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We consider multimessage multicasting over the n processor complete (or
fully connected) static network (MMC). First we present a linear time algo-
rithm that constructs for every degree d problem instance a communication
schedule with total communication time at most d 2, where d is the maximum
number of messages that each processor may send or receive. Then we pre-
sent degree d problem instances such that all their communication schedules
have total communication time at least d 2. We observe that our lower bound
applies when the fan-out (maximum number of processors receiving any
given message) is huge, and thus the number of processors is also huge. Since
this environment is not likely to arise in the near future, we turn our atten-
tion to the study of important subproblems that are likely to arise in practice.
We show that when each message has fan-out k=1 the MMC problem
corresponds to the makespan openshop preemptive scheduling problem
which can be solved in polynomial time and show that for k�2 our problem
is NP-complete and remains NP-complete even when forwarding is allowed.
We present an algorithm to generate a communication schedule with total
communication time 2d&1 for any degree d problem instance with fan-out
k=2. Our main result is an O(q } d } e) time algorithm, where e�nd (the
input length), with an approximation bound of qd+k1�q (d&1), for any
integer q such that k>q�2.

Our algorithms are centralized and require all the communication informa-
tion ahead of time. Applications where all of this information is readily
available include iterative algorithms for solving linear equations, and most
dynamic programming procedures. The Meiko CS-2 machine and computer
systems with processors communicating via dynamic permutation networks
whose basic switches can act as data replicators (e.g., n by n Benes network
with 2 by 2 switches that can also act as data replicators) will also benefit
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from our results at the expense of doubling the number of communication
phases. � 1998 Academic Press
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1. INTRODUCTION

1.1. The Problem

The multimessage multicasting problem over the n processor static network (or
simply a network), MMC , consists of constructing a communication schedule with
least total communication time for multicasting (transmitting) any given set of
messages. Specifically, there are n processors, P=[P1 , P2 , ..., Pn], interconnected via
a network N. Each processor is executing processes, and these processes are
exchanging messages that must be routed through the links of N. Our objective is
to determine when each of these messages is to be transmitted so that all the com-
munications can be carried in the least total amount of time. Forwarding, which
means that messages may be sent through indirect paths even though a single link
path exists, allows communication schedules with significantly smaller total com-
munication time. This version of the multicasting problem is referred to as the
MMFC problem, and the objective is to determine when each of these messages is
to be transmitted so that all the communications can be carried in the least total
amount of time. In most applications forwarding is allowed, but when security is an
issue forwarding must not be permitted. Also, requiring that messages be forwarded
may create additional traffic which under certain conditions may congest the com-
munication network.

Routing in the complete static network (there are bidirectional links between
every pair of processors) is the simplest and most flexible when compared to other
static networks (or simply networks) with restricted structure such as rings, mesh,
star, binary trees, hypercube, cube connected cycles and shuffle exchange, and
dynamic networks (or multistage interconnection networks), such as Omega
networks, Benes networks, and fat trees. The minimum total communication time
for the MMC problem is an obvious lower bound for the total communication time
of the corresponding problem on any restricted communication network. Dynamic
networks that can realize all permutations (each in one communication phase) and
replicate data (e.g., n by n Benes network based on 2 by 2 switches that can also
act as data replicators) will be referred to as pr-dynamic networks. Multimessage
multicasting for pr-dynamic and complete networks is not too different, in the sense
that any communication schedule for a complete network can be translated
automatically into an equivalent communication schedule for any pr-dynamic
network. This is accomplished by translating each communication phase for
the complete network into no more than two communication phases for the
pr-dynamic networks. The first phase replicates data and transmits it to other
processors, and the second phase distributes data to the appropriate processors
[15, 16, 19]. The IBM GF11 machine [1], and the Meiko CS-2 machine use Benes
networks for processor interconnection. The two stage translation process can also
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be used in the Meiko CS-2 computer system, and any multimessage multicasting
schedule can be realized by using basic synchronization primitives. This two step
translation process can be reduced to one step by increasing the number of network
switches by about 500 [15, 16, 19]. In what follows we concentrate on the MMC

problem because it has a simple structure, and, as we mentioned before, results for
the fully connected network can be easily translated to any pr-dynamic network.

Let us formally define our problem. Each processor Pi holds the set of messages
hi and needs to receive the set of messages ni . We assume that � hi=� n i , and that
each message is initially in exactly one set hi . We define the degree of a problem
instance as d = max[ |hi |, |ni |], i.e., the maximum number of messages that
any processor sends or receives. We define the fan-out of a problem instance as the
maximum number of different processors that must receive any given message.
Consider the following example.

Example 1.1. There are nine processors (n=9). Processors P1 , P2 , and P3 send
messages only, and the remaining six processors receive messages only. Note that
in general processors may send and receive messages. The messages each processor
holds and needs are given in Table 1. For this example the density d is 3 and the
fan-out is 4.

One can visualize problem instances by directed multigraphs. Each processor Pi

is represented by the vertex labeled i, and there is a directed edge (or branch) from
vertex i to vertex j for each message that processor Pi needs to transmit to processor
Pj . The multiset of directed edges or branches associated with each message are
bundled together. The problem instance given in Example 1.1 is depicted in Fig. 1 as
a directed multigraph with additional thin lines that identify all edges or branches
in each bundle.

The communications allowed in our complete network satisfy the following two
restrictions.

1. During each time unit each processor Pi may transmit one of the messages
it holds (i.e., a message in its hold set hi at the beginning of the time unit), but such
a message can be multicasted to a set of processors. The message will not be deleted
from the hold set hi .

2. During each time unit each processor may receive at most one message.
The message that processor Pi receives (if any) is added to its hold set hi at the end
of the time unit.

TABLE 1

Hold and Need Vectors for Example 1.1

h1 h2 h3 h4 h5 h6 h7 h8 h9

[a, b] [c, d] [e, f ] < < < < < <
n1 n2 n3 n4 n5 n6 n7 n8 n9

< < < [a, c, e] [a, d, f ] [b, c, e] [b, d, f ] [c, d, e] [c, d, f ]
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FIG. 1. Directed Multigraph Representation for Example 1.1. The thin line joins all the edges
(branches) in the same bundle.

The communication process ends when each processor has ni�hi ; i.e., every
processor holds all the messages it needs. Our communication model allows us
to transmit any of the messages in one or more stages. I.e., any message may be
transmitted at different times. This added routing flexibility may reduce the total
communication time considerably. We now show that it does reduce the total
communication time. The problem instance given in Example 1.1 requires six
communication steps if one restricts each message to be transmitted only at a single
time unit. The reason for this is that no two of the six messages can be transmitted
concurrently because every pair of messages either originates at the same processor,
or has a common destination processor. However, by allowing messages to be
transmitted at different times one can perform all communications in four steps. Let
us now explain how this can be accomplished. In step S1 processor P1 sends
message a to processor P5 ; processor P2 sends message c to processors P4 , P6 , P8 ,
and P9 ; and P3 sends message f to processor P7 . In step S2 processor P1 sends
message a to processor P4 ; processor P2 sends message d to processors P5 , P7 , P8

and P9 ; and P3 sends message e to processor P6 . In step S3 processor P1 sends
message b to processors P6 and P7 , and processor P3 sends message e to processor
P4 and P8 . In step S4 processor P3 sends message f to processors P5 and P9 . Table 2
shows the hold vectors at the end of each of these four steps.

To establish that forwarding reduces the total communication time Gonzalez [8]
showed that when forwarding is not allowed all the communication schedules

TABLE 2

Hold vector after steps S1, S2, S3, and S4

h1 h2 h3 h4 h5 h6 h7 h8 h9

S1 [a, b] [c, d] [e, f ] [c] [a] [c] [ f ] [c] [c]
S2 [a, b] [c, d] [e, f ] [a, c] [a, d] [c, e] [d, f ] [c, d] [c, d]
S3 [a, b] [c, d] [e, f ] [a, c, e] [a, d] [b, c, e] [b, d, f ] [c, d, e] [c, d]
S4 [a, b] [c, d] [e, f ] [a, c, e] [a, d, f ] [b, c, e] [b, d, f ] [c, d, e] [c, d, f ]
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for the problem instance given in Example 1.1 require at least four communication
steps, but when forwarding is allowed, all the communications can be performed in
three steps. For brevity we do not prove the first claim. But we show that when
forwarding is allowed all the communications in the problem instance given in
Example 1.1 can be performed in three steps. In step T1 processor P1 sends message
a to processors P4 and P5 ; processor P2 sends message c to processors P6 , P8 , and
P9 ; and P3 sends message f to processor P7 . In step T2 processor P1 sends message
b to processors P6 and P7 ; processor P2 sends message d to processors P5 , P8 and
P9 ; and P3 sends message e to processor P4 . In step T3 processor P2 sends message
c to processor P4 ; processor P3 sends message f to processors P5 and P9 ; processor
P4 sends message e to processors P6 and P8 ; and processor P5 sends message d to
processor P7 . The last two messages were sent indirectly from their original loca-
tion. Table 3 shows the hold vector at the end of each of these three steps.

A communication mode C is a set of tuples of the form (m, l, D), where l is a
processor index (1�l�n), and message m # hl is to be multicasted from processor
Pl to the set of processors with indices D. In addition the set of tuples in a
communication mode C must obey the following communications rules imposed by
our network:

1. All the indices l in C are distinct; i.e., each processor sends at most one
message; and

2. Every pair of D sets in C is disjoint; i.e., every processor receives at most
one message.

A communication schedule S for a problem instance I is a sequence of com-
munication modes such that after performing all these communications ni�hi for
1�i�n, i.e., every processor holds all the messages it needs. The total communica-
tion time is the number of communication modes in schedule S, which is identical
to the latest time there is a communication. Our problem consists of constructing
a communication schedule with least total communication time. From the com-
munication rules we know that every degree d problem instance has at least one
processor that requires d time units to send, and�or receive all its messages. There-
fore, d is a trivial lower bound for the total communication time. To simplify the
analysis of our approximation algorithm we use this lower bound as the objective
function value of an optimal solution. Another reason for using this lower bound is
that load and communication balancing (placement) and multimessage multicasting

TABLE 3

Hold vector after steps T 2, T 2, and T 3

h1 h2 h3 h4 h5 h6 h7 h8 h9

T1 [a, b] [c, d] [e, f ] [a] [a] [c] [ f ] [c] [c]
T2 [a, b] [c, d] [e, f ] [a, e] [a, d] [b, c] [b, f ] [c, d] [c, d]
T3 [a, b] [c, d] [e, f ] [a, c, e] [a, d, f ] [b, c, e] [b, d, f ] [c, d, e] [c, d, f ]
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(routing) are normally separate procedures, and the load and communication
balancing problem must have a simple objective function in terms of the problem
instance it generates that somehow represents the total communication time for the
placement and a reasonable routing procedure. In other words this allows us to
define an optimal placement as one that generates a problem instance with mini-
mum density, i.e., minimum value of d.

Under the multigraph representation one can visualize the MMC problem as a
generalized edge coloring directed multigraph (GECG) problem. This problem con-
sists of coloring the edges with the least number of colors (positive integers) so that
the communication rules (now restated in the appropriate format) imposed by our
network are satisfied: (1) every pair of edges from different bundles emanating from
the same vertex must be colored differently; and (2) all incoming edges to each
vertex must be colored differently. The colors correspond to different time periods.
In what follows we corrupt our notation by using interchangeably colors and time
periods; vertices and processors; and bundles, branches or edges, and messages.
Note that for the MMFC problem this correspondence is not adequate simply
because an edge from a node i to a node j may be replaced by an edge from node
i to a node l and an edge from node l to node j provided that the first communica-
tion takes place before the second one.

1.2. Previous Work and New Results

In Section 2 we present a linear time algorithm to construct for any degree d
problem instance a communication schedule with total communication time at
most d 2 and present problem instances for which this upper bound on the com-
munication time is the best possible; i.e. the upper bound is also a lower bound.
Our lower bound applies when the fan-out is huge, and thus the number of pro-
cessors is also huge. Since this environment is not likely to arise in the near future,
we turn our attention in subsequent sections to important subproblems likely to
arise in practice. Also, the lower bound does not apply to the case when forwarding
is allowed, because Gonzalez [8] has recently established that every instance of the
MMFC has a communication schedule with 2d total communication time. This pro-
cedure uses the results discussed in Section 3 and takes O(r(min[r, n2]+n log n))
time, where r�dn. This time complexity bound grows faster than that of the
approximation algorithm given in Section 5.

The basic multicasting problem (BMC) consists of all the degree d=1 MMC

problem instances and can be trivially solved by sending all the messages at time
zero. There will be no conflicts because d=1; i.e., each processor may send at most
one message and receive at most one message. The communication schedule has
only one communication mode. When the processors are connected via a pr-
dynamic network a communication mode can be performed in two stages: the data
replication step followed by the data distribution step [15, 16, 19]. Let us illustrate
this two stage process for the example given in Fig. 2. A BMC problem instance is
given on the left hand side of Fig. 2. We transmit the messages in two stages. In the
first stage (data replication) we send message a to processors 2 and 3 (processor 1
has this message initially), message b is sent to processor 5 (processor 4 has this
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FIG. 2. Replication and Distribution.

message initially), and message c is sent to processors 7 and 8 (processor 6 has this
message initially). Then in the distribution phase, message a in processor 1 is sent
to processor 5, message a in processor 2 is sent to processor 6, message a is already
in processor 3 so there is no need to send it there, and so on. As we said before,
this two stage process can also be used in the MEIKO CS-2 machine.

In Section 3 we show that when k=1 (multimessage unicasting problem MUC),
our problem corresponds to the makespan openshop preemptive scheduling
problem which can be solved in polynomial time [10]. Each degree d problem
instance has an optimal coloring with d colors. The interesting point is that each
communication mode translates into a single communication step for processors
interconnected via permutation networks (e.g., Benes Network, Meiko CS-2, etc.),
because in these networks all possible one-to-one communications can be per-
formed in one communication step.

It is not surprising that several authors have studied the MUC problem as well
as several interesting variations for which NP-completeness has been established,
subproblems have been shown to be polynomially solvable, and approximation
algorithms and heuristics have been developed. Coffman et al. [2] studied a version
of the multimessage unicasting problem when messages have different lengths, each
processor has #(Pi) ports each of which can be used to send or receive messages,
and messages are transmitted without interruption (nonpreemptive mode).
Whitehead [21] considered the case when messages can be sent indirectly. The
preemptive version of these problems as well as other generalizations were studied
by Choi and Hakimi [3�5], Hajek and Sasaki [13], and Gopal et al. [11]. Some
of these papers considered the case when the ports are not interchangeable, i.e., it
is either an output port or an input port. Rivera-Vega, et al. [17] studied the file
transferring problem, a version of the multimessage unicasting problem for the
complete network when every vertex can send (receive) as many messages as the
number of outgoing (incoming) links. All previous work has been limited to
unicasting, and all known results about multicasting are limited to single messages,
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except for the work by Shen [18], who studied multimessage multicasting for
hypercube parallel computers. These algorithms are heuristic and try to minimize the
maximum number of hops, amount of traffic, and degree of message multiplexing.
Since hypercubes are static networks, there is no direct comparison to our work. The
MMC problem involves multicasting of any number of messages, and its commu-
nication model is similar in nature to the one in the Meiko CS-2 machine, after solv-
ing basic synchronization problems with barriers.

The MMC problem is significantly harder than the MUC . We show that even
when k=2 the decision version of the MMC problem is NP-complete (Section 4).
The problem remains NP-complete even when forwarding is allowed (Section 4).
We also present an algorithm to construct a communication schedule with total
communication time 2d&1 for the case when the fan-out is two, i.e., k=2. Our
main result is an efficient algorithm to construct for problem instances of degree d
a communication schedule with total communication time qd+k1�q (d&1), where q
is the maximum number of colors one can use on each bundle and k>q�2.

1.3. Applications

Multimessage multicasting problems arise when solving sparse systems of linear
equations via iterative methods (e.g., a Jacobi-like procedure), most dynamic
programming procedures, etc. Let us now discuss the application involving linear
equations. We are given the vector X(0) and we need to evaluate X(t) for t=1, 2, ...,
using the iteration x i (t+1)= fi (X(t)). But since the system is sparse every fi

depends on very few terms. A placement procedure assigns each xi to a processor
where it will be computed at each iteration by evaluating fi ( ). Good placement
procedures assign a large number of fi ( )s to the processor where the vector com-
ponents it requires are being computed, and therefore can be computed locally.
However, the remaining f i ( )s need vector components computed by other pro-
cessors. So at each iteration these components have to be multicasted (transmitted)
to the set of processors that need them. The strategy is to compute X(1) and per-
form the required multimessage multicasting, then compute X(2) and perform the
multicasting, and so on. The same communication schedule is used at each iteration
and can be computed off-line once the placement of the xis has been decided. The
same communication schedule can also be used to solve other systems with the
same structure, but different coefficients. Speedups of n for n processor systems may
be achieved when the processing and communication load is balanced, by overlap-
ping the computation and communication time. This may be achieved by executing
two concurrent tasks in each processor. One computes the xi s, beginning with the
ones that need to be multicasted, and the other deals with the multicasting of the
xi values. If all the transmissions can be carried out by the time the computation
of all the xis is finished then we have achieved maximum performance. But if the
communication takes too long compared to the computation, then one must try
another placement or try alternate methods.

When all the multicasting information is not known in advance, the message
routing must be performed online and the total communication time may be very
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large. However, even in this environment one can use the results reported in this
paper a posteriori to evaluate the performance of the online scheduling heuristics
employed relative to the case when all the multicasting information is known ahead
of time.

2. UPPER AND LOWER BOUNDS FOR THE MM C PROBLEM

We show that for every degree d instance of the MMC problem one can construct
in linear time, with respect to input length, a schedule with total communication
time d 2. We then present degree d problem instances such that all their communica-
tion schedules have total communication time at least d 2.

Let P be any n processor instance of the MMC problem of degree d. The set of
d 2 colors is defined as [(i, j) | 1�i�d and 1� j�d]. Now assign an order to the
incoming edges to each vertex, and assign an order to all the bundles emanating
from each vertex. Assign color (i, j) to edge e=[ p, q] if e belongs to the i th bundle
emanating form vertex p and e is the j th incoming edge to vertex q.

Theorem 2.1. The informal algorithm described above generates a communication
schedule with total communication time at most d 2 for every degree d instance of
the MMC problem. Furthermore, the algorithm takes linear time with respect to the
number of nodes and edges in the multigraph.

Proof. The proof follows from the observation that edges emanating from the
same processor belonging to different bundles are colored with different colors, and
all the incoming edges to a node are colored with different colors. Clearly, the algo-
rithm uses at most d 2 colors. The time complexity bound for the algorithm is linear
with respect to the input size, because the ordering of the branches and bundles
can be arbitrary, and once an ordering is selected, the color assignment is
straightforward. K

For d=1 the total communication time for the communication schedule con-
structed is one, which is the best possible, but as d increases the total communica-
tion time gets farther away from the trivial lower bound d. Before we establish that
there are problem instances such that all their communication schedules have total
communication time at least d 2, we outline their basic properties. These problem
instances have for each subset of d bundles emanating for different processors a dis-
tinct processor that must receive the message associated with all of these d bundles.
We claim that there cannot be l+1 bundles (for any 1�l�d&1) all of which send
their messages during the same l time periods because either two of these bundles
originate at the same processor and therefore cannot transmit at the same times, or
all the bundles emanate out of different processors and it would be impossible to
transmit to the receiving processor(s) they have in common l+1 different messages
in only l time units. Now by introducing an appropriate number of processors we
can guarantee that here is at least one processor with d bundles such that all its
bundles must transmit their messages at d different time units. Therefore every
schedule for these problem instances must have total communication time at least
d 2. A problem instance for d=2 that does not have a schedule with total

223MULTIMESSAGE MULTICASTING



communication time less than 4 is given in Fig. 3. Any schedule with total communica-
tion time at most three for this problem instance cannot have for each processor a
bundle that transmits all its messages in exactly one time period, because there
would be two bundles emanating out of different processors transmitting at the
same time. But then the receiving processor these two bundles have in common
cannot receive two different messages in just one time unit. Therefore, for at least
one processor its two bundles must transmit at two different times which establishes
that one needs at least four time units to transmit all messages.

We now formally establish that for all d�1 the problem instance Id defined
below has the property that all its communication schedules have total communica-
tion time at least d 2. The problem instance I2 is depicted in Fig. 3. For d�1 the
problem instance, Id , contains two type of processors: s-processors (sending) and
r-processors (receiving). The s-processors (r-processors) send (receive) only
messages. The problem instance has ns s-processors, each with d bundles, where

ns= :
d&1

i=1

i } \d 2&1
i ++1.

For d=2, ns is 4; for d=3, ns is 65; and so on.
For each subset of d bundles from d different s-processors there is a unique r-pro-

cessor that receives a message from each of these s-processors. Therefore, the total
number of r-processors, nr , is d d( ns

d ). For d=2, nr is 24; for d=3, nr is 1179360;
and so on. Let us now establish that every communication schedule for every
problem instance, Id , has total communication time at least d 2.

Theorem 2.2. Every communication schedule for every problem instance, Id , has
total communication time at least d 2.

Proof. The proof is by contradiction. Suppose that there is a communication
schedule Sd for problem instance Id with total communication time less than d 2.
For the communication schedule Sd , let Ri, j be the set of time periods where the

FIG. 3. Problem instance I2 . The triangles represent s-processors, and the solid circles represent
r-processors.
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communications of bundle Ti, j take place. We claim that for 1�l�d&1 there are
at most l identical sets of time periods Ri, j with cardinality l. The proof of this
claim is by contradiction. Suppose that there are l+1 of such sets. Then either at
least two of the corresponding bundles belong to the same s-processor and hence
cannot be assigned to the same time periods, or there are l+1 bundles belonging
to different s-processors and by the definition of Id all transmit a message to a com-
mon r-processor, but then this r-processor cannot receive l+1 different messages
from these l+1 bundles since all these bundles transmit only during the same l time
periods. Therefore, there can be at most

:
d&1

i=1

i } \d 2&1
i +

bundles having their Ri, j with cardinality at most d&1. But since ns is greater than
this number, it then follows that there is at least one s-processor all of whose
bundles have |Ri, j |�d. Since all the bundles emanating from a node must have
disjoint Ri, j sets, it then follows that such s-processor requires d 2 time periods to
communicate, which contradicts the assumption that S has total communication
time less than d 2, a contradiction. So all the communication schedules for problem
instance Id have total communication time at least d 2. K

To achieve the bound of d 2 the problem instance Id has huge fan-out and as a
result of this a huge number of processors. Since this environment is not likely to
arise in the near future, we turn our attention in subsequent sections to important
subproblems likely to arise in practice.

3. ALGORITHM FOR THE MU C PROBLEM

Let us now consider the multimessage unicasting, MUC , problem; i.e., we restrict
to the case when the fan-out is equal to 1 (i.e., k=1). Remember that for this type
of problem instances each message is to be delivered to exactly one processor, but
the degree d of a problem can be arbitrary large. Coffman, et al. [2, p. 746] showed
that the restricted MUC problem in which each processor can send or receive (but
not at the same time) a message at a time is an NP-complete problem. However,
the MUC problem can be reduced to the makespan openshop preemptive schedul-
ing problem, which can be solved in polynomial time [10].

An openshop consists of m�1 machines and n�1 jobs. Each job consists of m
tasks. The j th task of job i (Ti, j) must be executed by the j th machine for ti, j�0
time units. A schedule is an assignment of each task to its corresponding machine
for a total of ti, j time units in such a way that at each time instance one task from
each job may be assigned to a machine, and each machine may be assigned at most
one task at a time. Note that the task processing need not be continuous; that is
why this type of schedules is called preemptive. The finish time for schedule S ( f (S))
is the latest time a task is being processed by a machine. The makespan openshop
scheduling problem consists of constructing a minimum finish time schedule.
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Let mi be the total time that machine i must be busy and tj be the total time that
job j needs to be executed. Let t=max[mi , tj]. Gonzalez and Sahni [10] showed
that there is always a preemptive schedule with finish time t, which is the best
possible, and that one such schedule can be constructed in O(r(min[r, m2]+
m log n)) time, where r is the number of nonzero tasks. Furthermore, when all
the t i, j s are integers, there is a schedule where preemptions occur only at integer
points, and one such schedule is generated by Gonzalez and Sahni's [10] algo-
rithm.

The MUC problem of degree one is a special case of the preemptive openshop
problem with all the ti, j s in [0, 1, ..., d]. Each of the n vertices in the communica-
tion graph represents a job and a machine. The multiset of edges T indicating that
processor i must send |T | messages to processor j is now translated to the statement
that the j th task of job i must be executed by machine j for ti, j=|T | time units.
Translating the results from the openshop problem back to the communication
problem, it means that every problem of degree d has a communication schedule
with total communication time equal to d time units. Furthermore, one can easily
adapt the algorithm for the minimum finish time openshop problem given in [10]
to construct one such communication schedule. The time complexity is
O(r(min[r, n2]+n log n)) time, where r�dn. For brevity we omit the proof of the
following theorem.

Theorem 3.1. The above informal procedure constructs a communication schedule
with total communication time equal to d for any multimessage unicasting problem of
degree d with n processors. The procedure takes O(r(min[r, n2]+n log n)) time,
where r is the total number of messages with distinct origin and destination (r�dn).

Proof. For brevity the proof is omitted. K

The schedule can also be generated by Choi and Hakimi's algorithm [3, p. 230]
in O(r2n) time. Since r�n, Choi and Hakimi's algorithm [3] is not as time efficient
as the one in [10]. However, Choi and Hakimi's algorithm [3] also solves general-
izations of the preemptive open shop problem.

4. THE MM C PROBLEM WITH FAN-OUT k=2

First we establish that the decision version of the MMC problem is NP-complete
even when k=2 and show that the problem remains NP-complete even when
forwarding is allowed. Then we show that there is a communication schedule with
total communication time equal to 2d&1 for every problem instance of degree d
and fan-out 2 and that one such schedule can be generated in O(nd 2.5) time.

4.1. NP-completeness

In this subsection we show that the decision version of the MMC problem is
NP-complete even when k=2, by reducing the edge coloring (EC) problem to it.
The edge coloring problem was shown to be NP-complete in [14].
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Edge Coloring Problem

INPUT: Undirected graph G=(V, E) of degree d; i.e., each vertex has at most d
edges incident to it.
QUESTION: Is there an assignment of one of d colors to each edge in G so that
no two edges incident to the same vertex are colored identically?

Theorem 4.1. The decision version of the MMC problem is NP-complete even
when k=2.

Proof. It is simple to show that the decision version of the MMC problem is in
NP. We now present a polynomial time reduction from the graph edge coloring
problem to the MMC problem with k=2. Given any instance IEC of the graph edge
coloring problem, i.e., an undirected graph G=(V, E) of degree d, we construct
an instance of the MMC as follows. For each vertex i in V we create the receive
processor (r-processor) vi . For each edge j in E there is a send processor (s-processor)
ej and an r-processor fj . The s-processor ej , that represents edge j in G incident to
vertices p and q in G, has d bundles. The first bundle has two directed edges
emanating from it and ending at r-processors vp and vq . This means that an identi-
cal message has to be sent to processor vp and vq . The remaining d&1 bundles each
represent one distinct message to be transmitted to r-processor fj . In Fig. 4 we give
an instance IEC of the graph edge coloring problem and the instance IMM of the
MMC problem generated from it by our reduction.

Clearly the reduction takes polynomial time with respect to the number of ver-
tices and edges in the graph G. We now show that the instance IMM of the MMC

problem has a communication schedule with total communication time at most d
iff in the IEC problem instance the edges in G can be colored with d colors. The
most important property of the reduction is that if IMM has a communication
schedule with total communication time d then the two branches in each bundle

FIG. 4. Graph edge coloring instance and corresponding MMC instance.
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emanating from an s-processor must be colored with the same color, and all the
branches incoming to each processor must be colored with a different color. These
facts will ensure that IEC can be colored with d colors.

First we prove that if G can be colored with d colors, then IMM has a com-
munication schedule with total communication time equal to d. Given any d coloring,
we color the edges in the instance IMM as follows. If edge j in G joining vertices p
and q is colored with color c, then the two edges in IMM from s-processor e j to
r-processor vp and from ej to vq are colored with color c, and the remaining d&1
edges emanating from ej and ending in fj are colored with the remaining d&1
colors. It is simple to see that this coloring gives rise to a communication schedule
with total communication time equal to d for IMM .

We now prove that if IMM has a communication schedule with total communica-
tion time equal to d then G can be colored with d colors. It is easy to establish that
in any schedule with total communication time equal to d for IMM the message
emanating at each s-processor ej and ending at r-processors vp and vq must be sent
at the same time and that all the messages received by each r-processor vi must
arrive at distinct times. These facts together with the property that each message
emanating at each s-processor ej and ending at r-processors vp and vq represents an
edge between vertices p and q in G can be easily combined to establish that G can
be colored with d colors. This completes the proof of the theorem. K

The above reduction cannot be used to show that the MMFC problem is NP-
complete. The reason for this is that the processors fj and vi may be used for
forwarding in schedules with total communication time equal to d. To show that
the MMFC problem is NP-complete even when k=2 we modify the previous reduc-
tion by introducing additional vertices and edges in such a way that none of
the vertices may be used for forwarding in a communication schedule with total
communication time d (see Fig. 5). Let us now discuss the modifications. For each
vertex i in V, add the r-processor wi , and for each edge j in E, add the r-processor gj .
For each edge j in E, add d edges from processor fj to processor gj , and for each
vertex i in V, add d edges from processor vi to processor wi .

A processor is said to be input saturated if it has d edges incoming to it, and a
processor is said to be output saturated if it has d edges emanating from it. We say
that a processor is used for forwarding messages if at some time it sends a message
it did not have at time zero. An input saturated processor that receives d messages
that are not needed by other processors cannot be used for forwarding messages
in a communication schedule with total communication time d. In our reduction
the input saturated processors gj and wi cannot be used for forwarding in a
communication schedule with total communication time d. An output saturated
processor that sends d different messages cannot be used for forwarding messages
in a communication schedule with total communication time d. In our reduction
output saturated processors ej , fj , and vi cannot be used for forwarding in a com-
munication schedule with total communication time d.

Theorem 4.2. The decision version of the MMFC problem is NP-complete even
when k=2.

228 TEOFILO F. GONZALEZ



FIG. 5. Graph edge coloring instance and corresponding MMFC instance.

Proof. The proof is similar to the one for the previous theorem, but uses the
arguments given just before this theorem. K

5. APPROXIMATING THE MM C WITH FAN-OUT k=2

Let us now discuss a simple approximation algorithm for the MMC problem with
k=2 but arbitrary degree d. Given any instance P of this problem we break each
message with two destinations into two different messages with one destination
each. Since k=2 the resulting problem instance is a multimessage unicasting
problem of degree 2d. From the results in Section 3 we know a communication
schedule with total communication time equal to 2d can be constructed for this
problem in O(r(min[r, n2]+n log n)) time, where r�dn. This communication
schedule is also a communication schedule for the instance P of the MMC problem.

Let us now discuss our algorithm GM (general matching) to color any instance
of the MMC problem with no more than 2d&1 colors in O(nd 2.5) time. Algorithm
GM colors the edges emanating from each processor at a time using no more than
2d&1 colors. First we present our algorithm and then we show that it always con-
structs a valid coloring.

Algorithm GM colors the bundles emanating from each processor at a time.
When considering a processor it colors a maximal set of bundles with one color per
bundle. The remaining bundles are colored with two colors. This is accomplished
by constructing a bipartite graph in which the lefthand side vertices represent the
uncolored branches and the righthand side vertices represent ``available'' colors.
An edge from vertex x to vertex y indicates that the branch represented by vertex x
can be colored y. Then a matching that includes all the lefthand side vertices is
constructed. The existence of the matching is established by proving that Hall's
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conditions hold for the graph. The matching is constructed by Hopcroft and Karp's
algorithm [12], and an edge coloring can be easily obtained from the matching.

GM Procedure

for each processor Pj

Color all the branches from a maximal set of bundles emanating from Pj

with one color per bundle;
Construct the bipartite graph G=(X+Y, E) as follows:

Each vertex in X represents an uncolored branch, and
each vertex in Y represents a color (one of the 2d&1 colors);

Add edge [x # X, y # Y] to E if ``branch'' x can be ``colored'' y;
Find a matching in G that covers all the vertices in X ;
Construct a schedule with total communication time 2d&1

for Pj from the maximal set and the complete matching;
endfor;

end of GM Procedure

Theorem 5.1. Given a degree d problem instance of the MMC with fan-out
k=2 and n processors (or vertices), procedure GM constructs a communication
schedule with total communication time at most 2d&1. The time complexity of the
procedure is O(nd 2.5).

Proof. Let : be the maximal number of bundles emanating from processor Pj

colored with one color per bundle at the beginning of the iteration. Let us now
establish that :�1. Let Bi, j , 1� j�2, be the set of colors that the j th branch of
the i th bundle can be colored without violating Rule 2. Clearly |Bi, j |�d at the
beginning of the Pj loop because every branch is incident to a processor with in-
degree d, there are 2d&1 different colors, and at most d&1 of the other branches
incident to it have been colored. Since |Bi, j |�d at the beginning of the Pj loop, at
least one bundle can be colored with exactly one color that both of its branches
have available, so :�1. Since each time a bundle is colored with one color, each
set Bi, j corresponding to an uncolored branch decreases by at most one. It then
follows that just after coloring a maximal number of bundles (:) with one color, for
each uncolored branch, |Bi, j |�d&:, and the total number of uncolored bundles
is d&:. Since no more bundles can be colored with exactly one color, it then
follows that for each uncolored bundle, Bi, 1 & Bi, 2=<. Consider the bipartite
graph in which each node in the left hand side represents an uncolored branch, and
each node in the right hand side is one of the 2d&1 colors. There is an edge from
the node representing the j th uncolored branch of the i th bundle to node q, iff
q # Bi, j . A matching that includes all the vertices in the left hand side provides us
with a coloring because it identifies for each uncolored branch a color which when
assigned to it does not create conflicts. Let us now show that one such matching
always exists.

We now claim that Hall's theorem holds for the bipartite graph just constructed
and therefore the above matching exists. Hall's condition for this graph is that every
subset of uncolored branches Q has the property that |Q|�|�[i, j] # Q Bi, j |. The
reason for this is simple. If the set Q contains the two branches from a bundle, then
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|�[i, j] # Q Bi, j |�2(d&:) because for each uncolored branch, |Bi, j |�d&:, and for
each uncolored bundle, Bi, 1 & Bi, 2=<. Since |Q|�2(d&:), Hall's property
follows. On the other hand if the set Q contains at most one branch for each
uncolored bundle, then |Q|�d&:. Since for each uncolored branch, |Bi, j |�d&:,
then |�[i, j] # Q B i, j |�d&:. Therefore, Hall's conditions follows.

By Hall's theorem, there is an assignment of colors so that all branches can be
colored by using at most 2(d&:) colors. Adding to this bound the previous :
colors used completes the correctness proof.

The for-loop is repeated n times, once for each processor. A maximal set of bun-
dles that can be colored completely with one color can be found in O(d 2) time. The
construction of the bipartite graph takes O(d 2) time, and a complete matching in
it can be constructed in O(d 2.5) time [12]. Therefore the overall time complexity for
procedure GM is O(nd 2.5). K

We should point out that when d�n procedure GM has time complexity bound
O(nd 2.5) that grows slower than that of the previous algorithm O(d 2n2). When d is
very small compared to n there is significant difference in the time complexity
bounds for these two procedures and the number of different colors procedure GM
introduces is normally less than 2d&1. The main reason is that one may color a
large number of bundles with a single color per bundle. For brevity we cannot
elaborate of this further.

6. APPROXIMATING THE MM C WITH FAN-OUT k�3

Let us now consider our simple and very fast approximation algorithm for the
MMC problem. The algorithm colors all edges emanating from P1 , P2 , ..., Pj&1 and
then colors the bundles emanating out of Pj one bundle at a time. It colors all the
edges emanating out of a bundle with q>2 different colors, where q is an input.
The coloring of the bundle is a greedy one, it first colors the largest number of
edges with one color, then the largest number of uncolored edges with another
color, and so on. By setting the total number of colors to an appropriate value, we
can show that our procedure always generates a valid solution. Let us now define
some terms and formally define our algorithm.

The algorithm colors all edges emanating from P1 , P2 , ..., Pj&1 . With respect to
this partial recoloring we define the following terms: Each branch emanating from
Pj leads to a processor with at most d&1 other (incoming) edges incident to it,
some of which have already been colored. These colors are called tj&1 -forbidden
with respect to a given branch emanating from Pj , i.e., a color is tj&1 -forbidden
(target forbidden) if it has been used in a branch that ends at the same processor
as the branch in question. Just after coloring a subset of branches emanating from
processor Pj ; we say that a color is sj -free if such color has not yet been used to
color any of the branches emanating from processor Pj , i.e., a color is sj -free
(source free) if it has not been used in a branch emanating from processor j.

A coloring in which every message is colored with exactly one color may require as
many as d+k(d&1) colors. The reason is that each branch has d&1 tj&1 -forbidden
colors, and none of the t j&1 -forbidden colors in a branch can be used to color the

231MULTIMESSAGE MULTICASTING



corresponding bundle. Therefore, there can be k(d&1) tj&1 -forbidden colors, none
of which can be used to color the bundle. Since there are at most d bundles emanating
from a processor Pj , and every bundle is assigned one color, then d+k(d&1)
colors are sufficient to color all the bundles emanating from processor P j and hence
the multigraph.

The above upper bound can be decreased substantially by assigning up to two
colors per message (bundle). Again, each branch has d&1 tj&1 -forbidden colors.
But, two colors that are not tj&1 -forbidden in the same branch of a bundle can
be used to color that bundle. So the question is: What is the largest number of
tj&1 -forbidden colors in a bundle such that no two of them can be used to color
the bundle? For k=3 and d=7 it is nine. The t j&1 -forbidden colors in the three
branches are: [1, 2, 4, 5, 7, 8], [1, 3, 4, 6, 7, 9], and [2, 3, 5, 6, 8, 9]. Note that no
two of the nine colors can color competely the bundle. We have established that the
largest number of tj&1 -forbidden colors in a bundle such that no two of them can
color completely the bundle is d&1 for k=2, about 1.5(d&1) for k=3, etc. For
brevity we do not include these results.

In what follows we show that it is always possible to color each of the bundles
with at most q colors using a total of qd+k1�q (d&1) colors. We also show that the
total time complexity for our procedure is O(q } d } e), where e�nd is the number
of edges in the multigraph. The procedure is given below.

Procedure q-Coloring (G, q, k, d )

for each processor Pj do
for each bundle b emanating from processor Pj do

l1 � s-free color that is t j&1-forbidden in the least number of branches of
bundle b;

let n1 be the number of branches of b where color l1 is tj&1 -forbidden;
use l1 to color as many branches of b as possible;
r � 1;
while r�q do �� one can also add the condition nr>0 ��

r � r+1
lr � s-free color that is t j&1 -forbidden in the least number of branches of

bundle b together with l1 , l2 , ..., lr&1 ;
let nr be the number of branches of b where color lr is t j&1-forbidden

together with l1 , l2 , ..., lr&1 ;
use lr to color as many of the uncolored branches of b as possible;

endwhile
�� As we prove later on, bundle b has been colored at this point.��
�� Exiting the loop when nr=0 will also generate a valid coloring.��
endfor;

endfor;
end of Procedure q-Coloring

Lemma 6.1. Just before the condition of the while statement is evaluated for the
rth time for bundle b, nr<k (q&r)�q for 1�r�q.
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Proof. The proof is by contradiction. Let b be the first bundle for which the
above condition does not hold, and let r be the smallest positive integer such that
nr�k(q&r)�q for b. The number of colors used so far to color the bundles emanating
from Pj when nr is calculated by the algorithm for b is at most q(d&1)+r&1.
Therefore there are at least q&r+1+k1�q (d&1) s-free colors, since the total
number of colors is qd+k1�q(d&1). By definition of nr each of these s-free colors
is tj&1 -forbidden with l1 , l2 , ..., lr&1 in at least k (q&r)�q branches emanating out of
bundle b. Therefore, the total number of occurrences of the tj&1 -forbidden colors
with colors l1 , l2 , ..., lr&1 is at least (q&r+1) k(q&r)�q+k (q&r+1)�q (d&1). Since
each branch of bundle b with tj&1 -forbidden colors l1 , l2 , ..., lr&1 can have at most
(d&r) other tj -forbidden colors, it then follows that nr&1�k(q&r+1)�q or that there
are more than k branches in the bundle. In either case, there is a contradiction.
Therefore, nr<k (q&r)�q for 1�r�q. K

Theorem 6.1. For every instance of the MMC problem with fan-out k�3, the
informal algorithm generates in O(q } d } e) time, where e is the number of edges in the
multigraph, a schedule with total communication time qd+k1�q (d&1).

Proof. The previous lemma implies that nq<1; therefore l1 , l2 , ..., lq are not
tj&1 -forbidden in the same branch of bundle b. Hence, at most q colors are needed
to color bundle b. It is simple to establish the time complexity bound. The proof
is based on the observations that each branch has at most d&1 tj&1 -forbidden
colors and that the edges emanating out of each bundle have to be considered at
most q times because of the for-loop for r. K

7. DISCUSSION

All of our approximation algorithms for the MMC problem generate a coloring
that use at most a1 } d+a2 colors. The value of constant a1 for the different
methods we have developed and for different values for k is given in Table 4. The
methods labeled ``simple'' are for the method in the previous section. The other
methods appear in [6] and [7], and allow for a limited form of recoloring [20].
For brevity we do not discuss the other methods in this paper. We should point out

TABLE 4

Constant a1 for Different Methods

Method"k 3 4 5 7 10 15 20 50 100

Simple (2 colors) 3.73 4.00 4.23 4.65 5.16 5.87 6.47 9.07 12.00
Involved (2c) 3.33 3.50 3.60 4.43 4.60 5.53 6.00 8.56 11.54
With Matching 2.67 3.00 3.50 4.29 4.50 5.47 6.00 8.54 11.53
Better Bound 2.50 3.00 3.50 4.14 4.40 5.40 5.75 8.52 11.52
Simple (3 colors) �� �� 4.00 4.55 4.81 5.27 5.60 6.67 7.62
Involved (3c) �� 3.56 4.00 4.26 4.67 5.00 5.20 6.23 7.24
Simple (4 colors) �� �� 5.50 5.63 5.78 5.97 6.11 6.66 7.16
Simple (5 colors) �� �� �� 6.48 6.58 6.72 6.82 7.19 7.51
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that the method in this paper is among the fastest, and asymptotically it provides
solutions equivalent to the ones of other methods. For the MMFC problem,
Gonzalez [8] developed an algorithm that generates communication schedules
with total communication time at most 2d. The algorithm invokes the procedure
given in Section 3 for the multimessage unicasting problem. The approximation
algorithm given in Section 5 for the MMC problem is in general faster than the one
given in [8].
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