Minimizing the Mean and Maximum Finishing Time
on Uniform Processorst

Teofilo Gonzalez, November 1978
CS-78-22

Computer Science Department
The Pennsylvania State University
University Park, Pemnsylvania 16802

Abstract

The problem of preemptively scheduling a set of n independent
taéks on m uniform processors is discussed. An algorithm to obtain
preemptive schedules with bounded maximum finish time and minimum mean
finishing time is presented. The algorithm is of time complexity O(nm)

and introduces no more than O(nm) preemptions.

keywords: uniform processors, preemptive schedules, OFT, OMFT, RB:0MFT,

OFT:0MFT, polynomial complexity.

TThis research was supported in part by NSF grant MCS 77-21092.

I. Introduction

There are n > 1 independent tasks to be scheduled on a uniform

processor system. Tasks shall be denoted by Tis Tos wees T, and have
execution time requirements ty f_tz < .. f_tn. A uniform processor
system comsists of m > 1 processors, denoted by Pl, P2, N Pm with .
‘relative speeds $1 2_82 2 e z_sm. An identical processor system is a
special case of the former, when 8; = Si41 for 1 < i < m.

Let W, > 0 be the weight given to task Ty and fi be its com-

pletion time in schedule § (fi in schedule S'). The weighted mean

finishing time (wmft) for schedule § is Zwifi/n. An optimal weighted

mean finishing time schedule (OWMFT) is one with the least wnft. The

weights are said to be agreeable when Wy 2_w2 > .. z_wn. For the case

when Wi S W1 1 < i < n, these definitions are denoted mean finishing

time (mft) and optimal mean finishing time schedules (OMFT). The finish

time (ft) for schedule S is the max{fi}. An optimal finish time schedule

(OFT) is one with the least finish time. An OFT:0OMFT schedule is one
with the least mft from the set of all possible OFT schedules. A
B:OMFT schedule is one with the least mft from the set of all possible
schedules with ft < 8.

A preemptive schedule is one in which it is possible to interrupt the

execution of a task and resume it at a later time possibly on a different

processor. A nonpreemptive schedule is one in which once a task starts

execution on some processor, it will continue executing on the same pro-

cessor without interruption until completion.

Scheduling problemsvnaturally arise in different areas. Examples of
applications appear in [CMM] and for the problems studied in thié papér
see [G2]. Preemptive scheduling has received considerable attention, e.g.,
[C], [cw1], [G1], [es1], [es2], [Gs3], [HLS], [LL], [LY], [Mc], [MCl],
[MC2], [SGl, [U]. Most of these papers present results concerning OFT
preemptive schedules. In section II an algorithm for constructing R:0MFT
preemptive schedules is studied. Special cases of this problem are the
construction of OFT:0MFT and OMFT preemptive schedules.

For identical processors, McMaughton [Mc] pfesents a 0(n) algorithm
to obtain OFT preemptive schedules. The maximum number of preemptions.'
introduced is m - 1. These bounds on the time complexity and the maximum
number of preemptions are best possible., For uniform processors systems,
Liu and Yang [LY] obtained a lower bound for the length of én OFT pre-
emptive schedule. fhe bound is w > max{ max {(n—j+l)T/sj}’ (l)T/Sm}s

1<j<m

where (j)T = . ; ti’ Sj = ? o8y and n > m. For the special

j<i<n 1<i<j
case s, = 1, 1<i<m, they also showed that w is the length of the
OFT preemptive schedule and that an algorithm to construct such a schedule
is of polynomial time complexity. Horvath, Lam and Sethi [HLS] present a
polynomial time bounded algorithm to construct OFT preemptive schedules.
The finish time of such a schedule is w. Gonzalez and Sahni [GS1] present
a O(n + m) algorithm, which introduces at most 2(m - 1) preémptions.
Both these bounds on the time complexity and the maximum‘number of pre—>
emptions are shown to be best possible.

McNaughton [Mc] shows that any OMFT preemptive schedule for identical

processors can be transformed to another schedule with at most the same

mft but no preemptions. An OMFT nonpreemptive schedule [cMM, p. 26]

for identical processors can be constructed in O(nlogn) time. For
uniform processor systems, this is not the case; Lawler and Labefoulle
[LL] present an algorithm, based on the solution to a linear programming
problem and n open shop problems. The maximum nhumber of preemptions is
O(nmz). As there is no known polynomial time algorithm to solve LP
problems, the worst-case time complexity is exponential on the number of
tasks and processors. The algorithm presented in section II can be adapted
to solve this problem. The time complexity is O(nm) and the maximum
number of preemptions introduced is O(nm).

The problem of obtaining OWMFT preemptive schedules for ideﬁtical
processors is NP-hard (m > 2) [LL].

In [G2], an algorithm to obtain B:0MFT preemptive schedules for
identical machines is presented. The time complexity for the algorithm
is O(nm) ‘and introduces m - 1 preemptions. For nonpreempti#e scheduling,
[BCS] present approximation algorithms to minimize the ft and mft.
These results are summarized in [C, pp. 42-497].

An algorithm to obtain B:OMFT preemptive schedules for uniform pro-
cessor systems is presented in section II. The time complexity is O(nm)

and the maximum number of preemptions introduced is 0(nm).

IT. PB:0MFT Preemptive Schedules for Uniform Processors

An algorithm to obtain OMFT . preemptive schedules for uniform pro-
cessor systems in which each task is required to complete by time B is

presented. Note that

B > max{ max {

T/S.},
1<j<m ?

(n-3+1) W"/5nt

as otherwise such a schedule could not be constructed; In case of équélity
the schedule obtained is an OFT:OMFT preemptive schedule. For B suf-
ficiently large the problem is that of obtaining an OMFT preemptive |
schedule,

B:OMFT preemptive schedules can be obtained by én algoritﬁm based
on the solution to a linear programming problem and n open shop problems.
The formulation is as the one in [LL] for OMFT preemptive schedules on
uniform machines, but requires the restriction fn < B. The correctness
for this épproach follows from lemma 2 and the formulation given by [LL].
Known algorithms for LP problems are in the worst case of exponential
time complexity, in this case, exponential on the number of jobs and
machines. In addition, too many preemptions are ihtrqduced. An algorithm
of time complexity O(nm) for this problem is presented and analyzed.
The maximum number of preemptions introduced is O(nm). The algorithm is
similar to the one in [Gl]; however, it is textually more complex..

Algorithm UB:OMFT considers task T, at step i. T, is assigned
in such a way that its completion time is as early as possible, provided
it is late enough so that all remaining tasks can be scheduled to complete

no later than f. Initially the completion time (t) for T is determined.

S

R E AN

In order to simplify the bookkeeping operations involved in managing blocks
of idle time, a subset of tasks is assigned before Tie These tasks have’
the property that it is not feasible to schedule them to complete before
time B in any feasible schedule including all previous assignments to-
gether with T, scheduled to complete before time t. Ty is then assigned !
to complete at time t. In order to simplify the assignments in this phase,
idle time is partitioned into disjoint blocks (disjoint processors). These
blocks are initialized by procedure INITIALIZE and the assignments are made
final (in Q) by procedure TERMINATE. Procedure ASSIGN, schedules tasks‘in
sections of two disjoint processors.

Let M=1{1, 2, ..., m} and N=1{1, 2, ..., n}. During the ekecution
of the algorithm, processor Pi is busy from time 0 to ui. Processor

indices are partitioned into sets I = {il, 12, cees iﬂ} and M - I. The

second set corresponds to those processors made critical (processors for

which W was set to B). Initially all processors belong to the first

set. Task indices are partitioned into sets A = {al, 85 sees aq}
and N - A. The first set corresponds to tasks not yet scheduled. Qj
is the schedule for processor Pj. Qj consists of tuples of the form

(i, s, £f). Tuple (i, s, f) indicates that T4 is to be executed from

time s to time f by processor Pj' Let fi be the completion time

for task T, in schedule Q. Assume fi =0 for 1 <O0.
Before presenting the algorithm, we outline the general strategy.

At some point, it is required to schedule tasks T, » Ta soeees Ty and
1 2 q

the only processors with idle time are Pi 5 Pi S eens Pi .. Idle time is

1 2 L

partitioned into disjoint regions, which we call disjoint processors.

Initially we define disjoint processors DPOk for 1 <k <2 as proces-

sors P from time y to My for 1 <j <% -k and
L-j+1 R~j-k+2 L=3-k+1

processor Pi from time H to B (see figure 3a in the appendix).

k 1
It is assumed that U, < W, < ... <y, < B. The total processing
i, — "i — - i, —
3 -1 1
capability of DPOk is wo, .
2~k
wo, =35, (B-u,)+ I s. (U, - U,).
ko4 1 3=l Mpegl Meejekdl Tpog-kd2

Claim 1: All idle time is included in the DPQ's.

Claim 2: The individual idle time blocks from a DPO are nonoverlapping,
i.e., they are not defined at the same time on more than one machine.
In line 5 of the algorithm, ui is defined in such a way that

0
M, < H, < B. Using Ui new disjoint processors are defined as fol-

1 0 0
lows:
DPN£+1 is DPO,Q from time uio to B
DPNk for 1 <k < is DPOk from time 0 to uio and DPOk—l from
time 1y, to B.

i
0

DPN

is DPO from time O to W,
1 i,

Claim 3: DPN1 terminates exactly at time ‘ui .
0
The partition of the DPN's can be translated directly into processors

and their completion times as follows:

DPN, is Pi, from time My to My for 1 <3 <14
J J j-1
DPNk for 1 <k <%+ 1 is processor Pi from time Hy
2-j+1 £-j-k+2
to time My for 1 <j <2 ~-k+1 and processor P,
Q- k41 k-1
from time 1, to B
o

(see figure 3b in the appendix).

Claim 4: All idle time is included in the DPN's.

Claim 5: The individual idle time blocks from a DPN are nonoverlapping.

Wi, for 1 <i< &+ 1 is defined as the total processing capability

of DPNi. In order to simplify the proof of correctness it is convenient

to partition DPNi into DPNLi and DPNRi. DPNLi is DPNi from time

0 to ., and DPNR, dis DPN, from time 1. to B. Let wnf, and
ig i i i i

wnr, be the corresponding total processing capability of DPNLi and DPNRi.

Claim 6: wo. = wn®. + wnr. for 1 <41i< &,
—_— i i i+l - -

My is selected in such a way that it is poésible to schedule T,

0 q
to complete at time Uy and all remaining tasks can be scheduled to
0]
complete no later than time R. In order to simplify the algorithm,
T, s T, 5 eees T, ' will be scheduled to complete at time B. T, s Ta s
1 2 k 1 2
ceesy Ta ' and Ta are assigned to DPNl, ceey DPNk'+l' Yy is selected
k q 0
k'+1 k'
in such a way that L wn, =t + I t_ . A problem arises in this part.
=t G 5=

The scheduling of these tasks cannot be made uniformly from left to right on
these processors, but has tobe performed in some random order. Initially, pro-
cedure INITIALIZE will construct a list Vi for the blocks of idle time in
DPNi » 1 <i<k'+1l. An entry in Vi is of the form (p, i, r, f),
indicating that processor p from time r to time f 1is part of DPNi.
Whenever a task is assigned to one of these blocks, the block is deleted

or SR depending

p,d

on whether the assignment was made in the left or right hand side of the

(or part of it) and the assignment is kept in SLp 4
3
block. After all the assignments have been made, SL and SR are added
to the schedule Q. Procedure TERMINATE will carry out this operation

as well as updating ui . ui s sees M.

1 b)

Let us consider the following simple example. Block (p, i, s fl)
is initially part of Vi' After several iteratioms, block (p, i, Ty, f2)

could be in Vj s SL = (kl, T, r2) and SRp , = (k,, f,, f This

p,1i R 2’ 72 l)'

is, the original block (p, i) is now part of DPj and consists of pro-

cessor P from time r to f,. Task T has been assigned to P
P 2 2 kl p
from time Ty to r, and Tkz from time f2 to fl'

We now present the algorithm which we shall refer to as UB : OMFT.

algorithm UB:OMFT (m, n, B, Q, t, s)

//given m uniform processofs denoted by Pl, P2, ey Pm; the algorithm
constructs a f:0MFT preemptive schedule for tasks Tis Tos vees T with
execution time requirements are

<t, < ... f_tn. The relative speed

N

1
of processor P, is s, and s, > s
i i 1-

| v

2 .o z_sm. The schedule for pro-
cessor Pj is represented in Qj' The kth entry in4 Qj is of the form ‘
(i, r, £f), indicating that T is to be executed from time r to time f
by processor Pj.//
//initialize the processor schedules
uj: total time processor Pj is busy.

| woj: total processing capability of DPOj//
[ui <« 0; Qi <+ ¢ wo, * B * Si] for 1 <i<m
//initialize processor and task indices//

i.*j for 0<3<m; 2+ m;

J

aj +*n-j+1 for 1 <Jj<n; q<*mn;

//schedule task Ta //
q
while q # 0 do
k k+1
w, o o max {x[ta + 3 t, = (X wo,) - (B = x)si }
0 0<k<min{f-1, q-1} q j=1 % j=1 k+1

Let k' be the maximum value of k for which x 1s maximum (line 5)

10

11

12

13

14

15

16

17

18

19

20

//Construct DPN's from DPO's//

Wi € B -y s,

0 L
win, <wo, - (B~ u,)(s, - s,) for 2<j <%
| 3 i, 1j 1j—l - -
wn, + wo, - (B - u.)s,
1 1 i, i
//initialize blocks of idle time for DPN, , DPN,, ..., DPNk'+l//
INITIALIZE
//assign tasks Tal, Taz, ceey Tak'//
for i =1 to k' do
Find the minimum positive integer p' be such that Wni+l > t for
) k|
o [
1<3<p 1 and wnp,+l f_tap'
//assign Tap' to DPNp, and DPNp'+1//
ASSIGN(ap., p', p' +1)
//the unused portion of DPNP, and DPNp'+l are combined to form
DPN
p.//
(wnl: W-nz, LR Wnk"“l_i) < (Wnly an, b wnp'_l) wn ¥ + wnpl+l -
tap', wnp.+2, e wnk,+2_i)
(Vls V2’ eeey vk""l-i) « (Vl’ VZ’ esey vp'—l’ VP” Vp|+2’ co ey Vk|+2_i’)
//eliminate T, //
‘ p'
(al, Bys eees ak'—i) « (al, Qys ees ap'—l’ ap'+l’ s 3y i+l)
endfor

//assign task T, to DPNl//

q

ASSIGN(aq, 1, 0)

TERMINATE

(il, 129 ee ey i/Q/_k') + (ikl_'_l! 1k|+2, @ ey

(wol, WO,s ees wog_k,) + (wn

12)

k427 ergss cees Whp o

L« 8 - k!

21

22

23

10

(@ 3y wees g) (g 2y
q*q-(k'+1)
endwhile

end of algorithm UR:OMFT

procedure INITIALIZE

//initialize blocks for DPN DPNZ, eeos DPNk'+l//

l’

Vo< @y, 1, o5 W)E, o, 1, Mo, My Deea(dg, 1, m o, W)
1 L 12 12—1 -1 1271 i 1 i, 10

V., « (i,, 3, Y, B T 1 € O T NRTH) R
J % Tor1-g tpoyt AL -3 tp-j-1

(L., 35 Wy 5 W,), 4, 3, W, , B) for 1< j<k'+1
] 1l 10 j-1 10 -

o : . ¥
SLk,j + SRk,j « ¢ for lj—l <k< igs 1<j<k'"+1

end of procedure INITIALIZE

i

procedure TERMINATE
//assignments in SL ~and SR are made final in Q//

o Qik sty ISR ; for 1<3 <minfi' +1, k+1}, 1<k<2

(u. 3 e ® a g Ui)*’"(ui,ui, "'9“)

e 3 o 1 To-k'-1

Aol VR R TN +« B
1) o g

end of procedure TERMINATE

My

procedure ASSIGN (j, p, r)

//assign Tj to DPNp from time 0 to b and to DPNr from time b
to B. Incase r =0, b is set to B (i.e., VO =¢).//

Let b be such that the idle time on DPNP from time 0 to b and in
DPNr from time b to R is tj' In case r =0, b is set fo B.

//B 1is defined as DPNr from time 0 to b//

10

11

12

13

14

15

16

17

18

19

20

B+ @;
while V_ # ® and b > initial time for the first tuple in V. do
(pn, dp, initial,; final) <« Vr //the leftmost tuple in Vr is
deleted and assigned to (.,.,.,.)//
B < B||(pn, dp, initial, min{final, b})
if b = min{final, b} then [3£ b < final then
[San,dp

exit while loop]

endwhile |
//assign Tj to the remaining blocks of DPNr//
while V_#¢ do

(pn, dp, initial, final) < Vr

SL GG, initial, final)

<+ SL
pn,dp pn,dp

endwhile

//assign Tj to DPNp from time 0 to b//
while Vp # ¢ and b > initial time for the first tuple in Vp do
(pn, dp, initial, final)‘& Vp

S |3, initial, min{final, b})

L « SL
pn,dp pn,dp

if b = min{final, b} then [if b < final then

[B « B|/(pn, dp, b, final)]

exit while loop]

endwhile
V_ <« B|v
P P

end of procedure ASSIGN

< (j, b, final)“San

11

»dp

3

Given a deadline B 35, 8 tasks with execution time

Example 1:

t, = 3, t2 =11, t3 =13, t4 = 25, tS = 26, t6 = 29, t7 = 31,

tg = 72, and 3 uniform machines with relative speeds s. =3, s = 2

1 2
“and S3 = 1. Algorithm UB:OMFT constructs a B:OMFT preemptive

schedule as follows:

12

(alsazsnou ’aq) (Q) (il,iz,ig) (Q/) (ul,UZ’UB) . (Schedule*) Step
(8,7,6,5,4,3, (8) (192’3) . (3) (0,0,0) Ql = Q2 = Q3 = ¢ Iﬁitial
2,1) : 'Conditions
k' =90
(8,7,6,5,4,3, | (D) | (1,2,3) (3) | (1,0,0) Q, = [(1,0,1)] end of 1st
2 Q2 = Q3 = @ iteration
k' =0
(8,7,6’5’4,3) (6) (1,2,3) (3) (4’1’0) Ql = [(1’0’1)’ end of 2nd
(2,1,4)]
Q2 = [(2,0,1)] iteration
0, = ¢
k! =0
(8,7,6,5,4)) | 1,2,3) (3) | (6,4,1) Q; = [(1,0,1) end of 3rd
(2,1,4),(3,4,6)] :
Q2 = [(2,0,1), iteration
(3,1,4)]
Qy = [(3,0,1)]

&The tuple (i, s, f) in Qj indicates that processor Pj will execute task

T from time s to time f. The tuples with

s = f have been eliminated.

13

k' =

(8,7,6,5)

RO

(1,2,3)

(3)

(12,6,4)

= 1(2,0,1),
(3,1,4), (4,4,6)]

, = [(3,0,1),

(4,1,4)]

end of 4th

iteration

k' =

(7,6).

(2)

(2,3)

(2)

(35,16.5,12

Qg

= [(1,0,1),
(2,1,4), (3,4,6)
(4,6,12),
(5,12,16.5) ,
(8,16.5,35)]

= [(2,0,1),
(3,1,4), (4,4,6),
(596912)’ A

(8, 12, 16.5)]

= [(3,0,1),
(4,1,4),
(8,4,5.5),
(5,5.5,6),
(8,6,12)]

(see figure la)

end of 5th

iteration

()

(0)

(3)

(35,35,35)

Q

Q,

= [(130,1),
(2;1)4)’ (394:6)9 :

(4,6,12),
(5,12,16.5),
(8,16.5,35)]

= [(Z;O’l)y

(3,1,4), (4,4,6),
(5,6,12),
(8,12,16.5),
(7,16.5,24.5),
(6,24.5,35)]

= [(3,0,1),

(4,1,4) (8,4,5.5),
(5,5.5,6),
(8,6,12),
(7,12,16.5),
(6,16.5,24.5),
(7,24.5,35)]

(see figure 1b)

end of 6th|

iteration

14

processor
5.5
3 T3 14 T8 5 'l'8
2 frz T3 T4 TS "1'8
1 Tl T2 T3 T4 '1'5 18
0 1 4 6 12 16.5 35

Figure la: Schedule for Tl’ TZ’ T3, T4, TS and T8

_Processor
: 5.5
v i »
3 T3 TA T8 TS T8 T7 T6 17
2 T2 T3 TZ, 15 T8 17 T6
1 Tl 12 13. 14 T5 T8
0 1 4 6 12 16.5 » 24.5 . : 35

Figure 1b: Final Schedule for example 1

Before proving the correctness of the algorithm we establish some use-
ful properties. At some point during the exeuction of the algorithm‘ UB:OMFT ,
ali or some of the following properties will hold true.

hl) Q is a schedule for tasks Tj, JEN-A

h2) uigiuig_li e Sy <8
U, =B for jeM;I

k k
h3) Z ¢ < I wo, for 1<k < min{f, q}

15

m .

h4) Z u,s, = I t. (note that ¥ t, = 0)
i=1 4 jew-a 3 jeg 3

h5) &t >t for 1 <j<gq
a5 2541

hé6) aj - 1= aj+1 for 1 <j<gq

aq =v + 1, where v is the number of times loop 4-22 (UB:OMFT)
has been executed (aO =r+ 1, where r is the totél number
of times loop 4-22 was executed. Assume ¢t >t).
ntl — n

h7) wo, - (B - u,)s. <t
1 1l 1l aq

h8) £, . =u; for 1<j<% (note that fj='o for j < 0)

q J

h9) £ > 0 and 'ij =m- £+ j for 1<j<

In lemma 1, we show that hl-h9 will hold true at the beginning of each
iteration (UR:OMFT just before line 5). This will be of use in theorem 1,
where we show that algorithm UB:OMFT constructs B:OMFT preemptive
schedules. The proof for theorem 1 also uses lemmas 2-4. Lemmas 2 and 3
study some properties of general preemptive schedules. Theorem 2 shows
that the time complexity for algorithm UB:OMFT is O(am). Finally, din
theorem 3 it is shown that algorithm URB:OMFT constructs preemptive

schedules with no more than O(nm) preemptions.

Lemma 1: At the beginning of each iteration (UB:OMFT just before line 5),

h1-h9 will hold true.

Proof: It is simple to verify that the lemma is true at the beginning of

the first iteration. In order to complete the proof of the lemma it is

only

line

Note

16

required to show that if hl-h9 hold true and q # 0 just before
5 then after the execution of lines 5-22, hl-h9 will hold true.
The proof is in five separate parts. We now prove each part separately.

Let W= {a PN aq} after line 8 has been executed.

l’ az’
that the set W contains task indices, not the symbols ay.
Part 1: After the execution of line 8; bl-b2, b4-b6 and b8-b18 hold

true.

bl) Q is a schedule for Tj, jEN - ({ak'+l’ cen, aq—l} U w

b2) u, <y, < ... <y <u, <B
R s T Y
uj =B for jeM - {il, 1ps vens 12}
m
b4) I ujsj = X tj
j=1 JEN—({ak,+1, cees aq_l}LJ W)
b3) t. >t for k'+1<3<gq
a, — a, -
i j+1
- = v + q -
b6) aj 1 aj+l for k' + 1<j<q-1
aq—l = v (v as defined in hé6)
b8) faq-j = uj for ;.5 j<4

b9) £ > 0 and ij =m- 4+ j for 1<j<2g

k k
b10) z)Y t for k' +1 <k <min{q - 1, 2}

wn, >
gkt T g0 ey

bll) SL and SR are empty schedules

bl2) £t >t Zoeee 20t 2t

2 k' q
k' k'+1

bl3) t + &I t = I wm.

bl4)

17

b1l5) DPN. terminates exactly at time Mo
0
k+1

k

ble) ¢ + ¥ t < %L wn, for 0 <k < k'
. a, — , J — —
=1 j j=1

bl7) All idle time blocks in DPNk (1 <k <k'+1) are nonoverlapping. .

bl8) let z, p and r be such that
i) 0 < z <B and 1 <p<r <k'+2

or ii) 0 < z < My and 1 =p<r<k'+2,
0

At time =z, if DPN_ has a block of idle time then so does DPNP.

If DPNP has a block of idle time at time =z s then the relative

speed of the processor over which it is defined is not slower than

the one used by DPNr (if any).

Proof of Part 1: The proof is given in 1.1-1.5.

1.1) The proof for bl, b4-b6, b8-b9 and bl2 follow from hl, h4-hé,
h8-h9. Note that the algorithm does not modify the variables used.

1.2) In order to prove b2, it is only required to show that My > ui
0 1
and g < B after line 5.
0

From line 5, together with q # 0 and 2 >0 (h9) we have that

B, >x=(t. = wo, +Bs,)/s., ..
i, aq 1 i, i

Substituting taq _>__wol - (B - uil)sil (h7)

we obtain 1, Rl |
i, i,

ii) Wy < B:

0

There are two cases depending on the value of 4.

18

case 1: L =1

: m
Substituting u, = B for jeM - {i,} (h2) in I yu,s, =
3 1 1 J 4
J.—
)X tj (h4) we obtain uy si + z Bs, =
JEN—{al,az,...,aq} 171 JeM-{ll}
z t.. Substituting the initial condition B8 > T/S_,
jeN-{a a} -
1700 ea8g

in the above equation we obtain

M, s, + . T - Bs, < z t..

i @ *1 7 jeN-{a;,...5a }
1 q
This can be written as)3 t, <s, B-y,). As L=1
jei{a a } S | 11 "
13708
then wol‘ is sil(B - uil). Clearly ta f_.e{ v .3 tj. Sub-
q] al,..., q

stituting in the above inequality we obtain

ta f'wol (D)

q

As g # 0 (line 4) and £ = 1, then from line 5 we have that

t, =wo, - B - My)Si or w; = (ta - wol)/si + B. Substituting
q 0 "1 0 q 1

(1), we get u, <8,
10-_—

case 2: 2 > 1

From lines 5 and 6 we have,

' K'+1
e = + & t - I wo,)/s, + B
0 % 4=1 % =1 I w#n
for some k' in [0; min{R - 1, q - 11}]. - (2)

From (h3) we have that

It < I woj (3)

19

Substituting « <t (h5) in (3) and then in (2) we obtain, 1y, < B.
7 ' o~

Hence, b2 holds true after line 8.

1.3) Before proving bl0, bl3 and bl6, we prove that after the execution

of line 7

k+1 k+1
Lowm, = (I wo) - (B-uy s, for 0 <k <min{ - 1, q - 1}.
=t =1 0 Tkl _ :
(4)
For k =0, we have that wn, = wo, - (B ~ yu,)s., , which follows
1 1 1,71,
directly from line 7. Suppose now,
k k
L wn, = (I wo,) - (B-y s, (5)
=1 3 y=1 o Mk
for some k > 0. We now prove that
k+1 k+1
Lo owm, = (2 wo) - (B-y s, for 0 <k < min{f - 1, q - 1}.
j=1 3 j=1 0 Tk+l
Adding wn ., to (5) we obtain
k k
(I wn.,) +wn = (L wo,) -~ (B-u)s. +wn
j=1 ki k+1 j=1 h| 1,7 1, k+1
replacing wIy g for the operation in line 7 we get
k+1 k
L wn, = (X wo,)-(B-1)s. + wo - (B - 1 (s, - s,)
=1 3 4=1 ot i kM RN S T
k+1
=(I wo,)~ (B~ Js,
=1 4 0 Tkl
Hence,
k+1 k+1
L wn, = (X wo., - (B~ uy Js, for 0 <k <min{f - 1, q - 1}
=1 1 g=1 3 0 “k+l

20

Let us now prove, bl0, bl3 and bl6. After the execution of line 6,

we have from line 5 that,

k k+1
t + L t <(I wo,) - (B~ W,)s. for 0 < k < k' (6)
"¢ j=1 T og=1 o tkh -

k' k'+1
t + L t =(2Z wo,)-(B-~-u ds. (7)
8¢ §=1 2 j=1 0o Tk

k k+1

and, t + X t < (I wo,) - (B-1, Js.
@ 3=1 % 3=1 3 0 Mkt
for k' + 1< k < min{f - 1, q - 1}. ‘ (8)

After line 7 we substitute (4) in (6), (7) and (8)

k k+1
t + I t < ¥ wn, for 0<k < k'
a , a, — . i - -
@ =1 3 j=1
k' k'+1
ta + Z ta = ¥ wn
¢ 3=1 % j=1 3
k k+1
t + X t < wn. for k' + 1<k <min{q -1, £ - 1}.
a . a. .] — _
q j=1 "j j=1

Subtracting the second equation from the third inequality,

k k+1

z £, < z vn for k' +1 <k <min{q - 1, 2 - 1}.
J=k'HL 25 k42

Using the initial condition (l)T‘i BSm and hé We get
k k+1
z t < & wn, for k'+1<k<min{q-1, 2}
i=k'+l %3 7 j=k'+2 3
Hence, bl0, bl3 and bl6 hold true after line 8.
1.4) The proof for bl4 follows from h3 together with claim 6. In line

1 (INITIALIZE), all idle time blocks in Vl have finish time < uy
-0

21

Therefore, bl5 holds true after line 8. SL and SR areinitialized as empty schedules
(line 2 of procedure INITIALIZE). So, bll holds true after line 8. From
claim 5 (or INITIALIZE line 1), it follows that bl7 holds true after line 8.

1.5) We now prove bl8. From time ui to B, DPN, is defined on

k
0

Pi for 1 <k <2+ 1. Using h9 together with the initial conditions

k-1
sjii Sj+l for 1 <j<m, it is simple to show that bl8 holds true from
time ui to B. Let us now consider any point in time from ui to

0 J

W, (1 <j<42). DPN is defined on P, and DPN (L<k<2L+1

lj_l et — 1 1j k -
is defined over P, . This together with the initial condition Sj.i

jtk-1 '

sj+l for 1 <j<m and h9 imply that bl8 holds true from time 0 to
By - Hence, bl8 holds true after line 8.

0

This completes the proof for part 1. []

Let us consider loop 9-25. Let i be the value of i in line 9.

Part 2: cl and cll-cl8 hold true after i gets the value of one or
i 1is increased by one (before the test in line 9 is performed).

cl) Same as bl-b2, b4-b6 and b8-b10

cll) SL and SR are the schedules for Ty s keW - {al, ceos ak'—i+l’ aq}
cl2) £, > ... > t >t
1 k'-i+l T ¥g
k'-i+1 k'-i+2
cl3) ta + b} ta = X wnj
q j=1 k| j=1
k k
< < k' - 4
cl4) .Z taﬂli .§ (wn,Q,j + wnrj+l) for 1 <k <k i+1
=1 3 j=1
cl5) DPNl terminates exactly at time My o
0
k k+1
clé) t. 4+ £ t < I wn, for 0 <k < k' - i+1
a . a, — i - -
T =1 3 j=1

cl7) All idle time blocks on DPNk (1 <k <k'-1i+2) are nonoverlapping.

22

cl8) Let z, p and r be such that

i) 0<z<B and 1 <p<r<k'-1i+2

I A

ii) 0 < z<PB and 1 <p<r=%k'+2

L]
o
A
2}

i —

0
iv) 0 < z f-“i and 1 = k' + 2
0

At time =z, if DPNr has a block of idle time then so does DPNP.

iii) 0 <z < p, and 1 <k'-1i+2 or

It
o
A
[a]

If DPNp is defined at time 2z, it is defined over a processor

whose speed is not slower than the one used by DPNr (if any).

Proof of Part 2:

For 1 =1, el and cll-cl8 follow bl-b2, b4-b6 ana b8-b18. In ofder
to complete the proof it is only required to show that if cl and qll—c18
hold true the ith time (i # k' + 1) line 9 is executed, then after lines
9-15 are executed and i is increased, cl and cll-cl18 will hold trﬁe.

Let c¢'l and c'll-c'18 denote cl and cll-cl8 before the loop is executed.

In line 10, a value for p' in the range [1; k' - i+ 1] will always

' : k'-i+1 k'-i+2
be found, as t <wn, (c'16) and t + I ¢t z wn, (c'l3).
a — 1 a a] »

q q j=1 J j=1

f

Consider now the call to procedure ASSIGN (line 11). First let us show
that a value for b will always exist in line 1.

case 1: p' > 1

Let bO’ bl’ b2 and b3 be such that bO =0 j_bl <‘b2.i B = b3.

Let ¢y be the processing capability of DPNP' from time 0 to bi

s v < 1 -
and on DPNp'+l from time bi to (. Clearly ¢y ey (this fol
lows from ¢'18). From line 10 (UR:OMFT) we have that t < wn_,

pio1 2
(or t < c3) and t _>__wnp,+l (or t, > co). As.

%pr-1 p' %!

23

t < t (c'12), it must be that c, > t . Hence, a value
T a1 P

for b will always be found in line 1.

case 2: p' =1

Let bO’ bl’ b2 and b3 be such that bO =0 f_bl < b2,§-ui = b3.

Let ;. be the processing capability of DPNl from time 0 to bi

and on DPN2 from time >bi to B. Clearly ¢y < Cy

(line 10, UB:OMFT) and t < wnfl, +
1 ’ : a— 1

>t and c, <t . Hence; there is alWays a
3— "a 0 — a; v

1
point b such that O <b f_ui .
0

The remaining part of procedure ASSIGN will schedule T, from time 0 to
pV
DPNP' is then redefined

(this follows

from ¢'18). Now, t_ > wn
a, — 2

wnrz(c'l4). So, ¢

b on DPNp, and from time b to B on DPNP,+1.

as DPNP,+l from time 0 to b and DPNP, from time b to B. Lines 12-

13 in UB:OMFT renames DPNP,+2, cees DPNk'+2—i as DPNp'+l’ cees DPNk'+l—i'
T, is eliminated in line 14.
p' .
As p' <k' -1i+ 1, none of the variables in c¢'l are modified. So,

cl follows from c'l. The proofs for cll-cl3, cl5 and cl7-cl8 are simple
and will be omitted. In 2.1 and 2.2 we provevcl6 and cl4. |

2.1) It is now required té show that c16 will hold true after i is
increased in line 9. Initially

k+1

k
E + Xt < I an for 0<k<p'-1 (9)

24

k+1

and t +
a .
q 3

"<k<k'-1i+1 (10)

[[Jlae -
r+

A

™~
N

h

o]

H

o

1 %57 4=1

|

The body of the loop modifies ai and wni (let a and wn' be the new

values for a and wn) as follows:

7 1] § 1
(al, Bys ees Bpy s aq) + (al, caes ap'—l’ ap'+l’ e By g aq)
T v 7 _
(wnl, wnl, ..., Wnk'—i+l) A (wnl, cees wnp,_l, wnp, + Wnp'+l tap',
Wiprggs ters Wi gu0)
Substituting in (9) and (10) we obtain a) and b).
k k+1 o ’
a) t, + I t, < % wn'. for 0 < k < p' -1 E (11)
a . a', — | -
q j=1 j =1
p'-1 k p'-1
and b) t_, 4+ I t , |+t + I oty <[I wn' |+wn, +wn ' +
a', a) a', — +1
q {j=1 3 P’ j=p' i li=1 J P P
k+1
z wn' for p' -1 <k<k'-4i+1
j=p'+1
k k+1
t, + 2 t, < I wn', for p'-1<k<k'-1 (12)
a . a -] - -
q j=1 j 3=1 :

After 1 1is increased, cl6 follows from (11) and (12).

2.2) Let us now prove cl4. Initially,

[e
[e

t- <
a, —

v y
) 3 ; (wnﬂj + wnrj+ﬁ for 1<k<k i+1 (c'14)

j 1

case 1: b < My in line 1 (ASSIGN)
0
The above inequalities can be broken into:

t <
a —

(wnSLj + wnr,
1 73 3

J+l) for 1 <k <p'-1 (13)

™=
™Mo

N 1

25

k
and Lot < X (wnf&, + wor, for p' + 1 Sk<k'-i+1(14)

a, — . j J+l)

%
Since b 5-“1 s the algorithm modifies the values for wnr , wnil
0

and a (a', wnl' and wnr' are the new values for a, wn? and wnr)

as follows:

¥ ? —
(wnﬁl, cees Wil '—i) + (wnll, cees wnﬁp,_l, wn%p, + wnfLP,+l + wprp,+l
tap', wn%p,+2, caosy wnﬁk'—i+l)
7 ¥ . . .
(wnrl, cees Wnrk'—i+l) ~ (wnrl, Pees WL, WE 4, eees wnrk,_i+2)
¥ ¥ ¥ ‘
(al’ ooy ak'“i’ aq) <+ (al’ e ap'-l’ ap'+l’ cecy ak'—i-i-l’ aq)
Substituting in (13) and (14) we obtain a) and b).
k k
v ' v
a) -E ta', f_-§ (wnLj + wnrj+l) for 1< k <p 1 (15)
j=1 j =1
k p'-1 k
and b) X t , + ¢ < X (wnf! +wnr'!) + z (wnl! + wnr') +
j=1 k| %' T =1 i+l j=p'+1 3+l
wnfl_, + wnf 1 + wnr 11 + wnr "o for p' <k <k' - i
k k
¥ 1 13 | I
-E ta',-i .§ (wnlj + wnrj+l) for p' <k <k i. (16)
i=1 i i=1

After increasing the value for i, cl4 follows from (15) and (16).

case 2: b > ui in line 1 (ASSIGN).
0

The proof is similar to the one for case 1 and will be omitted.

This completes the proof of part 2. [J

%
Note that the algorithm only modifies wn, but this changes wn% and wnr.

26 -

Part 3: Just before the execution of line 16, d1, 411, 413, d15, d17
and d18 will hold true.

dl) Same as bl-b2, b4-b6 and b8-bl0.

d1ll) SL. and SR 1is a schedule for Ty s kew - {aq}.
dl3) ta = wn,.
q
d1l5) DPN1 terminates exactly at time My o
0

dl7) All idle time blocks on DPNl are nonoverlapping.
d18) Let z,v p and r be such that
0<z<yu, , p=1 and r =%k' + 2
-7 ="
0
At time 1z, if DPNr has a block of idle time then so does DPNP.

If DPNp is defined at time =z, it is defined over a processor

whose speed is not slower than the one used by DPNr (if any).

Proof of Part 3:

dl, d11, d13, d15, d17 and d18 follows from cl, cll, cl3, cl5, cl17

and c18 together with the observation that the last value for i in line 9

is

k' +1. [

Part 4: Just after the execution of line 16, f1, fll,‘f13'and fl6
will hold true.

f1) Same as bl-b2, b4-b6 and b8-b10.

£11) sSL and. SR is a schedule for Ty o keW.

£13) fa =Y o
q 0

£f16) t > wni
a e

.
a1 k'+2

27

Proof of Part 4:

The variables in dl are not modified, it then follows.that f1 is true

after line 16. Procédure ASSIGN schedules task T, - This, together with

d1l, imply that f11 holds true after line 16. Sincz ta = wn,y
DPNl terminates at time uio (d15) and in line 16 taskq Ta is assignea
to DPNl, it then follows that the finish time for task T s is uio (£13).
Z , 1t then

(d13),

a

From d18 and d13 we have that t > wnf ,,,. As t >t
a — k'+2 a —

q q-1 q

follows that ta > wnl (£f16).

q-1

This completes the proof for part 4. [J

k'+2

Part 5: Just after the execution of line 17, gl-g2, g4-g6, g8-gl0
and glé hold true.

gl) Q 1is a schedule for tasks T keN - {a

k’

g2) B > u, > U 2 eee 20U,
TR k142)

k'+1° 7 fg-1

U, = B for jeM - {i i}

3 k'+1’ "°°2 74
m
gh) X w.s, =)} t,
P b B j
j=1 JeN {ak'+l""’aq—l}
g5) t > 0>t
e+ 4q-1
. _ ,) .
g6) a; + 1 2 for k' +1<i<q-1
aq—l = v (v as defined in hé)

g8) for k' +1<3<2

Lo bcib1-g T My,
q i

g9) 2 >0 and ij=m—2+j for l_<_j<2

k
gl0) wn,, , > I t for k' + 1 <k < min{q - 1, 2}
-~

gl6) t > wnf

28

g>-gb, g9-gl0 and gl6 follow directly from fl and fi6. Using f1l and
f11, together with the effect of procedure TERMINATE (the assignments in
SL and SR are made final in Q), it then follows that gl holds true
after line 17. Before line 8, DPNl, ceny DPNk'+l had the same procéssing
capability as the processing requirements of Tal, ceey Tak' and- Ta .
As all of these tasks have been scheduled on DPNl, ey DPNk'+1 andq
uil, ooy uig have been set to their new valﬁes, it follows that g2 and
g4 hold true after line 17. g8 follows from f8 (see fl) together with the

renaming of Hy s oo ui - This completes the proof of part 5. [J
1 - L

Part 6: hl-h9 hold true after line 21 is executed.

The proof for this part is simple and will be omitted. The‘proof
for h3 follows from glO and the one for h7 from gl6.'
Hence, hl-h9 hold true each time line 4 is executed. This completes

the proof of the lemma. []

Theorem 1: For every system of m > 1 uniform processors, n > m inde-

pendent tasks and a deadline B,

B __>_ maX{l_HE)?;m{ (n—j+l)T/Sj}’ (l)T/Sm} 9

algorithm UB:OMFT constructs R:O0MFT preemptive schedules.

Proof: First of all we prove some properties of the schedule produced by
the algorithm. Then we show that such a schedule is a R:0MFT preemptive
schedule.

Let S be the schedule constructed by algorithm UB:OMFT (note that

the algorithm terminates after at most n iterations). The last time line 4

29

is executed, it must have been that q was zero. At this point hi—h9
(lemma 1) hold true. So, it must be that S 1is a feasible schedule
(hl) and ft(S) < B (h2). 1In order to prove the theorem we obtain some
inequalities that relate finishing times to execution times.

Let r be the number of times loop 4-22 was executed. Let Kk
represent the value of £ at the end of the kth iteration. At the end

of the kth iteration (1 <k < r), we have that hl-h9 hold true (lemma 1).

Clearly,
2, =k + 1 (h6) 17
and faq_j = uij for 1 <3< Qk (h8) (18)

Note that fj =0 for j £ 0. Substituting (17) in (18), multiplying

each side by s and adding all equations we obtain (19).

3
Qk gk
D § . 8, = L U, s, ' (19)
j=1 ktl-3 1, j=1 1j 1j
Now, uj =B for jeM - {il, 12’ esey iQ } (m2). Multiplying both sides

k
by sj and adding all terms, we obtain (20)

» pX U.s. = z s,B (20)
jeM-{i,...,i, } 39 gem{i,...,1, } 3
1 L 1 L
k k
Adding (19) and (20)
2k Com
z s.B+ I f .8, = L u.s, (21)
. R . +1- . .
jEMF{ll,...,lz o j=1 ktl- 13 j=1 I3
k
Since ij = Qe Qk +3 for 1< f_Rk (h9), it follows that
M - {il, cees i y={1,2, ..., m~ zk}. Substituting in (21)

30

Qk m
(S ,)J)B+ I £ . 8 .= L U.s.
m Rk j=1 k+l-j "m £k+3 j=1 373
]
where S, = I S - Substituting h4 we obtain (22)
a1 |
zk
(s B+ % f , S , = z ‘ t, (22)
ey j=1 KH=3 medy A jeN-la),...ha)]
As aq =k +1 (17), it then follows from h6 that a; = k+q. q

was initially n, but every iteration (loop 4-22, UR:OMFT) it is de-
creased by k' + 1. Initially % was m, but every iteration it is-

decreased by k'. Hence

q=n-k~- (m- ﬁk) (23)

Now, N - {al, Bys wues aq} ={1, 2, ..., k} U {n-n f Rk

+1, ..., n -1, n}.

Substituting in (22) we obtain (24) for 1 <k<r

2k
(S)8+ L £ . .8 o =T + T (24)
m Qk j=1 k+l~-j "m 2k+3 k (n m+£k+l)
i n
where T, = I t, and (,)T = X ti'
b 7 asg
Equation (24) for k = r is equatiom (25)
L
T
Cpg 28 F 2 g Sun 4 = e b (aemen 41T (25)
r j=1 r r
Substituting q = 0 in equation (23), we obtain
r=n- (m- %) (26)
Substituting (26) in (25) we obtain
L
r .
=T. : (27)

(Sm—SL B + .Z f
r =

j=1 T+1-j sm—£r+j n

31

Using (27) we obtain equations for r + 1<k<n

k-r T
Sog —(kepy)B+ 2 s o . B+ I f s__ =T .
m Rr (k-r) j=1 @ Qr (k-1)+] j=1 r+l-j "m-2_+j n
Since fk+l <B, cous fn-i B.
k-r Zr
(S o (e)B+ T s Cf L L+ £ s T
‘m.ﬁr (k-1) j=1 m Qr (k-r)+j “k+l-j =1 r+l-j “m-2_-+j n
L +k-r
T
Gy ~er)?B ¥ o Smb-Gent freieg ST

for r+ 1< k < n. ' (28)

Equations and inequalities obtained using (24) and (28) for example 1.

k=1, 21 =3 flsl = Tl
k=2,4% =3 fs, + £,8 = T,
k = 3, 13 = 3 f153 + f282 + f3sl = T3
k = 4, %4 = 3 fzs3 + f3s2 + f431 = T4
k =5, 25 =2 SlB + f4s3 + f5s2 = T5 + (8)T
k=6,2 =1 5,8 + fs, = T, + T
k=7 ‘ SlB + f6s3 + f732 f-TB
k=8 f,s, +f s, +f s <T

63 772 81— 78

In order to complete the proof of the theorem it is required to show
that mft(S)_i mft(S') for any other.feasible schedule S' with ft(8") < B.
The proof is by contradiction. Assume there is a schedule S' with
fe(S') < B and wft(S') < mft(S).

From lemma 2 it follows that fi_i fé_i e f.f; , Where fi is the

completion time for task Ti in schedule S'. Now, we will obtain

32

inequalities for schedule §'. Lemma 3 will be used r times. For
l.ﬁ-i.f r, the Value of k to be used in the lemma isv m - Qi + 1 and

w is 1. From 2) in lemma 3 we obtain

' ' -} > - .
(sl ts, + ...+ sm_z.)B + Spg 41 T4 Foeee t smfi—£,+l-— T, + o +l)T
. + i ‘1
L,
l .
: > -
Guen)8 jfl i3 Sty 2T Y e an)? fOr Tic<r (29

Inequalities i, for r+ 1< i< n,‘ will be obtained usiﬁg 1) in

lemma 3, with k =m - Kr +1 and w =r,

s fg + s fé_ + ... + 4+ ...+ s

1] . >
1 2fn-1 Sm-2_ fn-mke 41 T Speg 41ty air-g 41 2
Tr T r r .

Tr + (n—m+2r+l)T
From (26) we have that if q=0 then r = n - (m - Qr), S0

+ ... + s T

] [t . . >
: slfn + San—l oot Sm—ﬁrfr+l + sm—,Q,r-i-lfr mfr—2r+l-— n
(30)
Now for r + 1 < i<n as ft(s") < B we obtain from above
£ +i-r
T .
(s _ri_N)B+ I S 0 —(i-vyas Fii1_. > T 31
m Qr (i-1) =1 m £r (i-r)+j itl-j n (31)

Combining (24) and (28) with (30) and (31) we obtain

i i
Za.ifiEZa.ifi for 1 <i<n
jzl J" j=l Jo»

where a,

< < j < i,
i, —-aj+l,i for 1 <3 <i

Using lemma 4 (8 = Sm) it follows that

n
< I f'.
1 T 4=1 1t

[=]
rh

i

33

So, mft(S')_z mft(S) , which contradicts our earlier assumption. Hence,
algorithm UB:OMFT generates R:0MFT preemptive schedules for every

systém of m>1 uniform processors and n > 1 independent tasks. [J]

Lemma 2 is stronger than theorem 3 given by Lawler and Labetoulle
[LL]. From this lemma, it can be easily shown that there is an OMFT
preemptive schedule in which jobs complete in nondecreasing order of
their execution time. 1In addition, the finish time of this schedule is

never greater than the one of any other OMFT preemptive schedule.

~ Lemma 2: Any schedule S for a uniform processor system can be trans-
formed to a preemptive schedule S' with the following properties:
. P Ve oL, < ¥
i) fl < f2 < < fn
ii) ft(s') < fe(s)

ii1) mft(S') < mft(s).

Proof: Properties i) and iii) follow from theorem 3 in [LL]. ii) follows
from the observation that every time two jobs are swapped, the length of

the schedule is never modified. []

Lemma 3: Given any B:O0MFT preemptive schedule §' (with fj =0 for
j <0 and fi f_fé el < f;) for m wuniform machines, some k in

[1; m] and a task index w in [1; n - k + 1]. The following inequalities

hold:
8] ? 1] ¥ >
1) Slfn + San—l + ... + sk_lfn_k+2 + skfw + ... + Smfw—m+k-—
Tw + (n—k+2)T and
? ¥ >
2) (sl + ... + sk_l)B + Skfw + ... + Smfw—m+k-— Tw +,(n—k+2)T'

processor

34

Proof: First we prove 1). S' is represented in figure 2. Note that

£! does not imply that T will terminate on P , it indicates
w-rtk w-mrtk m

that T terminates at that time.

w=-urtk
Let - R represent the shaded area of the schedule represented In

figure 3. Now

1] o] .\ 1 1
slf + San 1 R Sk—lfn—k+2 + Skfw + ... + bm—lfw—m+k+l + smfw_m+k
‘ n-k-+1 w o n
=T + T+X+ X §,. - X p. - z o
v (a-kt2) i=w#l & d=1 © d=n-kt2 T

where, X 1is the total processing capability of the idle time region inside
R(fig. 2), |
Py total processing time T4 is scheduled outside R, for
i=1,2, ..., w, n-k+2, ..., n.
and 61 totai processing time T is scheduled inside R, for

w + l_i i<n-~- k+ 1.

g
g

/// e

W/t //////

i // // LI 1

7/ //////

00000000 000k

//////////////////////////////// '

w-mk Fa-mk+) fu . fake2 fa-1 fa
. v = ']
Figure 2: Schedule S'. 1In case k 1, fn’ oeny fn-k+2 are not included.

R 1is the shaded region.

35

To prove 1) it is required to show that

n-k+1 w n
X+ 3 Gi > X pi + T Py a)
1=2+41 “i=1 i=n-k+2

This can be shown, if we prove that a) holds when we consider any time
interval A iﬁvwhich all processors either execute one task or are idle,
throughout the interval., There are two cases:
i) pi is zero in this interval if either all machines are inside
R or outside R, so a) holds.
ii) If & of the machines are inside R, then only & tasks in

T,» Tn—k+2’ e Tn have not yet been completed.

Tommtk® ">
Clearly these & tasks are the only tasks that can contribute

to p in this interval. But the speed of the machines inside

R is > than the speed of the machines outside R, so the
total contribution from the p's is < than the contribution of
idle time and 6&'s. Then a) holds for the interval.

Then it follows that 1) holds for any schedule S°'.

To prove 2), we use 1) and the restriction fe(s') < B. So,

§
(s, + ... + Sk—l)B + s f >T +

'
1 fW + ... +

k

This completes the proof of the lemma. []

Lemma 4: Given that

i i
X a"ifi < I a.,ifi for 1 <1i<n
=1 j=1
< < 3j <4 > > > >
where aj,i —-aj+l,i for 1 < j i, 6>0, aj,i >0, a i >0, f1-— 0

n n
and fi > 0. Then r £, < I f

¥
-1 f-mters ¥ Snfoemie 2 To (noery T

36

Proof: Let x = §/a and for i =n-1, ..., 1
— n n,n
n
§ - I a, %4
j=i+l 3>
X,
i a, .
i,i

From this definition it can be easily shown that xi.Z 0 for 1 < i<n.
Multiplying the xi's by the inequalities we obtain

n i n i

X x. XL a, f.< I x, I a. .f',

= = T i= i=1 3,1 1

Rearranging terms and eliminating the xi's we obtain

n n
As § >0 them I f£, < I f

Theorem 2: The time complexity for algorithm UB:OMFT is O(am).

Proof: Steps 1-3 take time O(n + m). Since q 1is decreased by at least
one each time loop 4-22 is executed, it follows that loop 4-22 is executed
at most n times. Steps 5-7 can be easily implemented to take O0(m)
time. Hence the overall time for steps 5-7 is O(nm). Loop 9-15 is
executed at most m ~ 1 times as each time £ 1is decreased by one and

2 will never be smaller than one (line 5-6). Each time the loop takes
times O(n + m). Therefore the overall contribution of loop 9-15 is
O(nm). Using similar arguments it can easily be shown that the
contribution of lines 8 and 16-21 take overall time O(nm + m2). Hence,

the overall time complexity for algorithm UB:OMFT is O(om). 0O

37

Theorem 3: The maximum number of preemptions introduced by algorithm

UB:OMFT is O(nm).

Proof: Tasks are assigned in lines 11 and 16. Each DPN consists
initially of at most m blocks. If k' =0, then Ta will be
scheduled with at most m - 1 preemptions. If k' # O% then the total
number in blocks in all the unused DPN's increases by at most one

each time a task is scheduled. As k' < m, it follows that no task
will be scheduled with more than 2m preemptions. Hence the total

number of preemptions is O(nm). [J

38

III; Conclusion

We have présented an algorithm to comstruct f:OMFT preemptive
schedules for n independent tasks on m identical machineé. The
algorithm is of time complexity O(nm) and introduces m-1 preemptioﬁs.
When B is large and the speed of all the processors is identical the
algorithm reduces to the well known SPT rule. When B is large the
algorithm reduces to a generalization of the SPT rule for uniform pro-
cessors. The rules construct OMFT preemptive schedules for uniform .
processor systems. When the speed of the machines is the same the algo—b
rithm reduces to the one in [G2] to construct B:OMFT preemptive
schedules for identical proéessor systems. It can be easily shown that
the same type of algorithm will not construct OMFT preemptive schedules

when there are two or more deadlines to be met by the tasks.

Acknowledgements

The author is grateful to Professor John Bruno for his valuable

comments and suggestions on earlier versions of this paper.

39

References

[BCS]
[C]

[Ch]
[e1]

[62]

[GS1]
[GS2]

[GS3]

[HLS]
[LL]

[(LY]

[Mc]
[MC1]

[MC2]

[sG]

J. Bruno, E. G. Coffman, Jr. and R. Sethi, "Scheduling independent
tasks to reduce mean finishing time," Comm. ACM 17 (1974), 382-387.

E. G. Coffman, Jr. (ed.) Computer and Job/Shop Scheduling Theory,
42-48, John Wiley & Sons, New York (1975).

R. W. Conway, W. L. Maxwell, and L. W. Miller, "Theory of scheduling,"
Addison-Wesley, Reading, Mass., (1967).

T. Gonzalez, "A note on open shop preemptive schedules," TR-24 The
Pennsylvania State University, Dec., 1976. o

T. Gonzalez, "Minimizing the Mean and Maximum Finishing Time on
Identical Processors," TR-15-78, The Pennsylvania State University,
Sept. 1978. :

T. Gonzalez and S. Sahni, "Preemptive scheduling'of uniform pro-
cessor systems," JACM Vol., 25, No. 1, Jan. 1978.

T. Gonzalez and S. Sahni, '"Open shop scheduling to minimize finish
time," JACM Vol. 23, No. 4, Oct. 1976, 665-679.

T. Gonzalez and S. Sahni, "Flowshop and jobshop schedules:
Complexity and Approximations," JORSA Vol. 25, No. 1, Jan.-Feb,.
1978, 36-52,

E. C. Horvath, S. Lam and R. Sethi, "A ievel algorithm for pre-
emptive scheduling," JACM Vol. 24, No. 1, Jan. 1977, 32-43.

E. L. Lawler and J. Labetoulle, "Scheduling of parallel maéhines
with preemptions," IRIA, Rocquencourt, France.

J. W. S. Liu and A. Yang, "Optimal scheduling of independent tasks
on heterogeneous computing systems," 1974 ACM National Conference,
38-45.

R. McNaughton, "Scheduling with deadlines and loss functions,"
Management Science, 12 7 (1959), 1-12.

R. R. Muntz and E. G. Coffman, Jr., "Preemptive scheduling of real
time tasks on multiprocessor systems," JACM, 17, 2 (1970), 324-338.

R. R. Muntz and E. G. Coffman, Jr., "Optimal preemptive scheduling
on two-processor systems,' IEEE Transactions on Computers, C-18,
11 (1969(, 1014-1020.

S. Sahni and T. Gonzalez, "Preemptive scheduling of two unrelated
machines," Univ. of Minnesota, Nov. 1976.

40 -

[U] J. D. Ullman, "NP-complete scheduling problems," J. Computer and
Systems Sciences, 10, 3 (June 1975), 384-393.

j-1

41

Appendix
DPOl DPOZ"'DPOZ—j DPOR—j+l DPOQ j+2"'DPO%—2 DPOQ-l DPO2
DPO;...DRO, . ;| DPO, . DROy_:41-+-DPOg_5 |DPO, .| DPO,
DPO, DPO,...DPO, , DPO,_, | DPO,
DPO, ...DPO. _, DPoj_2 DPO,)
DPOl DPO2
DPOl
P .. My My .. M, My B
L 2-1 i j-1 2
Figure 3a: DPO's
DEN, | DPN,...DPN, DPNy 41| DPNg_syp--+DPN, , | DEN, . | DEN, DPN, ,
DPNl...DPNQ_j_l DPN, DPNy_s4p-+-DPNy o | DPN, | DEN, . DEN,
DPN, DEN, . ..DEN, , DEN, ;| DN, | DEN, .
DPN. .. .DPN. DPN, DPN, DPN,
1 j-3 j-1 j-1 h|
DPNl DPN2 DPN3
DPNl DPN2
. W, u U, U, . W,
% te-1 i ti-1 2 1 0
Figure 3b: DPN's

