Minimizing the Mean and Maximum Finishing Time

on Identical Processors

Teofilo Gonzalez, August 1978
CS-78-15

Department of Computer Science
The Pennsylvania State University
University Park, Pennsylvania 16802

~ Abstract: The probiem of preemptively scheduling a set of n independent
tasks on m identical processors is discussed. An algorithm to obtaiﬁ pre-
emptive schedules with bounded maximum finish time and minimum mean finishing
time is presented. The algorithm is of time complexity O{(nm) and introduces

m - 1 preemptions.

Keywords: didentical processors, preemptive schedules, OFT, OMFT, R:OMFT,

OFT :OMFT, polynomial complexity.

+Thié,research was supported in part by NSF grant MCS$77-21092.

T. Introduction

There are n > 1 independent tasks to be scheduled on an identical

processor system. Tasks shall be denoted by Tl, TZ’ cees T and have
execution time requirements t, f.tz < e f_tn.’ An identical processor
system consists of m>1 processors denoted by Pl, PZ’ cess Pm'

Let w, > 0 be the weight given to task T, and fi be its comple-

tion time in schedule S (f; in schedule §'). The weighted mean

finishing time (wmft) for schedule 5 is Zwifi/n. An optimal weighted

mean finishing time schedule (OWMET) is one with the least wmft. The

weights are said to be agreeable when Wy i_wz > . z_wn. For the case
when W T Wiig 1<i<n, these definitions are denoted mean finishing

time (mft) and optimal mean finishing time schedules (OMFT). The finish

time (ft) for schedule S 1is the max{fi}. An optimal finish time schedule

(OFT) is ome with the least finish time. An OFT:OMFT schedule is one
with the least mft from the set of all possible OFT schedules. A
R:OMFT schedule is one with the least mft from the set of all possible

schedules with ft f_B.

A preemptive schedule is one in which it is possible to interrupt

the execution of a task and resume it at a later time possibly on a dif-

ferent processor. A nonpreemptive schedule is one in which once a task
starts execution on some processor, it will continue executing on the same

processor without interruption until completion.

Scheduling problems naturally arise in diffgrent areas. Examples of
applications.appear in [CMM]. Let's just mention one. Consider the tasks
as driéinating from different users, e.g., users requesting the execution
of prégrams in a multiaccess, multiproceséof computer system. It is assumed
that all processing units share a common block of storage, processors can
execute different programs at the same time, the cost of interrupting.the
execution of a program is zero and all programs as well as data reside in
main storage. Lets consider the system when several users are requesting
the execution of their programs. The time a user will wait before its

service request is satisfied is referred to as the response time. An

Operating System could have been designed to assign processsing units to
user programs in different ways, so as to optimize different cost functions.
If the system uses an OFT scheduling policy, then the maximum response
btime is minimized. On the other hand; an OMFT scheduling policy will

guarantee that the average response time is minimized. Known algorithms

'USéd to implement an OFT scheduling policy will not guarantee good
average responée time and the ones used for OMFT scheduling do not
minimize the maximum response time. One way to compromise, 1is to use

an OFT:OMFT scheduling policy. This will guarantee the maximum response
time to be minimum and from the set of all possible ways this could be
guaranteed, we select the one that will minimize the average response time.
In general, a [:O0MFT 'scheduling policy, will gua?antee the maximum
response'time to be not greater than f and users are serviced in such

a way that the average response time is minimized.

Preemptive scheduling has received considerable attention, e.g., [Cl,
[cMM], [G1], [GS1], [GS2], [Gs31, [HLS}, [LL]}, [LY], [MC], IMC1}, [MC2],
[SG], [U]. Most of these papers present results concerning OFT preemptive
schedules. 1In section IT an algorithm for constructing B:OMFT preemptive
schedules for identical machines is presented. Special cases of this problem
are the construction of OFT:OMFT and OMFT preemptive schedules.

For identiéal précessoré, McNaughton [Me] presents a 0(n) algorithm
to obtain OFf preemptive schedules. The maximum number of preemptions
introdqced is m - 1. These bounds on the time complexity and the maximum
number of preemptions are best possible. For unifbrm processor systems, i.e.,
when some processors are faster than others, [LY], |HLS] and [GSl] present
polynomial time bounded algorithms to obtain OFT preemptive schedules.

McNaughton [Mc] shows that any OMFT preemptive schedule for identical
processors can be transformed to another schedule with at most the same
mft but no preemptions. An OMFT nonpreemptive schedule [CMM, p. 26]
for identical processors can be constructed in 0O(n log n) time. For
uniform processor systems, [LL] and [G2] present algorithms to obtain OMFT
preeﬁptive schédules. The problem of constructing OWMFT preemptive
schédﬁles for idemntical processors is NP—ﬁard (m > 2y [LL].

For nonpreemptive scheduling, [BCS] present approximation algorithms,
in Which‘they simultaneously minimize the ft and mft. These results are
summarized in [C, pp. 42-49].

An algorithm to comstruct B:OMFT preemptive»schedules for an identical
processor system is presenfed in section II. The algorithm is of time com-

plexity O(mm) and introduces no more than m - 1 preemptions.

" II. R:OMFT Preemptive Schedules for Identical Processors

An algorifhm to obtain OMFT preemp;ive schedules for identical hro—
cessors in which all tasks are required to complete by_time g is
v presented. Note that B z_max{tn, Zti/m} as otherwise no such schedule
could be constructed.

R:OMFT preemptive schedules can be constructed by an algorithm based
on the solution to a linear programming problem and n open shop problems.
The formulation is as the one in [LL] for OMFT preemptive schedules on
uniform machines, but requires the restriction fn-i B. The correctness
for this apprsach follows from lemma 3 and the formulation given by [LL].
Known algorithms for LP 'problems are in the worst case of exponential
time'complexity, in this case, exponentiallon the number of jobs and
maehines. In addition, too many preemphions are introduced. An algorithm
of time complexity O(mnm) for this problem is presentedvand analyzed. The
' maximﬁm numher of preemptions_introduced is m - 1.

'Algorithm IR:OMFT eonsiders taskh T, at step 1. T, is scheduled
in such a way that its completion time is as early as possible, provided
it is late enough so that all remaining tasks can be scheduled to complete
~no later ‘than B. Algorithm IR:OMFT schedules task Ty and procedure
| REARRANGE will flnd the minimum completion time (t) for task Ty- In order
" to simplify the algorithm, REARRANGE will schedule all other tasks Whose
completion‘time is B in any other feasible schedule including the schedule

so far constructed with Ty scheduled to complete at time tT.

Let M={1, 2, ..., m} and N ={1,2, ..., n}. During the execu-
tion of the algorithm processor Pi is busy frowm time O o Wy
Processor indices are partitioned into sets T = {il‘ e sees iﬁ} and

M - I. The second set corresponds to those processors made critical by
REARRANGE, i.e., those processors for which | was given the value B
by procedure REARRANGE. Initially, all processors are of the first type.

Task indices are partitibned into sets A = {al . aq} and N - A.

ays
The first set corresponds to tasks not yet scheduled. Qj is the
schedule for processor Pj. Qj consists of tuples of the form (i, s, f).
Tuple (i, s, f) indicates that T, is to be executed from time s to

time f by processor -Pj. Let fi be the complétion time for task T

in schedule Q. Assume fi =0 for i< 0.

algorithm TIB:OMFT (m, n, B, Q, t)
//given m identical processors, the algorithm constructs a B:OMFT
preemptive schedule for tasks Tys Tos oo T whose execution
time requirements are t, f=t2 <. §=tn° The schedule for pfo—
cessor Pj is represented by Qj. The kth tuple in Qj is of
the form (i, s, £), indicating that Ti is to be executed from thne
s to time £ by processor Pjo//
//initialize the processor schedules//
1 [<$; w0l for 1<j<m

//set processor and task indices//.

2 ij <j for 1 <j<m
3 aj <«n-3j+1 for 1 <j<n
4 L «m; g*n;

//schedule task T //
q

5 while q # 0 do

//REARRANGE finds the minimum time Wy such that if T, is assigned

1 q
from time W\, ‘to u, + t then the remaining tasks can be
i i aq
scheduled to complete by time 8.//
7 REARRANGE
//assign Taq to Pil//
8 Q «Q [[a,wu, ,u +t) op cu tt
i i q i 1 aq i, i ‘éq
//rotate processors so that U, < WY, < .. <OU, //
e T S

9 (ll) 12’ e 1£)+ (12’ i3s -"-’.iQ/: il)
//eliminate T, from the set of tasks not yet been scheduled//
q
10 qgq<q-1
11 endwhile

12 end of algorithm TIR:OMFT

If procedure REARRANéE does nothing, the reader will find it simple
to verify that algorithm IB:OMFT constructs an SPT échedule ([c p. L4]
and [CMM p. 26]). The first three iterations in example 1 show this effect.
At. some point during the exgcutibn of algorithm IR:OMFT , all or some
of the following properties will be trﬁe.

al) Q is a schedule for tasks Ty » keN - A

a2) Wy, S My < ... <u <8
1 2 '3
uk =B for keM - I
k | k .
a3) T (B-u,)> Lt for 1 < k < min{q, 2 - 1}
. i,/ — . a, - =
=1 J j=1 7]
-
at) ¥ WU, = X t. (Assume z t, = 0)
=1 3 jen-a 3 jep
ab) t, 2t for 1 <k <gq

k kt1

ab) ai“— 1=a, for 1 <i<g
aq = w+ 1, where w 1is the number of times loop 5-11 (IR:OMFT)

has been executed (a0 = ¢ + 1, where r 1is the total number of

timesbloop 5-11 was executed when the algorithm terminates.

Assume tn+l > tn)°
‘a]) u, - u, <t
iy i aq
= ‘ y = i < .
a8) fa —1+§-2 ui' for 1 <3 <2% (Note that fi 0 for i< 0)
q J
23) fa -9 T H4
il 1
al0d) £ >0
all) q > 0 v
k k
al2) T (®-yu, > I g, for 1% k < min{q - 1, £ - 1}.
3=1 3=

In lemma 1, we show that %l—a}o will hold true every time line 5 is
executed. Lemma 2, completes the proof of lemma 1. In theorém 1, we show
that algorithm IR:OMFT constructs B:OMFT preemptive schedules. The
proof for this theorem uses lemma 1 together with lemma 3-5. Lemmas 3 and

4 study some properties of general preemptive schedules.
Lemma 1: At the beginning of each iteration al-al0 will hold true.

proof: It is'easy'to verify that the lemma is true at the beginning of the
first iteration. We now show that if al-alO hold true and q #.O just before

line 5 then after the execution of lines 6-11, al-al0 will hold true.

In line 7, there is a call to procedure REARRANGE. Clearly, the con-
ditions of lemma 2 are satisfied. Hence al-a8 and al0-3l2 hold true after

line 7.

Let us show that just before line 8 is executed 1) and 2) hold true

There are two cases:

case i) L =1

m .
Substituting W, = B for keM - {il} (a2) in Iy, = I t,
‘ ' . j=1 3 jen-a 7
(a4), we obtain y, + (m - 1)B =) t.. Substituting the
Ui .
1 jeN-A
initial condition B > T/m, we get U, + I t. <B. As
— (1) i, . —
jeA
q > 0 (all) it follows that ui + ta < B \
1 q

case ii) & > 1

As q > 0 (a}l), then B - ui >t (a3) and ta >t

17 % 17 %q
(gp). So, Uy + t, < B. '
1 q
-This completes the proof of 1.
2) ta z-ta and a 1 1= aq.
q-1 q d .
When q > 1, t >t follow from a5 and a_ .. -1 =a
_ a1~ % q-1 - q
follow from a6. - If q =1, then it is the last iteration. By
definition, ag =t + 1. a,; =r as a6 holds true. Hence aj, - 1= ay-
From the initial conditions we have that bty Sty < ... S By
PP < . > o
definition tn'i tn+r r<nm Consequently taq_l__ taq

In order to complete the proof of the lemma, it is required to show
‘thét al-al0 will hold true at the end of the iteration. The proof is given
in a)-g).

a) a5 and 410 are obviously true at the end of the iteration.
.om , ' '
b) X u, = r t., >0, >0 and Q 1is a schedule for T, ,
. 3 . . k
j=1 jeN-A

- keN-A (a#, alO, all and gl). In line 8, T, 1is assigned for t, time
S . m q q
units to processor Pi . Hence Ly, = b tj and Q 1is

N
1 =1 jeN {al, cens aq—l}

}. q dis decreased in line 10.

a schedule for. T, keN - {al, . e aq—l
Consequently al and ab aré true at the end of the iteration.
k k
H* T B-yu,)> L t for 1 < k < min{q - 1, & ~ 1} (al2).
. 1. . a. - - N
j=1 1 i=1 i
Line 8 does not modify Wy for k > 1. In line 9, processors are rotated
k ' k k
and q is decreased in line 10. Hence L (B - My) > % t, for
j=1 3 =t 3
1 < k < min{q, & - 1}. Consequently a3 is true after line 10.
d) u, +t. <B, W, -H,o <t 2>0, Wy U< . u, <B
| iy aq iy i aq i, i, i,
and My = B for keM - I (1, a7, al0, and a2). 1In line 8, Uy is set
: : ' ‘ 1
to My + t, - Hence ui < .. f_ui i’“i <8 and W = B for keM - I.
1 q 2 '3 1
Processors are rotated (linme 9). Consequently aZ is true at the end of

‘the iteration.

- == - =‘ < 4 < . =
e) aq—l 1 a , a, 1 a for 1 <1 q and aq w+ 1

q i i+l
(2, ap). Lines 8-9 have no effects. Line 10 decreases q. Hence,

a, - 1=a

5 141 for 1 iﬁl < q and aq = w + 2. At this point loop 5-11

has been completed and we may think of w as being increased. So, ab
is true at the end of the iteration.

f) It should beclear that a] is true after line 10 when & = 1. For

2 > 1, we have that U, > U. and t >t (a2, 2). Addingboth in-
i, — 1 a !
2 1 q-1 q
L . . S i
equalities, Ui +ta Eiui +-ta . After line 8, this becomes ui 4—ta 2 My
2. q-1 1 q 2 q-1 1
In line 9 processors are rotated and ¢ is decreased in line 10. ' Hence
Y, +t_ > u, . Consequently a7 holds true after line 10. -
i a — "i .
1 q L .
= < 4 < - 1= .
g)faq—l'+j—2 uij for 1 <3 <% and aq—l 1 aqv (a8 and 2)
In line 8, fa is set to Ui . Processors are rotated in line 9. Hence
q 1
_ < 1 < . . . _
faq_1_1+j—2 uij for 1 f_] < %. 1In line 10, q 1is decreased. Conse

quently a8 and a9 hold true after line 10.
Hence al-al0 will hold true'at the end of each iteration. This completes

the proof of the lemma. [J

* .
If =1 or q=1 just after line 7, then a3 holds true after line 10.
So assume £ > 1 and q > 1 just after line 7.

10

Procedure REARRANGE is used by algorithm - If:0MFT. REARRANGE is con-
“structed in‘such a way that if al-all hold true before it is called, then

al-a8 and al0-al2 will hold true just before the procedure terminates.

procedure REARRANGE

//all variables are global//

//given that al-all hold true just before a céll to REARRANGE, the
procedure schedules a subset of tasks in such a way that al-a8
and al0-3l2 will hold true just before the procedure terminates//

//the loop is not executed when q =1 or £ = 1//

k k . |
1 while I (B - u.) < ot for some k in [1; min{q ~ 1, & - 1}]
L i he a
, z=1 z+1 z=1 z
2 Let p' be the smallest integer such that (B - ui) > ta for
' _ ‘ : z+l z
1<z <p' and (B - Hy) N
: . p'+l p'>
//schedule T =~ on P, and P, //
a ¥ 1 1 1 ¥
PP P +1 P
3 , < Q, a ¥y u; t - - U,
le le'H< . ,ulp'; 2 8 “1pv+1))
4 K, < U +t - (B - u,)
p! tp! %p Tp'Hl
5 Q. < Q. “(a 1o M. > B)
4l Tpl P tprar
6 W, <« B
lp'+l
//eliminate Pi and T, !/
: p'+l p’ ’
7 (g, igs eons By) € (A, ey s Loy ooes 1))
8 L« %=1 | |
9 | (al, Ay oo aq—l) + (al, cees ap'—l’ ap'+l’ eens aq)
10 q<q-~- 1

11 endwhile

12 end of procedure REARRANGE

11

Lemma 2: If al-all hold true just before a call to REARRANGE, then &al-a8

‘and al0-al2 will hold true just before the procedure terminates.

proof: Let's consider the case where loop 2-10 is not executed. By as-
sumption, al-a8 and al0O-all hold true. al2 follow from the ﬁest in line 1.
Hence al-a8 and alO-al2 will hold tfue just before the procedure terminates.
- The moré interesting case is when loop 2-10 is executed. At the
beginning of the first iteration al-a8 and alO-all hold true. In order
to-complete the proof of the lemma, we prove the following three parts:

1) If al-a5, a/ and al0-all hold true at the beginning of some
iteration, then al-a5, a7 and al0-all will hold trﬁe at the eﬁd of the
iteration. | |

2) If a6 and a8 hold true at the beginning of some iteration, then
after several iterations a6 and a8 will hold true.

3) %12 hold true at the‘end of the last iteration.

Let us now prove each part separately.

1) 1If al-a5, a/ and al0O-all hold true at the beginning of some
_itération, then %};%5, a7l ahd alO-all will hold true ét the end of the
iteration. .

First; let us prove that just before line 3

i) 1 <p' <min{® - 1, ¢ - 1}
and i) W, ot EERCER IR

p' p Tp'HL p'+1

i) 1 <p' <min{f -1, q - 1}

The proof follows directly from lines 1 and 2.

i) p, o+t - B-w) Sy
o' % p'l Tp'+l

This is egquivalent to By + t < B. There are two cases:
. i [.

case ii.l: p' > 1

By assumption 't > ta (ad).

have that B - My > ta . Hence My +
) 7
: p'-1 p

case ii.2: p' =1

< B.
ta B

2 > 1 as otherwise the loop would not be

12

From line 2 we

executed (see line 1). So, B - My >t (a3). As p' =1,

1 1
then My +t '_i B.

P P

We ndw prove that al-a5, a/ and alO-all hold true at the end of the-

iteration. The proof is in parts.

a) 1<p' <min{ -1, q-1}, u, +t - (B-u

1 a
p' p'

) < u,

p'+1 1p'+l

and Q is a schedule for Ty s keN - A (i, dii and al). In lines 3-6,

T is assigned for t time units, part to P,
a_, ' a_, i

P P P

P, . Hence Q is a schedule for T, , keN - {a,,
1, ‘ k 1
p'+l

aq_l

q 1is decreased. Hence Q 1is a schedule for Ty 2

al holds true at the end of the iteration.

b) 1, >u, o+t - B-w), ou Sw

lp‘+l'_ lp' ap' ,lp'+l
=B for keM - I (ii and a2). 1In line 3, Wy
. . p !

Hy

. 4 t - (B - u, Y. Hence Uy Soeee SHy
P Tpr+l 1 o'

p
w = B and u = B for keM - I. 1In lines 5-6

So my 5"'5—“'1,‘5“1« <...<B and B _=8
1=

and
7

part to

. ap'-l’ ap,+l, e

}. Lines 7-8 have no effect on Q. Lines 9-10 eliminate T_

keN - A.

I A

|

P

is set to

<My,
P
U,
1p'+l
for

< Hy o
+1 p'+2
is set to

keM - (I -

and

Consequently

<

B.

i

p .
This becomes 1, < u, < ... <y, <B and Wy = B for keM - I after -

1

line 8. Consequently q? is true after line 10.

3

bH.

13

k k
c)y T (B- My) > X £ for 1 <k j_min{q, % - 1} (a3). This
j=1 i T 3=l 2
can be decomposed into
k k
T B-wu,)> & t for 1l <k<p' -1 (L)
. i,7 — . a, - =
j=1 j j=1 |
k k
and z (B - My) > % t, for p' + 1<k fﬁmin{q, L - 1} (2)
j=1 SR |

Let. u' be the new value for W ‘after line 6. Lines 3-6 will set W'

as follows: (W' &, W' , eeos M 5 WS s oeees M) € Uy 5 Mi o5 e
: i T lp' 1p'+l 1, i i,
. + t - (B - . Y, By ..., W,). Substituting in (1) and (2) we
1y a_ g 1 1 : . .
P o] p'+l '8 , :
obtain (3) and (&)
k k
T (B-ul)y> & ¢t for L <k<p' -1 (3)
. i,/ — . a, . - -
j=1 h| j=1 3
! k o op'-1 k
and L (B -ul)+ z (R - ui y > I t, +) £,
j=1 3 j=p'+2 3 j=L %3 3=p'+l]
for p' +1<k=< min{q, & -1} (&)

" After lines 7-10, these inequalities become

k k

T O RB-uly> X ot for 1 <k<p' -1
. i, — . a, —
j=1 A =1]
k -k
and ¥ (B - ui) >k £ for p’ f_k.f_min{q, g -1}
j:l j j:l j
So, a3 hold true after line 10.
d)y "I W, = X t. (a4). In lines 3-6, Wy and By are
- p' p'+l
increased. The total increment 1is ta . In lines 9-10 apv is eliminated
, m p'
and q 1is decreased. Hence L u, = Z t.. Consequently a4 holds

=1 3 jem-a

true after line 10.

14 -

e) The proof for a5 is straight forward.

f) The proof for a7 is in two parts:

case £f.1 p' < & - 1:

u, - u, <t and 1 < p' < min{q - 1, & - 1}
i i, — "a) —_ —
2 1 q _

(a7 and 1i). My is not modified and Uy

will never be

L. 1
decreased. Hence u, =-u, <t - after line 6. As
iy i, — aq
1 <p' <min{q - 1, & - 1}, then after lines 7-10, u, - M, <t .
= = i i, — a
2 1 q
case £.2- p' = & - 1:
W, =M, <t o, W <y, and
i, g HaT N _

Wy + t, - (B - 1) f_ui (a7, a2 and ii). After

pl pl p|+1 pl+1
line 4, we have uy, - u, <t and U, < U Consequently

o M7 A8 -17 M

U, - M, <t_. Lines 5-6 do not modify U, or M. .

i1 1T 3 g1 oo
After lines 7-8 W, - U, <t . As 1<p' <min{q-1, %~ 1},

B § i, — a — -
L 1 q , :
then after lines 9-10 u, - u, < t_ .
i i, — a
: L 1 q

Hence a/ holds true after line 10.
g) The proof for al0 and all follows from the fact that q > 1 and

¢ > 1 in line 1 as otherwise the loop would not be executed.

This complétes the proof of 1. Let us prove 2.

2) If é@ and a8 hold true at the beginning of some iteration, then
after several iterations ap and a8 will hold true.

The proof for this part is different than the one for 1). The reader
will find it simple ﬁo verify that ap and a8 will not hold true every
iteration. However, after several iterations a6 and é@ will hold true.
_First’of all, we show that cb, c8 and cl12 hold tfue every ifergtion. Then

we show that after k' iterations ap and a8 will hold true. Let k' be

15

the minimum value of k for which the condition in line 1 is true when
a6 and a8 hold true just before line 1 is executed. Let x be the number

of times loop 2-10 has been executed after k' was set. Let

- = : 1 _ g
cb) aj 1 aj+1 for k' + 1 -x <} q
a =w-+1
q
o o . _ .
c8) fa ~1+5-1 ui. for k' + 2 x <] :_l
| _]
‘ k'-x - k'-x
cl2y I (B - U) < & £, -
3=1 ARE RS B

By assumption c6, c8 and cl2 hold true whemn x = 0. Suppose now x < k'
and c6, c8 and cl2 hold true. We now show that the loop will be executed
and c6, c8 and c12 will hold true at the end of the iteration. Clearly:

cl2 guarantees that the loop will be executed. Now, in lines 3-6, T,
¥
_ P
is assigned to P, and P, . As 1 <p' <k'-x, then c6b and c8
iy - i, -
‘ P p'+1
will remain true. After lines 7-8 we have that

-1 = ’ ' -x<j<
aj 1 aj+l for k' +1~-x<7] q
a =w+1
! :
: _ , e <
and f 145~ M, for k' + 1-x<3 <2

a - .
q]
After lines 9-10 this becomes

- = V- < j§ <
aj 1 aj+l for k x < j q
a =w+ 1
q .
f u for k' + 1 -x<3 <2

a -1+§-% _ "i,
q §

Clearly, the loop has terminated and X should be increased. Hence cbé

and c8 hold true at the end of the iteration. Let us now show that cl2

will hold true at’the end of the iteration.‘ After line 2 we have that
k'-x - k'-x

ToB-w)< ot .
j=1 R LR S

16

This can be decomposed into

p'-2 | k'-x
DoB-w D FB-w dFB-w O+ T B-ow)<
i=1 j+1 p' p'+l j=p'+l j+1
p'-1 k'-x
z t, +t, + z t,
=1 3 p' j=p'tl]
cas 1 <p' <k'-x. After line 4 this inequality becomes
p'-2 k'-x p'-1 k'-x
Do(e-w,)t @-w)+ T B-w)< Ioe + Lo,
j=1 3+ P’ 3=p'+l (Re SR T B T o R R

J
Clearly lines 5-6 have no effect and after lines 7-8 this inequality becomes
k'-x-1 p'~1 k'-x
T (B -y)<L ot o+ T t, -
B! L S A b
Lines 9-10 wili modify the inequality to
Ck'=x-1 | k';x—l
G C TS n Ty
As the loop has terminated we have that x should be increased. Hence cl2
'holds true at the end of the loop.
_C;éarly c6, c8 and cl2 hold true when x = 0, 1, ..., k'. Conséquently
a6 and a8 hold true afterpthe k' tﬁ iteration. If thé test in line 1
is true, then we repeat the same arguments (find a new k') until We‘reach
a point when the condition is false. Such a point will be reached as L
'is decreased each time byil and when & - 1 the coﬁdition’iﬁ line 1 is
false. Hence just beforevtermination a6 and a8 will hold true. This com-
pletes the proof of part 2. We now prove part 3.

3) al2 will hold true at the end of the last iteratiom.

The proof follows directly from the test in line 1.

This completes the proof for parts 1), 2), 3) and the lemma. O

17

Example 1: TFor 8 tasks with execution times tl = 2, t2 = 4 t3 4

t5 = 8, t6 = 10, t7 = 12, t8 = 14 ; 4 identical processors and a deadline

=4, t, =6,

B = 15, algorithm IB:OMFT constructs a RB:0MFT preemptive schedule as

follows:

The different values for the variables are given in the following table.

C

3 031 S owrl woiy -g £Aq poInodxe aq 03 ST T Jeyl S°231®OTPUT ﬂo ur (3 ‘s ‘1) =1dna msa*
(e1 2an813) [(8°2%%) “(2°T°L) “(T°0°®)] = O
uoTIBILIT [0°e)] = %)
yaanoz [(sT %) “(v°0°D)] =
jo pud [(sTZ°8) “(z°0°T)] = ™ (8°%°s1sT)| (D) eyl (@ (6°9)
(@10 “(T0°8)] = ™
AONVIYVHY 03 [(r0°e)] = %o
T7e5 y2In03 [(ST*v*0) “(v0°D)1 = %
2yl 1°233® [(sT°2°8) “(z0°D)] = ™ (Tv°s1°sT) | () (€| (©) (7°6°9)
g ="
UOTIRIAIT [(v0°€)] = ®
paTYl [(7°0°2)] = O
jo pus [(z0°D)] = Ho v*%*) | () ezt | (%) Aqgmuo.m.wv
HAONVIIVIY 03 TI®B°
PITYl I913%® JWVS
UOTIBISIT ¢ = qo =%
puoo9s - [(p°0°D)] = D
30 pue [(z°0°TD)] = ﬂo (0°0v*) | () (Z1%‘e) | (9 (€96 9°L°8)
HONVIIVAY 03 TTe°
puoo9s 19313E HWVS
UOTIRISIT ¢ = =t =% .
ISaT3 3O pud [(z0'D] = "o (0‘0‘0°2) | (9) (Tosn) | (0 (T€%°69°L°8).
HONVEIvVIY 03 TTeo | _
.18aT3 I933® HRVS
SUOT3ITPUOD
TBT3TUT ¢ = mo u.md = HO (0000 | (M (ReTT) | (8) | (T°C°€“v69°L°g)
aazs Jotapenos | (e T <y o | Fx s <O T L) | P oo e < Tey

IIA0:¢I wy3irxo8Te 4q

psonpoxad T admexs 103 STNpoyds aATIdWLI1d *q1 2anstd
@P qH NH wP
N 9, £,
mu. NH .
8y pue Ly ¢%y &y 1 Burpnyoul I[NPIYIS ‘BT SAN5I4
8, N ~ _
1 1 3
6T 8 L v oz 1 “NNMNWMme\\ \\Ammmummm
. : €
i
% %
Nl._.
HP
<T z T 0

(q1 2an817 29s) {[(ST°8°9) “(8°7‘%) “(T°TL) “(1°0°8)] "y
woT3BI9IT [(STC2°S) “(L°%°9) ‘(»0°®)] = &
U3IT3 2U3 [(sT9) “(0‘D] = %

j0 pud [(sT°2°8) “(z°0°D)] = ™ (STYSTSSTST) | (T))| 0 ¢
ONVHIVEE |[(ST8°9) “(8°T°%) “(Z°T°L) “(1°0°8)] 7
03 TTEd [(%°9) “(v°0°©)] =
Y3iyrs [(sT%L) “(v0°T)] %

o3 1933® [(ST*Z8) “(z0°D)] = %0 (STSLSTST) | (T) © |)

20

Theorem 1: For every system of m > 1 identical proceséors, n>m
independent tasks and a deadline B z_max{tn, Eti/m} , algorithm IB:OMFT

constructs a P:0MFT preemptive schedule.

proof: First of all we prove some properties of.the schedule constructed
by the algorithﬁ. Then we show that such a schedule is a ~B:OMFT pre-
emptive schedule.

Let S be the schedule constructed by algorithm IB:OMFT? The last
time line 5 was executed, q was zero and al-al0 hold t?ue (lemma 1).
Clearly, S idis a feasiblg schedule (Ql) and ft(S) f.B(%Z). In order to
prove the theorem we obtaiﬁ some inequalities that relate finishing times
to execution times.

Let r be the number of times loop 5-11 was executed. The value for
% at the end of the kth iteration will be denoted by an

At the end of the kth iteration (1 <k <r), we have that al-alO

hold true (lemma }). Clearly,
_ aq =k+1 (ab) (5)

and faq—l+j—£k = uij for 1 <j <& (a8-a9). (6)

Note that fj =0 for j < 0. Substituting (5) in (6) and adding all

equations in (6) we obtain (7)

L % ‘ _
T £ .., = I u (7
j=1 k+j lk j=1 1j
Adding (7) together with (m - Rk)B = z v, (a2).
o JeM-{i,, i, +e.s i, } °
1 2 L
I} k
k m
(m - 2)B+ L f .. = I u.. o (8)
| k . k+3—9,k j=1 j

j=1

* : .
~ "Note that IR:OMFT terminates after at most n iterations.

21

m
Substituting z Uj = L tZ (a4) in (8) and changing the
N ' j=1 jEN—{al, i aq}
order of summation,
Qk
(m - lk)B + 'El fk—j+l = ") | t, (9)
, i= jeN-1a;, a5, .o aq

As aq =%k +1 (5), it follows from ab that aq =k + q. q was
initiélly n. Every iteration (loop 5-11) it is decreased by 1. 1In pro-
cedure REARRANGE it is decreased by 1 each time £ is decreased by 1. &
was initially set to m. Hence q =1 - k - m + Rka .Consequently
N - {él; cees aq} ={1,2, ..., k} Uln - m + %k + 1, ..., n}. Substituting
in (9) we obtain (10)

e

(m - Qk)B + ‘Z f =T

. + T (10)
j=1 k-i+1 k (n—m+%k+l)

i n
where T, = ¥ t. and LT = ¥ t..
-1 9 (1) -

For k =1 we have that 0 gq=n-1 -m-+ Rr' Substituting in (10)

L
: T
(m ~ Qr)B + .: fr—j+l = Tn
| 3=l ,
Using this equation for r +1 <k <n we obtain
g+ (k-r) '
(m - ILr - (k- r))B + jzl fk—j+l < Tn o (11)

as £, < B, £y SBy ooy £ <8

22

The inequalities generated by example 1 are shown below

r=5

k=1, & =4 a £o= Ty

k=2, % =4 (g, =,
k=3, 8= £+ E, =T,
k=4, R, =2 26+ £, + £, = T, + g1

k=5, 8 =1 | 3B+ £ = Ty + (6T

k=6 28 + £, + £, < T

k=7 B+ £ + £+ £; < Tg
k=8 £+ £ £y + £y < Ty

In order to complete the proof of the lemma it is required to show
that mft(S) < mft(S') for any other feasible schedule §' with fr(s") < B.
The proof is by contradiction. Assume there is a schedule §' with

ft(s') < B and mft(S') < mEE(S).

From lemma?s it follows that fi f_fé < .. f_fﬂ , where fi is the
completion time for task T, in schedule S'. YNow, we will obtain imequalities
for schedule S'. Lemma.a\WNill be used r times. For 1 < i <7t , the

value of k -to be used in lemmal‘ is m - Qi +1 and w is i. From 2)

in lemma ﬂ we obtain

: i |
(m - 2.)B + z D U T
i jeief 4l i (n-ml+1)

1

L,

1

1]
(= 2B+ I £ g 20T

.+ T. (12)
=1 j+L — i (n—m+li+l) , .

Inequalities for r +1 < i <n, are obtained using part 1) of lemma q

with k=m —yﬂr +1 and w = r.

' 4 f' 4+ ...+ f + £+ ..+
n n-

' >
1 n-m+l +1 T : -9 +1 2T
r T

rt (n—m+zr+1)T'

23

As T+ 1 =n-m+ %r + 1 (using 0=q=n-t¢ - m+ Qr) we obtain
0 ' Kr+(i—r)
j=i§-l e J'El fogn 2 Mo
As ft(s') < B8, them B > f;, cees B> f£+l° Substituting in the above
equation,
£r+(i—r)
(m -2 - (; - r))B + jil fi'—j+1 >T. , C(13)

Combining (10) and (11) together with (12) and (13) we obtain

i i
Y a, , f, < ¥ a, . f! for 1 <4i<n
j:l J,l L= = - -

for 1 <j<i and a, , > 0. Using lemma 5’(6 = m)

where a
. i, i

<
3,1 = 341,14
it then follows that

n

IO, <
i=1 i

fl
i

3

1
So mft(s') > mfe(S) , which contradicts our earlier assumption. Hence,
.algoriﬁhm IR:OMFT generates R:0MFT preemptive schedules for every system
of m > 1 identical processors and n > 1 independent tasks. U

Lemma 3 is stronger than theorem 3 given in [LL]. From this lemma,
it can be easily shown that there is an OMFT ipreemptive schedule in which
jobs complete in nondecreasing order of their execution time. In addition,
‘theAfinish time af this schedule is never greater than the one of any other

OMFT preemptive schedule.

Lemma 3: Any schedule S for an identical processor system can be trans-
formed to a preemptive schedule S' with the following properties:

. ¥ ¥ B A
i) fl f_fz < .. i_fn
Ci4). fe(s') < £(S)

o iii) mfe(8") f_mft(SL

24

Proof: Properties i) and iii) follow from theorem 3 in [LL]. ii) follows
from the observation that every time two jobs are swapped, the length of:

the séhedule is never modified. [

Lemma 4: Given any R:OMFT preemptive schedule S' (with fj =0 for

j <0 and fi_ﬁ fé_ﬁ ..._f_fé) for m identical machines, some k in

[1;m] and a task index w in [1:n~k+l]. The following inéqualities hold:

1) £ + f! + ... + £ + f' 4+ ... + £ T T and
‘ n n- W

>
1t n—k+2 etk = T ¥ (n-k+2)

- v ! >
2) Qo= DB+ £+ ¥ E i 2 ToF ey

Proof: First we prove 1). S' is represented in figure 2. Note that

f'w—m+k does not imply that Ttk will terminate on P_ ., it indicates

that =T ;erminates at that time.

w-mrkk
Let R represent the shaded area of the schedule represented in

' figure 2. Clearly

v 1 e v v '
I AN S R RTINSy
n-k+1 w n
=T + ,° T+X+ § 6, - L p; - I o,
vk g Y il ek

where, X is the total processing capability of the idle time region inside

‘R(fig. 2),
Py total time T, is scheduled outside R, for
i=1, 2, v.0, w, n=k+2, ..., 1.
and Gi totél time Ty is scheduled inéide R, for

w+1l<i<n- k+ 1.

rrrrrrrrr

0

w U7

///////////

P ///// //)//,//////

w00

7 //////////////////

(W /s 7 /////// |

7757 47722007777 |

26

To prove 1) it is required to show that

n-k+l w o n
X+ & §6.> I p,+ z 0. (a)
i=wbl T d=l Y di=n-kt2 |

This can be shown, if we prove that a) holds when we consider any time
. dinterval A iﬁ which all prdcessors either execute one task or are idle,
-throughout the interval. There are two cases:
i)’ p ' is zero in this interval if eitherball maéhines are inside
R or»outside R, so a) holds.
ii) If & -of the machines are inside R, then only & tasks of

os Tos T T have not yet been completed.

T -tk ? n-k+2° "

Clearly these & tasks are the onl& tasks that can contribufe
to p in this interval. If kl _of these tasks execute outside
R or do not execute at all, then kl of the machines inside
R will be idle or execute T .45 +-e» Tomkt1® Hence a) holds
for the interval.
So, lj‘holds for any schedule S'.
" To prove 2), we use 1) ahd the restriction ft(S8') < B. This cpmpletes

phe'proof of -the lemma. [

Lemma 5: Given that

i i
L a, ifi-i L a, ifi ' for 1<i<nm
j=l J’ ' j=l J’

where a; for 1 <j<1i, §>0, a >0, a, ; >0, £. >0

<
i,1 — 3541,1

and fi_z 0. Then

[Tz =]
+h
I A
™
™

3

27

Proof: Let x = 6/a - and for i=n -1, ..., 1
— n n,n
n
§ - L a, 3%
_ j=i+1 It
X,
i a, .
i1

From this definition it can be easily shown that x, > 0 for 1 <i<n.

Multiplying the xi's by the inequalities we obtain

n i n i
z X L a. ifi-i X X, L oa. ifi
i=1 T =1 ¥ i=1 T g=1 I°

Rearranging terms and eliminating the xi's we obtain

n n
§ L f, <8 T £
i=1 i=1
n n
As 86 >0 them ¢ f, < ¥ £'. 0O
. i— . i
i=1 i=1

Theorem 2: The time complexity for algorithm IR:OMFT is O(nm).

Proof: Each time procedure REARRANGE is invoked it takés.time O(kin + m) ,
where ki is the number of times the main loop is executed. £ 1is
initially m. Each time the main loop (REARRANGE) is executed, L is
decreased by 1. Once & is one, the main loop is never repeated-(see'
line‘l). Hence Zki < m. Consequently the overall time complexity for
REARRANGE is Q(nm + km) , where k ié the number of calls. Lines 1-4

in TIB:OMFT take time O(n + m). Loop 5—11 is executed at most n times.
Lines 8;11 take time O(m). The total time taken by line 7 is O(nm) .

Hence the overall time complexity for IB:OMFT is O(nm). O

Theorem 3: The maximum number of preemptions introduced by algorithm

TR:OMFT is m - 1.

28

Proof: Clearly, the only place where preemptions are introduced is in
procedure REARRANGE. The main loop in REARRANGE is executed at most
m - 1 times (see theorem 2). Each time no more than 1 preemption is

introduced. Hence no more than m - 1 preemptions are introduced. [

29

ITI. CONCLUSIONS

'We have presented an algorithm to construct R:OMFT preemptive
schedules for n independent tasks on m didentical machines. The
algorithm is of time complexity O(nm) and introduces m-l1 preemp-
tions. When R is large, the algorithm reduces to the well known SPT
rule. - It can be easily shown that algorithm TIR:OMFT obtains B: OWMFT
’preémptive schedules when the weights are agreeable. The proofs are
similar to the ones in.this paper. A similar algorithm can be adapted
to obtain PRB:OMFT preemptive schedules for uniform machines [G2].
However, the algorithm is textually more coﬁplex and introduces 0(nm)
preempﬁions. It can be easily shown that the same type of algorithm
will not construct OMFT preemptive schedules when there are two or

more deadlines to be met by the tasks.

Acknowledgements

The author is grateful to Professor John Bruno for his valuable

comments and suggestions on earlier versions of this paper.

30

References

[BCS]
[c]
[cMM]
[G1]
[G2]
[GS1]
(521
[GS3]
[HLS]
[LL]
[LY]
Mc]
[MC1]
[MCZ]

[sG]

(U]

J. Bruno, E. G. Coffman, Jr. and R. ‘Sethi, "Scheduling independent

tasks to reduce mean finishing time," Comm. ACM 17 (1974), 382- 387.

E. G. Coffman, Jr. (ed.) Computer and Job/Shop Scheduling Theory,
42-48, John Wiley & Somns, New York (1975).

R. W. Conway, W. L. Maxwell, and L. W. Miller, "Theory of scheduling,"
Addlson—Wesley, Reading, Mass., (1967). :

T. Gonzalez, "A note on open shop preemptive scheduling,"” TR~214
Penn State University, Dec. 1976.

T. Gonzalez, "Minimizing the Mean and Maximum Finishing Time on
Uniform Processors' (in preparation).

T. Gonzalez and S. Sahni, "Preemptive scheduling of uniform pro-
cessor systems,’ JACM Vol. 25, No. 1, Jan, 1978.

T. Gonzalez and S. Sahni, "Open shop schedullng to minimize flnlSh
time," JACM Vol. 23, No. 4, Oct. 1976, 665-679.

T. Gonzalez and S. Sahni, "Flowshop and jobshop schedules: Complex-
ity and Approximations," JORSA Vol. 25, No. 1, Jan-Feb. 1978, 36-52.

E. C. Horvath, S. Lam and R. Sethi, "A level algorithm for pre-
emptive scheduling,” JACM Vol. 24, No. 1, Jan. 1977, 32-43,

E. L. Lawler and J. Labetoulle, "Scheduling and parallel machines
with preemptions,” IRIA, Rocquencourt, France.

J. W. S. Liu and A. Yang, "Optimal scheduling of independent tasks
on heterogeneous computing systems," 1974 ACM National Conference,

© 38-45.

R. McNaughton,'Scheduling with deadlines and loss functions,"
Management Science, 12 7 (1959), 1-12.

R. R. Muntz and E. G. Coffman, Jr., "Preemptive scheduling of real
time tasks on multiprocessor systems,” JACM, 17, 2(1970) 324-338.

R. R. Muntz and E. G. Coffman; Jr., "Optimal preemptive scheduling

on two-processor systems,' IEEE Transactions on Computers, Cc-18,
11 (1969), 1014-1020.

S. Sahni and T. Gonzalez, '"Preemptive scheduling of two unrelated
machines," Univ. of Minnesota, Nov. 1976.

J. D. Ullman, "NP-complete scheduling problems,’ J. Computer

and Systems Sciences, 10, 3 (June 1975), 384-393.

