An LP-Free Approximation Algorithm
for
Scheduling on Unrelated Processor Systems

Teofilo F. Gonzalez
Department of Computer Science,
University of California,
Santa Barbara, CA, 93106
teo@cs.ucsb.edu

Abstract

The currently best approximation algorithm for non-preemptive
scheduling on unrelated processor systems involves the solution of a
set of linear programming problems. We show that each of these lin-
ear programming problems can be solved via a procedure that solves
a set of problems via dynamic programming. Thus, by incorporat-
ing our procedures to with the previous approximation algorithm we
have an LP-free (i.e., not requiring linear programming) approxima-
tion algorithm for non-preemptive scheduling on unrelated processor
systems.

1 Introduction

We present LP-free (i.e., not requiring linear programming) approximation

algorithms for non-preemptive scheduling on unrelated processor systems.
Deterministic scheduling problems have been studied for several decades

by researchers from many different disciplines, including Operation Research,

Applied Mathematics, Management Science, Electrical Engineering, and Com-
puter Science and Engineering. The main reason behind the general interest

in scheduling is that it has a wide range of applications in all sorts of indus-

trial and commercial environments. The applications include (CPU) proces-

sor scheduling, instruction scheduling, machine shop scheduling, assembly

line scheduling, etc. Because of all the research activity in deterministic

scheduling, there is a wide range of techniques to generate suboptimal solu-

tions to these problems, since the problem of generating an optimal solution

to most of these problems is likely to be computationally intractable unless

P = NP.

The basic deterministic scheduling problem consists of a set of n inde-
pendent jobs to be executed by a set of m processors. Each job 7 has to
be executed for p; units of time by only one of the processors. A (nonpre-
emptive) schedule is an assignment of jobs to processors at time intervals in
such a way that (a) each job is executed continuously for p; units of time
by one of the processors; and (b) each processor executes at most one job at
each time unit. A schedule is said to preemptive if one allows parts of the
same job to be executed by different processors at different time periods. In
a c-preemptive schedule parts of the same job may be executed concurrently
by two or more processors. The finish time of a schedule is the latest time
at which a job is being executed. A schedule with least finish time amongst
all feasible schedules is called an optimal finish time schedule.

In some applications the processors are built from different technologies,
or some processors might not be completely dedicated to the processing of the
jobs. This type of processors are called uniform because some processors are
uniformly faster than the others. The speed at which a processor j executes
a job is s; > 1. Thus, job ¢ takes p;/s; time when executed by processor j.

A more general situation arises when the processors have different capa-
bilities and therefore are called unrelated. The time required by processor j
to execute job 4 is p; ; > 0, i.e., it depends not only on the processor executing
the job, but it also depends on the type of job. For example, some proces-
sors have hard-wired float point operations, or a large number of registers,
or large local memories. Thus different types of jobs would take different
time to execute on these different type of processors without satisfying the
uniformity criteria.

In this paper we present an LP-free approximation algorithm for schedul-
ing a set of n jobs on m unrelated processors. Our algorithm generates

2

schedules with finish time within two of the optimal finish time. There are
several approximation algorithms for our problem as well as for restricted and
generalized versions ([3], [2]). The approximation algorithm with the smallest
approximation bound is the one developed by Lenstra, Shmoys, and Tardos
([3]) which invokes the solution of a set of linear programming problems.
Our algorithm solves each of the linear programming problems by executing
a set of dynamic programming procedures. The approximation bound is the
same as the previous algorithm, but the time complexity is polynomial on n

and m (rather than polynomial on n, m and the number of bits required to
represent the input).

2 The Algorithm

The only approximation algorithm with a constant approximation bound for
our scheduling problem was developed by Lenstra, Shmoys and Tardos [3].
The algorithm needs to solve a set of corresponding c-preemptive decision
problems. These problems are formulated as linear programming problems

as follows.
Is there a solution to

i mi =1 for1<i<n
D i1 PijTiy < d for1<j<m
0<z;; <1forall 7, and j.

Each pi,; value is either less than or it is equal to d, or is equal to infinity.
Assume all the p; ;’s are real values. The other case can be solved similarly.
In what follows we solve this decision problem.

Our algorithm is fairly simple. The first step it constructs an initial
assignment z in which all jobs are assigned to one of the processors in which
the job has the smallest workload, i.e., job ¢ is assigned to processor j if
Dij = min{pi,l|1 S { S m}

For the assignment of jobs to processors = we define tproc; as X%, @; ;+p; ;
for 1 < j < m. Processor j is called critical in assignment z if tproc; > d; it
is called tight if tproc; = d; otherwise we refer to it as an idling processor.

A transformation path or t-path, T P(s,t), for assignment z from processor
s to processor ¢ is a sequence of kK —1 > 1 jobs 24,2, -+, 741 and a sequence
of k > 2 processors ji,ja," -,k such that s = j;, t = j3, and for 1 < I < k
job 4; is assigned at least in part to processor j, i.e., z;; > 0. The value

of £k —2 > 0 is called the number of intermediate processors in the t-path
TP(s,t). The indez of t-path TP(s,t) is the tuple (¢1,42,---,45_1). Note
that there may be many different t-paths between a pair of processors and
the number of intermediate processors in these paths may also be different.
Let A and B be two different t-paths with the same number of intermediate
processors. We say that t-path A has a smaller index than t-path B if
the index of A is lexicographically smaller than the index of B. A t-path,
TP(1,8), with £ = 6; j1 = 1,j2 = 5,73 = 3,74 = 7,45 = 6,76 = 8; and
i1 = 9,02 = 6,13 = 4,44 = 2,45 = 3 is shown in Figure 1(a), and in Figure
1(b) we show its graphical representation.

)
OO OO0

(@) (b)

Figure 1: (a) T-path T'P(1,8). (b) Representation of the t-path T'P(1, 8).

The t-path T'P(s,t) can transform ¢; units of workload from processor s
to ¢ units of workload on processor ¢ if for 1 < [< k one can transfer ¢
units of workload from job ¢; assigned to processor j; (i.e. if ¢f < @, 5, - pi,gy)
to cip1 = ¢ - % units of workload for job ¢; on processor j;41. In this case

Jl
we say that the é-factor along the t-path T'P(s,t) is equal to . The portion
of the t-path T'P(s,t) that begins at processor j, and ends at processor j,
for any 1 < p < ¢ < k has é-factor equal to z—; Therefore, for p < I < ¢

the é-factor from p to I along T P(s,t) times the é-factor from [to ¢ along
TP(s,t) is equal to the §-factor from p to ¢ along T'P(s,1), i.e., a.2= %

The maximum workload which can be transferred out of processor s along
the t-path T P(s,t) is called the capacity of the t-path T'P(s,t). We define
8(s,t) as the smallest §-factor of any t-path from processor s to processor t,
and we define cap(s,t) as the capacity of a t-path T'P(s,t) with é-factor equal
to 6(s,t). An assignment z is said to be irreducible if all the t-cycles (i.e.,
a t-path that begins and ends in the same processor, TP(s, s)), and all the
t-paths, T'P(s,t) that begin at a critical processor s have a §—factor greater
than or equal than 1. At each iteration we construct an irreducible assign-
ment. This assignment has either a larger number of tasks assigned 100The
algorithm terminates when there are no critical processors, or no idling pro-
cessors. The answer to the decision problem is yes when an assignment in
which none of the processors are critical is generated, and it terminates with
the answer no when there is at least one critical processor and there are no
idling processors.

We define 6(s,t,k) as the smallest 6-factor of any TP(s,t) t-path that
goes through at most k£ intermediate processors. It is simple to see that for
irreducible assignments 6(s,t) = 6(s,t,m —1).

The following recurrence relation establishes a method for computing
6(s,t) for irreducible assignments.

min{g:’: lmm’ > 0} [=0

min{6(s,k,0)- 6(k,t,i— D1 <k<m} [>1

8(s,t,1) = {

By using standard dynamic programming techniques it is simple to show
that 6(s,t) for all s and ¢ can be computed in O(m?® + n - m?).

Our algorithm proceeds as follows from the irreducible assignment z. Us-
ing the procedure described above we compute 6(s,t) for all s and ¢ from z,

and label the processors critical, tight, or idling following our previous defi-
nitions. Suppose that there is at least one critical and one idling processor,
as otherwise the algorithm terminates. For each critical processor 7 we define
S(i) as the set of shortest t-paths (with respect to the number of interme-
diate processors) from processor ¢ to an idling processor whose §-factor is
minimum among all t-paths from processor ¢ to an idling processor, i.e., the
d-factor of the t-path is equal to min{6(:, j)| processor j is idling}. We shall
refer to the t-path in S(¢) least index as the t-path T P(7).

The union of all the t-paths 7' P(7)’s beginning on each critical processor
forms a directed forest of reversed trees (children point to their parents) as
shown in Figure 2, since each of these t-paths has least index among the
shortest paths with least §-factor. There is exactly one node in the forest for
each critical processor,(represented by a circle), and there is at most one node
for each idling processor (represented by a square) and each tight processor
(represented by a triangle). Later on we show in our forest the leaves are
idling processors, the roots are critical processors, and all other nodes (i.e.,
representing the intermediate processors) are critical or tight processors. Let
¢ and j be two processors present in the forest such that i is a predecessor of
J in the forest. Then the é-factor of the portion of the path from 7 to j in
the forest is equal to é(z, 7).

A t-path is said to be a direct t-path if all the intermediate processors it
goes through (if any) are tight processors, otherwise the t-path is said to be
indirect. Now we take any direct t-path 7 P(s,t) in S originating at a critical
processor s and ending at an idling processor. We apply the t-path T P(s,t)
until either processor s becomes tight, processor ¢ becomes tight, or we have
transfered workload equivalent to the capacity of the t-path. As a result of
this operation we generate another assignment z. This process is repeated
until an assignment in which there are no critical processors, or there are
no idling processors. Later on we establish that each of the assignments
our algorithm generate is irreducible which later on will be used to establish
optimality.

Suppose now that é units of workload are transferred along the t-path
T P(s) of each critical processor s. Then, the workload on each processor j
is changed by ¢ - ¢;, for some real value ¢;. Note that ¢; > 1 for each non-
critical processor j, and ¢; = —1 for each critical processor j. In addition
the workload for job ¢ on processor j will change by the amount ¢ - r; ;, for

O

O

Figure 2: Forest of t-paths.

some real value r; ;. Define
A =maz {6|6 -1i; < x5 pij, and tpar — 6 > tproc; + 6+ g5},

i.e., A is the maximum amount one can transfer along the t-paths T P(s)
of the critical processors so that at least one previous non-zero ;; becomes
zero in the resulting assignment and/or at least one non-critical processor
becomes critical in the resulting assignment.

procedure LP-FREE(p, n, m);

Construct the initial assignment z in which all jobs are assigned to one
of the processors in which the job has the smallest workload, i.e., job i
is assigned to processor j if p; ; = min{p;;|1 <1 <m};

while there is at least one non-critical processor for assignment z do
Find a set of t-paths that decrease the workload of all

critical processors uniformly with a minimum total workload increase
in the non-critical processors without overloading them;
Apply all the t-paths concurrently;

7

Let = be the new assignment;
endwhile
end of procedure LP-FREE;

We claim that at each iteration the assignment z is irreducible. In the
following lemma we establish our invariant.

Lemma 2.1 At each iteration of algorithm LP — FREE the assignment z
is irreducible.

Proof: The lemma obviously holds for the first assignment z, since each
job 1s assigned completely to one of the processors in which the job has the
smallest workload, i.e., job ¢ is assigned to processor j if p;; = min{p;[1 <
I < m}. We«’l\glw show that if the conditions of the lemma hold at the
beginning of the iteration, then they also holds at the end of the iteration.
We shall refer to the assignment z at the end of the iteration as the new
assignment z.

We claim that each the t-paths T'P(s) selected by the algorithm goes
through only critical processors. Suppose not. Suppose the path T'P(s) that
starts at processors s and ends at processor t also goes through non-critical
processors. Let processor y be the first non-critical processor that the T P(s)
goes through. Since assignment z is irreducible, we know that the portion of
the t-path T'P(s) that starts at the non-critical processor y and ends at the
non critical processor ¢ has a é-factor greater than or equal to one. Therefore,
the 6-factor of the portion of the t-path 7'P(s) that starts at s and ends at
y is not-larger than the one of t-path T'P(s) and the number of intermediate
processors in that path is smaller than those in the t-path T'P(s). But this
contradicts the way the algorithm selects the t-path T'P(s). Hence, each the
t-paths T'P(s) selected by the algorithm goes through only critical processors.

Now we claim that in the new assignment all the t-paths that end at a
non-critical processor have a é-factor greater than or equal to 1. We prove
this by contradiction. Suppose not. Suppose that in the new assignment
there is a t-path without intermediate processors that starts at processor s,
ends at the non-critical processor ¢, and has a é-factor less than one. Let
TP be a t-path with least é-factor that ends at a non-critical processor. Let
J1,J25 -+, Jk b€ the processor indices in t-path T'P, and let 41,14, ...7;_1 be the
job indices associated with this path. Since the t-path TP has the smallest

o-factor, it must be that for 1 < p < ¢ < m the é-factor of the portion
of the path from processor j, to processor j, is equal to §(p,q). Clearly,
the t-path T'P did not exist in the previous z assignment because it was an
irreducible assignment. so it must be that the t-forest made non-zero the
value of at least on ;,; for some 1 <[< k — 1. Assume without loss of
generality (as otherwise we could compress the t-path T'P) that that z;,
for all 1 <1 < k — 1 were increased from zero to a positive value when we
applied the last t-forest. We now show that 6(iy,7;) > 1, which contradicts
the previous assumption.

In what follows we use 6,(¢,7) to refer to 6(i,7) at the previous it-

eration. Since the previous z assignment was irreducible, we know that
8o(J1,r00t(j1) > 1. Lets show that 6(j1,j2) > m _

To prove correctness we need to establish inductively that each of the z
assignments constructed by the algorithm is irreducible. Then we show that
a schedule with a finish time smaller than the one generated by our algorithm
implies that the last « assignment is reducible. Which contracts our earlier

proof. Thus we have the following result.

Theorem 2.1 Our algorithm generate minimum finish time schedules for
the c-preemptive scheduling problem on unrelated processor systems.

Proof: For brevity we omit the proof.
0

We performed an experimental evaluation of our algorithm and the sim-
plex method. For brevity we cannot present all the results, but we should
mention that on problems with 120 jobs and 60 processors our algorithm
takes about 1.3 CPU hours, whereas the simplex method takes about 5 CPU
hours. The experiments were carried out on a SUN LX machine.

As mentioned before, algorithm can be easily adapted to the case when
some of the p .s have the value of infinity. Thus, our algorithm can solve the
linear programming problems in Lenstra, et. al. algorithm. Thus we have
an LP-free approximation algorithm for scheduling on unrelated processor
systems. The approximation bound is the same as before, but the time
complexity bound in polynomial on n and m, rather than polynomial on n,
m, and the number of bits that represent the input.

3 Discussion

It is intersting to note that it can be generalized to provide an LP-free al-
gorithm for preemptive scheduling independent jobs on unrelated processo
systems.

References

[1] T. F. Gonzalez, E. L. Lawler, and S. Sahni, “Optimal Preemptive
Scheduling of Two Unrelated Processors,” ORSA Journal on Comput-
ing, 2(3), pp. 219 — 224, 1990.

(2] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys,
E. Tardos, “Sequencing and Scheduling: Algorithms and Complexity,”
BS-R8909, Center for Mathematics and Computer Science, 1989.

[3] J. K. Lenstra, D. B Shmoys and E. Tardos, “Approximation Algorithm
for Scheduling Unrelated Parallel Machines,” Mathematical Program-
ming, 46, (1990), pp. 259 — 271.

10

