition exists,

but it may have one conflict. As one may complement the vertices in the problem

by 27 � 1 = 111111; the number of blocking nodes, i, with a 1 in the kth bit position

is in the range 0 6 i 6 b3/2c = 1. There are thus two different cases for which we

apply the q-dependent transformation. Table 1 lists the resulting instances for the
two possible values of i. Note that we can always perform the transition while avoid-

ing the conflict identified in Lemma 2. The first column represents the instance in the

subcube in which the k-bit is 1 and the second column represents the one in which the

k-bit is zero.

It is simple to see that every instance of problems (5,3,0), (5,2,2) and (5,1,4) falls

into the conditions of Theorem 1. Every problem instance of (5,0,6) has a solution

simply because there are no pairs, just blocking nodes. Therefore disjoint paths exist

for the instances of (6,3,3) and therefore they exist for the instance of (7,6,0).
Now consider any instance of (8,7,0). By applying the balanced transformation we

only need to show that the resulting instances of (7,4,3) have a solution. Since the

conditions of Lemma 3 apply, there exists a bit k for making a transition that may

have a conflict. As mentioned before, we may assume that the number of blocking

nodes with a 1 in the k bit positions is 0 6 i 6 bq/2c = b3/2c = 1. Thus, applying the

general q-dependent transformation yields the instances given in Table 2. Note that we

can always perform the transition while avoiding the conflict identified in Lemma 2.

Every instance of (6,0,7) has a solution because there are only blocking nodes.
Every instance of (6,1,5) falls within the conditions of Lemma 1 and therefore a
Table 1

Resulting Problem instances for (6,3,3)

i Transitions

0!1 1!0

0 (5,3,0) (5,0,6)

1 (5,2,2) (5,1,4)

Table 2

Resulting problem instances for (7,4,3)

i Transitions

0!1 1!0

0 (6,4,0) (6,0,7)

1 (6,3,2) (6,1,5)

990 T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998
shortest path exists for the pairs. As established above every instance of (6,3,3) has a

solution, therefore every instance of (6,3,2) has also a solution since one can simply

add a dummy blocking node. The instance of (6,4,0) requires further reduction using

the balanced transformation. For this problem we can apply Lemma 2, so it is

possible to make a conflict-free transition on bit k. One may thus apply the balanced
transformation to any instance of (6,4,0) yielding two instances of (5,2,2). These

problems have a solution due to Theorem 1. This completes the proof of the base

case.

Now let us prove the induction hypothesis. Assume that the theorem holds for

every instance in the (n � 1)-cube and prove it for any instance in the n-cube. One

only needs to consider the case wherein q = 0, since all blocking nodes can be

transformed into pairs. The resulting problem is therefore an instance of (n,p, 0) for

p < n.
Lemma 2 establishes that at least one bit for making a transition exists. Let k

be that bit position. By making a transition on half of the pairs along bit k from 0

to 1 and the remaining pairs from 1 to 0 the two resulting subproblems are

instances of

n� 1;
p
2

j k
;
p
2

l m�

and n� 1;

p
2

l m
;
p
2

j k�

:

If a solution exists for every instance of (n � 1,dp/2e,bp/2c), then one also exists for

every instance of (n � 1,bp/2c,dp/2e) because one may always transform a blocking

node into a pair. Therefore we only need to prove that a solution to every instance of
(n 0,p 0,q 0) = (n � 1,dp/2e,bp/2c) exists. Note that p 0 P q 0 and therefore the q-depen-

dent transformation may be applied.

When p 0 + q 0 < n 0 = n � 1 the induction hypothesis can be applied, so the

remaining case is when p = p 0 + q 0 = n 0 = n � 1. In this case we know by Lemma 3

that a bit k for further reduction exists. However, note there may be at most one

conflict incident on a blocking node as established in Lemma 3. Let i be the number

of individual nodes out of the q 0 blocking nodes with a one in the kth bit position. If

i > bq 0/2c, then complement () the subproblem input with 2n � 1 ¼ 11 � � � 1|fflfflffl{zfflfflffl}
n0

. Thus
0 6 i 6 bq 0/2c holds.

Even if a bit k is blocked per Lemma 3 one may apply the q-dependent

transformation to the instance of (n 0,p 0,q 0) to yield two distinct instances of

ðn00; p00; q00Þ ¼ ðn0 � 1; p0 � i; 2iÞ ð0! 1 transitionÞ
and

ðn000; p000; q000Þ ¼ ðn0 � 1; i; q0 þ p0 � 2iÞ ð1! 0 transitionÞ:
The reason why it is possible to apply these two transformations is that we can al-

ways select the pair with the conflict so that it makes the appropriate transition

and avoid the conflict. When i is equal to zero we make all the transitions for the
pairs from a zero to a one, but since i is zero all the k bits of the blocking nodes

are one. For the other values of i one can always place the pair with the conflict

to make the appropriate transition.

T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998 991
The former instance (n00,p00,q00) is within the induction hypothesis when

p00 + q00 6 n00 � 1. The sum of p00 and q00 is equal to

p0 � iþ 2i ¼ p0 þ i ¼ p
2

l m
þ i:

This expression is maximum when i has the maximum value which is bq 0/2c.
Therefore,

p00 þ q00 6
p
2

l m
þ q0

2

� �
¼ p

2

l m
þ

p
2

� �
2

� �
6 n� 3;

since n > 6 and the instance of (n00,p00,q00) falls within the induction hypothesis.

Instance (n 000,p 000,q 000) falls within the induction hypothesis when p 000 + q 000 = q 0 +
p 0 � i = p � i 6 n � 3. This holds true when i P 2. So let us now consider the

remaining cases, i 2 {0,1}. When i = 1, Lemma 1 establishes that every instance of

(n � 2,1,p � 2) has a solution when p � 2 < n � 2. This is always the case as p < n.
When i = 0 one notes that every instance of (n � 2,0,q 0 + p 0) has a solution since

there are only blocking nodes. h

By examining the proof of Theorem 3 it is clear that it is easier to establish cor-
rectness for the first algorithm (Theorem 1). In the next subsection we present our

algorithm whose proof of correctness is relies upon Theorem 3.

3.1. Algorithm for the balanced approach

An algorithm based on a straightforward implementation of Theorem 3 takes

exponential time. Let us explain why this is the case with an example. Consider an

instance of (64,63,0). The algorithm generates an instance of (63,32,31) and one
of (63,31,32). The instance of (63,31,32) reduces to (63,32,31) by transforming a

blocking node into a pair. Further reduction of the instance of (63,32,31) using

the conflict-free part of Lemma 3 and applying the q-dependent transformation

yields an instance of (62,32�i, 2i) and one of instance (62, i, 63�2i). When i = 2 the

resulting instances are (62,30,4) and (62,2,59). Now applying the induction hypoth-

esis we transform the instance of (62,2,59) into one of (62,61,0). Therefore to solve

the instance (64,63,0) we need to solve two instances of (62,61,0) plus we need to do

some extra work. So the time complexity of the algorithm appears to be exponential,
because we are converting blocking nodes into pairs per the simplification of the

proof of Theorem 3. However, the algorithm does not really need to produce paths

for the dummy pairs being introduced.

To reduce the time complexity bound we make the algorithm mimic the conver-

sion of blocking nodes into dummy pairs. If there are no (original) pairs, then

the algorithm is done; if there is only one pair, then to find the path it applies

Lemma 1; and if there is more than one pair, it applies the constructive proof of

Theorem 3 to generate the paths. When the dimension is 7 or 8, then it just applies
the constructive proof for the base case of Theorem 3 to find the paths. The algo-

rithm uses the proof of Theorem 3 in a two stage process to partition the problem.

Our algorithm is initially invoked with Find_Paths_0(n,X).

992 T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998
Find_Paths_0(n,X = {X1,X2, . . .,Xp,Xp+1, . . .,Xp+q})
{assume that d(X1) = d(X2) = � � � = d(Xp) = n,d(Xp+1) = d(Xp+2) = � � � = d(Xp+q) = 0,

all the Xi pairs are in the same n dimensional subcube, and p + q 6 n � 1

if p = 0 return;

if p = 1 construct path using the proof of Lemma 1 and return;
if n 6 8 return the paths constructed by the base case in Theorem 3;

k Find_Bit2(X); // using the proof of Lemma 2 find an unobstructed bit

X 0 OneToZeroBalancedTransition(k,X);// Transformation is defined below

X
00 ZeroToOneBalancedTransition(k,X); // Transformation is defined below

Output_Paths(k,X);

Find_Paths_1(n � 1,X 0);

Find_Paths_1(n � 1,X
00
);

}

The bit k is conflict-free due to Lemma 2. The ZeroToOneBalancedTransi-

tion(k,X) and OneToZeroBalancedTransition(k,X) return the problem partitioned

via the balanced transformation. The ZeroToOneBalancedTransition (k,X) takes

all pairs and returns X 0 ¼ fX 01;X 02; . . . ;X 0dp=2e, X 0dp=2eþ1; . . . ; X 0pþq0g, dp/2epairs re-

duced in size by making a transition from a 0 to 1 on bit k. Endpoints of the remain-

ing bp/2cwith a one in the kth bit position are returned as blocking nodes. We use q0
to denote the number of singleton nodes with a one in the kth bit position.
X00 = OneToZeroBalancedTransition (k,X) returns the complement, albeit returning

bp/2c paths with q � q0 + dp/2e singleton nodes. While the proof of Theorem 3 is
simplified by converting blocking nodes to paths, the algorithm keeps actual pairs
distinct from blocking nodes.

Find_Paths_1(n,X = {X1,X2, . . .,Xp,Xp+1, . . .,Xp+q})
assume that d(X1) = d(X2) = � � � = d(Xp) = n,d(Xp+1) = d(Xp+2) = � � � = d(Xp+q) = 0,

all the Xi pairs are in the same n dimensional subcube, and p + q 6 n

if p = 0 return;

if p = 1 construct path per Lemma 1, output path and return;

if n 6 8 return the paths constructed by the base case in Theorem 3;

if p + q < n then Find_Paths_0(X);//Falls within the inductive hypothesis of

Lemma 2.

else {// p + q = n

k Find Bit3ðX Þ; //Using the proof of Lemma 3 find an appropriate bit.

// If a conflict-free bit exists select it.
//define CountBlockingNodesWithOne(k,X) as the number of

// blocking nodes with a 1-bit in the kth position.

if (CountBlockingNodesWithOne(k,X) > bq/2c) then
X = ComplementProblem(n,X);

// the problem must be complemented appropriately upon output.

i CountBlockingNodesWithOne(k,X);

X 0 OneToZero_qTransition(i,k,X); //Transformation is defined below

X00 ZeroToOne_qTransition(i,k,X); //Transformation is defined below

T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998 993
Output_Paths(k,X);

Find_Paths_0(n � 1,X 0);

Find_Paths_0(n � 1,X00);

}

Function CountBlockingNodesWithOne(k,X) returns the number of blocking

nodes with a one in the kth bit position. ComplementProblem(n,X) complements

all nodes with 2n � 1 while maintaining the pair and blocking node structure. Note

that under complementation the procedure Output_Paths must complement its out-

put. To simplify the presentation of the algorithm we omit the details.

Both OneToZero_qTransition(i,k,X) and ZeroToOne_qTransition(i,k,X) are

based on the q-dependent transformation. As mentioned prior to Lemma 3, the

transformation can be applied whether or not there is a conflict.
The function ZeroToOne_qTransition(i,k,X) does not have a conflict. This pro-

cedure is given p pairs, it selects p � i of them to make a transition from 0 to 1.

The residual blocking nodes from pairs is i. However in the event that i = 0 and there

is a conflict with a blocking node as indicated in Lemma 3 there are no conflicts be-

cause all the blocking nodes have their k bit equal to 0, but we make all transitions

from a 0 to a 1. When i > 0 one can always select the pair with the possible conflict to

make the the appropriate transition that will avoid the conflict.

Similarly the function OneToZero_qTransition(i,k,X) returns i pairs which are
capable of making the transition from 1 to 0 on bit k. If there is a conflict, as in Lem-

ma 3, then when i > 0 one simply selects i alternate pairs for making the transition

from 0 to 1. The number of residual blocking nodes with a one in the kth bit position

placed into the input to this function. When i = 0 we do not use this type of

transition.

Theorem 4. Given X consisting of p pairs of nodes and q blocking nodes in an n-cube.

If for all i and j such that 1 6 i 6 p < j 6 p + q, d(Xi) = n > 6, d(Xj) = 0, p + q 6 n � 1,

then algorithm Finds_Paths_0 constructs node disjoint shortest paths for X and can be
implemented to take O((p2 + pq)n3) time.

Proof. The proof of correctness follows directly from the constructive proof of The-

orem 3 and the fact that our algorithm just mimics the conversion of blocking nodes

into pairs.

All the steps can be implemented to take O((p + q)n) time except for procedures

Find_Bit2 and Find_Bit3; and constructing a path with Lemma 1. The construction

of the path with Lemma 1 takes O(n2) time. Procedures Find_Bit2 and Find_Bit3 are
implemented using a binary trie for set insertion. The former invocation allows no

conflicts for the 4p + q insert operations. The latter call allows at most one

conflicting insert operation and again represents 4p + q insert operations. Each

endpoint and blocking node is n bits long and the number of insert operations is

4p + q. Therefore, this operation will take at most O(n2(p + q)) steps.

Because of the recursive structure of the program one may (incorrectly) think that

the time complexity bound is exponential. However, the number of calls is

994 T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998
significantly limited at each level. The condition of Theorem 3 requires that p < n.

For each value of n there are at most p invocations that have at least one pair. Thus

O(p) problems are active at each of the n levels. Therefore the total number of calls is

O(pn).

Since the sum of the values of p + q at each invocation is not larger than
the sum at the previous step it then follows that, the algorithm runs in O(p

n(n2(p + q))) = O((p2 + p q)n3). h

Since the number of input bits is m = (2p + q)n, the overall time complexity is

O(m3).
4. Extreme version of the edge disjoint shortest paths problem

In this section we discuss the extreme version of the edge disjoint shortest paths

problem in the undirected n-cube where again d(Xi) = n. We present an efficient algo-

rithm for the case where n > 0 and n odd. First we prove that every problem instance

has a solution and then we present an efficient algorithm to construct a set of such

paths.

Assume without loss of generality that for each pair Xi, si has the leading bit equal

to zero and ti has the leading bit equal to 1 or equivalently si < ti. In Theorem 5 we

prove that every k pairwise edge disjoint shortest path problem has a solution when
k = 2n � 1. As any subset of pairs may be deleted the same results holds when

k < 2n � 1 by simply removing the paths for such pairs. Assume without loss of gen-

erality that the ith pair has source si which is labeled with the bit representation of i

including leading zeros.

Theorem 5. Given any partial half routing request in an undirected n-cube with

p = 2n � 1 pairs and d(Xi) = n, edge disjoint shortest paths exist when n > 0 and n odd.

Proof. The base case n = 1 trivially has an edge disjoint shortest path 0 M 1. Assume

that there is a set of edge disjoint shortest paths for k = 2n � 3 pairs for all problem

instances with n � 2 P 1 and n odd. Now let us prove that edge disjoint shortest

paths exist for n.

Let us divide the n-cube into four (n � 2)-cubes along dimension 0 and 1. We refer

to these subcubes as the 00, 01, 10 and 11 cubes depending on the value of bit 1 and

bit 0. Clearly each pair has its endpoints in subcubes 00 and 11, or in 01 and 10. The

idea is to use all the edges between the four cubes to route the pairs starting either at
si or ti for each i so that all pairs end up with both endpoints in the same subcube,

each vertex has exactly one endpoint of a pair, and the edges between the subcubes

are used once.

For each string A of n � 2 bits that starts with a zero there are exactly four pairs

XA00, XA01, XA10 and XA11 such that their endpoints are located at the vertices whose

first n � 2 bits in its bit address are equal to A or A. The pairs have bit addresses

(A00, A11), (A01, A10), (A10, A01), (A11, A00). The routing for these pairs is as

follows. The paths make the transitions between the four subcubes of size n � 2.

Fig. 3. Induction partition of the routes.

T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998 995
A00$ A01$ A11$ � � � $ A11

A11$ A10$ A00$ � � � $ A00

A10$ � � � $ A10$ A00$ A01

A01$ � � � $ A01$ A11$ A10

The resulting pairs are (A11, A11), (A00, A00), (A10, A10) and (A01, A01) each of

which is in its own subcube.

Fig. 3 represents the case when A ¼ 000 � � � 0|fflfflfflfflffl{zfflfflfflfflffl}
n�2

. Note that none of the above edges

used in the transitions are used more than once and no vertex ends up with more

than one endpoint. In addition in the resulting subproblem all the edges are between

vertices whose first n � 2 bit address is either A or A. Therefore there is no

interference with paths for different A�s or different A�s. Fig. 3 shows the routes.

So the resulting subproblems in each of the subcubes satisfies the induction

hypothesis after deleting the rightmost two bits. The theorem follows by

induction. h

As mentioned before by deleting any subset of routes one can use Theorem 5 to

establish Corollary 1.

Corollary 1. Given any partial half routing request in an undirected n-cube with

p 6 2n � 1 pairs and d(Xi) = n edge disjoint shortest paths exist when n > 0 and n odd.

The following program finds edge disjoint shortest paths for all n and p when n

is odd. The input is the routing request X and the dimension of the n cube and the

output is a list of dimensions for each pair Xj = (sj,tj) representing the transition

made in the path from sj to tj. The algorithm considers each pair at a time.

For each pair Xj the program follows the proof of Theorem 5. When making

the transition from sj they are printed directly, but when they are for tj they are

pushed onto a stack and outputted in the reverse order so they correspond to
the path from sj to tj. The program assumes that sj < tj. X is a partial half routing

996 T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998
request with all d(Xj) = n. Stack is a stack initialized by Stack ?, tested for

emptiness with the expression (Stack ¼?) and with the usual operations Stack.

Push(a) and Stack.Pop(). As the input size of the problem is O(p n) it is a linear

time algorithm.

Find_Paths(n,X = {X1,X2, . . .,Xp}) {
for j 1 to p {
(sj,tj) Xj
Stack ?
for k 0 to bn�1

2
c {

b0 value of bit 2k of sj
b1 value of bit 2k + 1 of sj
case ((b1,b0)) {
(1,1): Output(2k); Output(2k + 1);

break;

(0,1): Stack.Push(2k + 1); Stack.Push(2k);

break;

(0,0): Output(2k + 1); Output(2k);

break;

(1,0): Stack.Push(2k); Stack.Push(2k + 1);

break;
}

}

while (Stack 6¼?)
Output (Stack.Pop());

}

}

Theorem 6. For n > 0 and n odd in an undirected n-cube with p 6 2n � 1 pairs and

d(Xi) = n edge disjoint shortest paths the Algorithm Find_Paths above correctly

establishes and outputs edge disjoint shortest paths with time complexity O(p n) or

linear with respect to number of input bits.

Proof. The outer loop is iterated p times and the inner loop n times. The inner

most body of the loop is considered to take constant time to execute. Therefore

the total time complexity for this algorithm is O(pn). Correctness follows directly

from the fact that the algorithm parallels the proof of Theorem 5 in an iterative

manner. h

In the case of Theorem 5 there are 2n � 1 pairs of length n. When n is even, not all

2n � 1 distance n pairs have edge disjoint shortest paths. Clearly when n = 2 and

X = {(00,11), (01,10)} the routing request does not have an edge disjoint route. We

now show that there is no edge disjoint shortest paths routing in an undirected n

cube with 2n � 1 pairs of length n > 2. The hypercube has 2n nodes and n2n � 1

T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998 997
undirected edges and each path for the pair requires n such edges. Therefore in order

to have edge disjoint paths all edges must be used in by the paths. Consider any node

which is a source in a path, denote the source s0. One edge must emanate from s0 in

the path to node t0. Therefore the number of remaining (unused) edges is odd. How-

ever every path that goes through s0 must use exactly two edges. Therefore any set of
edge disjoint paths uses an odd number of the edges emanating from s0. As we have

an even dimension n it must be that at least one edge emanating out of s0 is not used.

This implies that all edge disjoint shortest paths problems in the undirected n-cube

for 2n � 1 pairs do not have a solution for n even.
5. Future work

There are instances of (n,p,q) with p + q = n that do not have node disjoint short-

est paths. So it is not possible to extend Theorem 4 to p + q = n. An interesting area

for future research is to find improved sufficiency conditions and perhaps even nec-

essary and sufficient conditions for the existence of node disjoint shortest paths in the

n-cube. One caveat however, determining whether or not node disjoint shortest paths

exist is an NP-complete problem in an n-cube [3,4]. Therefore, necessary and suffi-

cient conditions for the existence of node disjoint shortest paths are most likely

not polynomial time computable. However, the extreme version of the problem with
an arbitrary number of pairs is not known to be NP-complete.

Another very interesting open problem is to develop an algorithm to determine in

polynomial time whether for any partial half permutation routing request, edge dis-

joint shortest paths for m pairs in an undirected 2n cube exist. Clearly the answer is

‘‘no’’ to this decision problem for m = 2n � 1 pairs of length n when n is even, but for

many other problem instances a solution does exist.
References

[1] S. Gao, B. Novick, K. Qui, From Hall�s matching theorem to optimal routing on hypercubes, Journal

of Combinatorial Theory Series B 74 (2) (1998) 291–301.

[2] T.F. Gonzalez, F.D. Serena, Node disjoint shortest paths for pairs of vertices in an n-cube network,

in: Proceedings of the International Conference on Parallel and Distributed Computing and Systems

(PDCS2001) (2001), IASTED, pp. 278–282.

[3] T.F. Gonzalez, F.D. Serena, Complexity of k-pairwise disjoint shortest paths in the hypercube and

grid networks. Technical Report TRCS-2002-14, University of California at Santa Barbara, May

2002.

[4] T.F. Gonzalez, F.D. Serena, Complexity of k-pairwise disjoint shortest paths in the undirected

hypercubic network and related problems, in: Proceedings of the International Conference on Parallel

and Distributed Computing and Systems (PDCS 2002), IASTED, 2002.

[5] T.F. Gonzalez, F.D. Serena, n-Cube search algorithm for finding (n � 1)-pairwise node disjoint

shortest paths, in: International Conference on Communications in Computing (CIC 2002), CSREA

Press, 2002.

[6] Q.-P. Gu, S. Peng, k-Pairwise cluster fault tolerant routing in hypercubes, IEEE Transactions on

Computers 46 (1997) 9.

998 T.F. Gonzalez, D. Serena / Parallel Computing 30 (2004) 973–998
[7] Q.-P. Gu, S. Peng, Node-to-set and set-to-set cluster fault tolerant routing in hypercubes, Parallel

Computing 24 (1998) 1245–1261.

[8] E. Horowitz, S. Sahni, Fundamentals of Data Structures, W.H. Freeman and Company, 1990.

[9] R. Karp, On the computational complexity of combinatorial problems, Networks 5 (1975) 45–68.

[10] S. Latifi, H. Ko, P.K. Srimani, Node-to-set vertex disjoint paths in hypercube networks. Computer

Science Technical Report, Colorado State University CS-98-107, 1998.

[11] S. Madhavapeddy, I.H. Sudborough, A topological property of hypercubes: node disjoint paths, in:

Proceedings of Second IEEE Symposium on Parallel and Distributed Processing, 1990, pp. 532–539.

[12] S. Madhavapeddy, I.H. Sudborough, Disjoint paths in the hypercube, in: M. Nagl (Ed.) WG (June

1990), Lecture Notes in Computer Science. Graph-Theoretic Concepts in Computer Science, 15th

International Workshop, WG�89, vol. 411, pp. 3–18.
[13] K. Menger, Zur allgemeinene kurventheorie, Fundamental Mathematics 10 (1927) 95–115.

[14] M.O. Rabin, Efficient dispersal of information for security, load balancing and fault tolerance,

Journal of the Association of Computing Machinery 36 (2) (1989) 335–348.

[15] Y. Shiloach, Two paths problem is polynomial, Technical Report TR-CS-78-654, Stanford

University, 1978.

[16] M. Watkin, Graph is (2k � 1)-connected is a necessary condition to admit k paths, Duke

Mathematical Journal 23 (1968).

	n-Cube network: node disjoint shortest paths for maximal distance pairs of vertices
	Introduction
	Notation and definitions

	The simple approach: p les lceil n/2 rceil and 2p+q les n+1
	Algorithm for the simple approach
	Limitations of the 1-bit approach

	The balanced approach: p+q les n minus 1
	Algorithm for the balanced approach

	Extreme version of the edge disjoint shortest paths problem
	Future work
	References

