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UNIT EXECUTION TIME SHOP PROBLEMS*!

TEOFILO GONZALEZJ

The Pennsylvania State University

The problem of preemptively (and nonpreemptively) scheduling a set of n independent jobs
on an m machine open shop, flow shop or job shop is studied. It is shown that the problem of
constructing optimal mean finishing time preemptive and nonpreemptive schedules is NP-

•; hard. These problems are not only NP-hard in the strong sense, but remain NP-hard even
when all nonzero tasks have identical execution time requirements. These results will also
apply to the case when the problem is to construct an optimal finish time preemptive and ;
nonpreemptive schedule for a flow shop or a job shop. We also discuss the problem of
constructing no-wait schedules for these problems.

I. Introduction. There are H > 1 independent jobs (7,, . . . , J^) to be processed by
an m machine/processor (P,, . . . , P^) shop. Each job, /,, consists of /, tasks. Theyth
task of job y, is referred to by T. and it is to be processed by machine P for r-• time
units. For open shop and flow shop problems, all jobs consist of m tasks; and all tasks
have q^j = j . The order in which tasks are executed in a flow shop and a job shop is
important, i.e., they + 1st task cannot be executed before theyth task terminates. From
the above discussion, it is simple to verify that a flow shop is a special case of a job
shop; and an open shop is a flow shop in which the order of execution of tasks is not
important. Detailed descriptions of these models as well as applications appear in [C],
[CMM], [GSl], and [Gl].

The following application will serve as an illustration for our problem. The proces-
sors are professors and the jobs are students, t^j is the amount of time student J^ must
meet with professor P . A schedule will consist of a sequence of assignments of
students to professors in such a way that:

(i) no student meets with more than one professor at a time,
(ii) no professor meets with more than one student at a time, and
(iii) student /, meets with professor Pj for exactly t^, time units.

From this example it should be clear that one would be interested in algorithms for
which n and m are parameters. A preemptive schedule is desired when there is no
penalty for an interruption, whereas a nonpreemptive one will be used in the opposite
case. In a no-wait schedule, once a student starts his meetings he must terminate them
without interruptions. The reader will find it simple to see the effects of the different
optimization criteria.

Let/(5) represent the finishing time for job J^ in schedule S. The finish time,/r(5'),
of a schedule 5" is max{/(5)}. An optimal finish time (OFT) schedule is one with the
least finish time among all feasible schedules. The mean finishing time, mft(S), of a
schedule 5 is 2 fi(S)/n. An optimal mean finishing time (OMFT) schedule is one with
the least mean finishing time among all feasible schedules. In this paper we restrict our
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attention to preemptive, nonpreemptive, and no-wait schedules. In a nonpreemptive
schedule, once a task begins execution on some machine, it must continue executing
without interruption until the task has been completed. Preemptive schedules allow the
interruption of the execution of a task, i.e., a task does not have to be executed
continuously. A schedule with no wait is one in which once a job starts execution, it
must continue executing without interruption until the job has been terminated. It
should be clear that the set of all preemptive schedules includes all nonpreemptive and
no-wait schedules. Also, the set of all nonpreemptive schedules includes all no-wait
schedules. The reverse is obviously not true.

In this paper we study the problem of constructing OFT and OMFT preemptive,
nonpreemptive and no-wail schedules for open shop, flow shop, and job shop prob-
lems in which ali nonzero tasks have identical execution time requirements. We show
that it is unlikely that there exists an efficient algorithm to solve any of these problems,
i.e., the problems belong to the class of problems known as NP-complete. The
interesting fact is that if there exists an efficient algorithm to solve any of these
problems, then one would have an efficient algorithm to solve the more genera! cases
as well as many other well-known problems.

The operator, 'a', will be used as in / ' .aFj to mean that problem /*, polynomially
reduces to problem P^. A problem P, is NP-hard iff satisfiability aP,. Problem f, is
said to be NP-complete iff it is NP-hard and P, G NP. A reader interested in more
details about NP-complete problems is referred to [Ki], [K2], and [C]. A problem /*, is
NP-complete in the strong sense iff it is NP-complete even when the input is presented
in unary. In the context of scheduling theory, this means that the sum of all the input
parameters to the problem is bounded by a polynomial on n, which is usually the
number of jobs or machines. The reader is referred to [GJ] for more details. Al!
strongly NP-complete problems are also NP-complete. but the reverse might not be
true. For example, scheduling independent jobs on two machines so as to minimize the
finish time is NP-hard, but the problem is not strongly NP-hard unless P = NP.

Gonzalez and Sahni [GSl] present a linear time algorithm to construct OFT
preemptive and nonpreemptive schedules for a two machine open shop. The problem
of obtaining an OFT nonpreemptive schedule is NP-hard when there are more than
two machines in the open shop [GSl], and in genera! it is strong!y NP-hard [L].
Efficient algorithms exists when the problem is to construct OFT preemptive schedules
[GSl] [Gl]. These algorithms will also construct OFT nonpreemptive schedules when
all the nonzero tasks have identical execution time requirements. In §11 it is shown that
the problem of constructing OMFT preemptive and nonpreemptive schedules for open
shops is NP-hard even when the execution time requirements for all nonzero tasks is
identical.

Johnson [J] showed that OFT preemptive and nonpreemptive schedules for a two
machine flow shop can be constructed efficiently. However, when there are more than
two machines, the problem of constructing OFT preemptive and nonpreemptive
schedules is NP-hard in the strong sense [GJSe], [GS2], [LRB]. When there are two
machines in the flow shop, the problem of constructing an OMFT nonpreemptive
schedule is strongly NP-hard [GJSe], This result cannot be extended to preemptive
schedules or to the case when al! nonzero tasks have equal execution times. In §111 it is
shown that the problem of constructing OFT and OMFT preemptive and nonpreemp-
tive schedules for flow shops is NP-hard even when the execution time of all nonzero
tasks is identical.

Job shop scheduling problems are harder than flow shop problems. The problem of
constructing OFT preemptive and nonpreemptive schedules for a two machine job
shop is strongly NP-hard [GJSe], [GS2], [LRB]. Lenstra and Rinnooy Kan [LR] have
shown that the problem of constructing OFT nonpreemptive schedu!es for a three
machine job shop in which al! tasks have equa! execution times is NP-hard. OMFT
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nonpreemptive scheduling for two machine job shops is NP-hard [GJSe]. In §111 it is
shown that the problem of constructing OFT and OMFT preemptive and nonpreemp-
tive schedules for job shops is NP-hard even when the execution time of al! tasks is
identica!.

Our resu!ts also app!y to the prob!em of constructing OFT and OMFT no-wait
schedules. These results are presented in §IV.

In order to prove our NP-complete results, we make use of the following problem
which is shown to be NP-complete in Appendix I. This problem is closely related to a
problem shown to be NP-complete in [GJSt].

i3, 4d)-graph coloration. Given an undirected graph, G = iN,E), in which all nodes
are of degree exactly 4, do there exist three disjoint sets of nodes iSi,S2,Sj) such that
U/= \Si = N; and if (/, j) G E, then node / andy are in different sets? i

Since NP-complete problems are stated as language recognition problems, we restate
the OFT and OMFT problems mentioned above as follows:

LOMFT: Given an m processor, «job open shop with task times /, , I < f < m and
1 < / < n and a number d, is there a schedule with mft < dl

FOMFT: Same as LOMFT but it refers to a flow shop problem.
JOMFT: Same as LOMFT but it refers to a job shop problem.
LOFT, EOFT and JOFT: Same as LOMFT, FOMFT and JOMFT but the problem

is to determine whether there is a schedule with ft < d.
We should point out that if we show that these decision problems are NP-complete,

then their corresponding optimization problems are NP-hard.
Sometimes it is necessary to distinguish between preemptive, nonpreemptive and

no-wait schedules, so we just prefix LOMFT, . . . , JOFT with the type of schedule
being considered.

II. NP-hard open shop problems (OMFT). Gonzalez and Sahni [GSl] present
efficient algorithms to construct OFT preemptive and nonpreemptive schedules for
two-machine, open shop problems. When there are more than two machines in the
shop, the problem of obtaining an OFT nonpreemptive schedule is NP-hard [GSl];
and for an arbitrary number of machines, it is NP-hard in the strong sense [L].
Efficient algorithms have been presented in [GSl] and [Gl] to construct OFT preemp-
tive schedules. These algorithms will also construct OFT nonpreemptive schedules for
the case when all nonzero tasks are of equal length.

In this section it is shown that preemptive and nonpreemptive LOMFT are NP-
complete in the strong sense. These problems remain NP-complete even when the
length of all nonzero tasks is identical.

In our proof we make use of the (3, 4d)-graph coloration problem which is shown to
be NP-complete in Appendix I.

THEOREM 1. Preemptive LOMET is NP-complete even when the length of all non-
zero tasks is identical.

PROOF. The proof is in two lemmas. Lemma 1 shows that (3, 4d)-graph coloration
a preemptive LOMFT. Lemma 4 shows that preemptive LOMFT is recognizable in
nondeterministic polynomial time, i

COROLLARY. Nonpreemptive LOMFT is NP-complete even when the length of all
nonzero tasks is identical.

PROOF. Similar to Lemmas 1 and 4. i

LEMMA I. (3, 4d)-graph coloration a preemptive LOMFT in which the length of all
nonzero tasks is identical.

PROOF. Given any graph, G = (N,F), which is an input to the {3, 4d)-graph
coloration problem, let us construct the following open shop problem, OS, with
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n' = 95n + 5r jobs and m' = 25« + 5r processors, where r = \E\ and n = \N\. Assume
without loss of generality that iV = {o,,U2, . . • , v„) and E = {e^,e2, • . • , e,}.

The set of processors is partitioned into five levels. The set of processors in level
/ is partitioned into edge processors (^/'u'f^AS'- • • ' £ ^ J and node processors
/ P p , . . . , P ) for al! 9 E (1, . . . , 5}. The set of jobs is partitioned into
node-edge jobs, node '̂jobs'̂ and edge jobs. The edge jobs are introduced to simp!ify the
accounting of the mean flow time. The node jobs wil! guarantee that a certain subset
of node-edge jobs wi!l be executed in the same time interval; and if two subsets of
node-edge jobs execute in the same time interval, then the subset of vertices they
represent in G have no edge in common. We may assume without loss of generality
that all nonzero tasks have unit execution time requirements. The nonzero tasks for
each job as well as the number of jobs of each type will now be specified.

(i) node-edge jobs. For each vertex t;̂  E N, there are five jobs in level / (1 < / < 5).
These jobs will be referred to by ^^/f' for 1 < /J < 5. Let e,,, e,̂ , e,̂  and e,^ be the
edges incident upon vertex u,. Job ^^-^f-' will have nonzero tasks to be executed by the
edge processors ^P^,-,, ^-P,,^, ^P/,,,, ^P;,,, and by the node processor A^P/.,-^.

(ii) node jobs. For'each vertex D, E iV, there are 14 jobs in each level / (1 < / < 5).
These jobs will be referred to by ^Jf-' for ;7 6 (1, . . . , 14). Job ^Jf'' will have a
nonzero task to be executed by each of the node processors in level /, i.e., by

processors /^Pm, • • • < /v^/,,,5-
(iii) edge jobs. These jobs have nonzero tasks in all five levels. For each edge ê  E E,

there are five jobs which will be referred to by ^Jf for /? E {1, . . . , 5}. ^Z/ has a
nonzero task to be executed by theyth edge processor in each level, i.e., by processors
£P,, for I < / < 5.

The value for d is 10. We now show that G is 3-colorable iff the above open shop
problem has a preemptive schedule with mft{S) < 10.

(a) If G is three colorable, then OS has a schedule, 5, with mft{S) < 10.
We prove this part by showing that there exists a schedule, S, for open shop OS with

mft{S) < !0 when G is three colorable. Since G is three colorable, we can partition the
set of nodes A' into sets S.^Sj and ^3 in such a way that if u, and v>j E 5^ then

'First of all, the set of jobs is partitioned into sQisA^,Aj, and A^ using sets S^,S2 and
S3. Then it is shown that each of these sets uses the m' processors in the shop for five
time units. This together with the results in [GSl], shows the existence of a schedule for
open shop OS with mft(S) < 10.

First, let us define the following sets of jobs which will be used to define sets /!,, ^2
and ^ 3 . For 1 < /; < 3

NE'^k = INE^t' 11 < / < 5, 1 < /J < 5 and 1;, E S^ }

and
cT. = \ ^JP I e, is not incident upon a vertex in 5;̂  ̂ ^^ ^ ^ P ^ ^} •

^T^ = {;v̂ /'-M I ^ / < 5, 1 < /J < 4 and t?, E S,}

^T2 = {^yf'l 1 < / < 5, 5 < /J < 9 and û  E S,}

\J(.JP''\l < / < 5 , 1 < p <

U [^Jt'\\ < l<5,\0< p< 1

e5, U

U {^y/"''! 1 < / < 5, 1 < ;? < 4 and o, E 53}.
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The sets ^^.(1 < k < 3) are as follows:

It is simple to verify that the sets ^-^T^, ^T^ and i^T^ partitions the set of node-edge
jobs, edge jobs, and node jobs. Since these sets are included once in the sets A^, it then
follows that {A^,A2,A2) is a partition of the jobs in the open shop OS.

We now show that the jobs in each set A^ utilize all processors for five time units.
The proof is just for set A, (the proof for A2 and Aj are similar and will be omitted).
Let us consider one processor at a time. There are two cases depending on the type of
processor.

Case 1. edge processor ^P/ .
Clearly the only jobs using edge processors are the node-edge and the edge jobs.

There are two subcases depending on whether edge ej is incident upon a vertex in Si or
not.

Subcase 1.1. e is incident upon u, G 5 | .
Processor ^P, is used by the node-edge jobs J^EJI''' for 1 < /J < 5 which are

included in set ^ETI C ^ , . The vertex adjacent to t)y through e is certainly not in 5 ] .
Since ej is incident upon u, E S^, it follows from the definition of ^T, that j^Jf ^ f T , .
Hence, ^F, , is used for five time units.

Subcase 1.2. e- is not incident upon a vertex v^E. S^.
Since ej is not incident upon a vertex v, G ^ i , it follows that no job in ^^Tj uses

processor ^P/_j. However, the jobs ^Jf for 1 < ^ < 5 are included in ^T, . So,
processor ^P,, is used for five time units.

Case 2. node processor ^Pt^i^^-
The jobs using this type of processors are the node-edge jobs and the node jobs.

There are two cases depending on whether u, E S, or not.
Subcase 2.1. u, e ^ i .

The only node-edge job using processor s^u.q is NE-^?'' "̂*^ '̂  '̂  included in
/y^r, C ^ 1 . Since v, G S^,^J^'' for 1 < 2 < 4 belong to ^7", and ^7/- ' for 5 < 2 < 14
does not belong to ^T , . Hence, s^n.q 'S used for five time units.

Subcase 2.2. t)̂  ̂  S,.
For this case, it can be easily shown that no job in ^^T^ uses processor /^Pug-

Since t;, ^ 5 , , then ^J^-' for 5 < 2 < 9 belong to j^T^ and f^J--' for 2 = 1, . . . , 4,
10, . . . , 14 does not belong to f^T^. So, it must be that f^P^^^ is used for five time
units.

Hence, each processor is used for five time units when considering the jobs in set A^.
Since each job has five nonzero tasks, it then follows that \A^\ = m'.

Using the results in [GSll, we have that there is a schedule for the set of jobs in A^.
with a makespan of five time units. Schedule 5 is obtained by concatenating the
schedules for A^, A2 and A;^. Clearly mft(S)= 10. This concludes the proof for
part (a).

(b) If open shop OS has a preemptive schedule S with mft(S) < 10, then G is three
colorable.

Let S be preemptive schedule with mft(S) < 10 for open shop problem OS. Since
open shop OS and schedule S satisfy the conditions of Lemma 2, it must be that in
schedule S exactly m'jobs finish at time 5, 10 and 15. Let Q be the set of jobs which
terminate at time 5*A:(1 < k < 3) in S. Since there are 3m' jobs in open shop OS and
all jobs have execution time requirements of five units, it must be that |C;,|' = m' and
all jobs in C^ execute continuously from time 5*(k — 1) to time 5*k in schedule S.
Hence, the only jobs executing from time 5*(A: - 1) to time 5*k in 5 are those jobs in

denotes the number of elements in set
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Clearly, the conditions of Lemma 3 are satisfied, so it must be that the set of
node-edge jobs f^E-f<'' t)elong to the same set Q . This, together with the definition of
the node-edge jobs, implies that if J^JE-^V'' ^""^ wjE-̂ f' belong to Q , then {Vy,v^) ^ E.
Since 5 is a schedule for OS, we have that Q = {t;̂  | /^^yf' G Q } for k = 1,2,3 is a
partition of the nodes in G with the property that if Vy and v^ G Q then {u^,Uj} ^ .£"•
Clearly, Q' gives a three coloration for G.

This completes the proof of Lemma \. I
Let 5 be a preemptive or nonpreemptive schedule for open shop OS. Let / for

1 < / < 3m' be the finish time for job / in schedule S. Assume without loss of
generality t h a t / < / + , for 1 < / < 3m'.

LEMMA 2. Let S and f be as defined above. mft(S) < 10 iff f^' = 5i for 1 < / < 3.

PROOF. The proof for the if part of the lemma is obvious. Before proving the only
if part, we prove the following:

(1) for ! < ( < 2, if/^. = 5/ then/^ ,^ , > 5(/ + 1);
(2) for 1 < / < 3, S; io_, ,^-^, /, > 5im';
(3) 2]= ijf; > 30m'.
The proof for (3) follows from (2), and the one for (1) is simple so it will be omitted.

We now prove (2):

PROOF FOR (2). We prove this part for any /. If/,_ ,)m+1 > 5/, then (2) is obviously
true. So, let us assume/,,_ 1,^+1 < 5i. At this point, let's consider the schedule with
jobs im' + \, im' + 2, . . ., 3m' deleted. Since/, , . 1,̂ , +, < 5/, it must be that from time
/(;-i)m'+i ^° ^^^^ ^' tliere can be at most m' — 1 jobs executing (note that jobs
;m -I- I, . . . , 3m' have been deleted) and some machine must be idle from time
/(/-!)'«•+1 to time 5/. Since all jobs have execution time requirements of five units, it
must be that / ^ . > 5/. Let k be such that / , ,_i)^-^ | < . . . < /^ < 5i and f^+^ > 5i.
Clearly, such a k must exist. From time// ((/ - l)m' -I- 1 < / < ^) to time 5/ there can
be at most m' - {I - ((/ — l)m' + 1) -I- 1) jobs executing and the total idle time before
time 5/ is / > 2)=<(-i)m'+i 5' ~ fj- Since there are im' jobs {im' -I- 1, . . . , 3m' were
deleted) and all jobs have execution time requirements of five time units, it must be
that after time 5/ there are / units of time being used by jobs ^ -I- 1, . . . , im'.
So, 2 ; l A - . , y ; - 5 / = / . Hence, Ej^' .+ ijC-" 5i = / > 2 / = O - I ) « , ' - M 5 / - j(;- and

UwIJ
This completes the proof for (2). 1
In order to complete the proof of the lemma it is required to show that equality in

(3) holds true only if/^. = 5i for 1 < ; < 3.
It should be clear tha t / i , / ^ , / ^ ' > 5. Tf/^, > 5 then YJ~^fj>im' and hence

Sy=] !j > 30m' (note that (3) was obtained from (2)). So assume/^. = 5. From (1) it
follows that/^ + , > 10 and consequently/j^- > 10. If/^^, > 10 then S j ' m + i./) > lOW
and 2 ;= 1 fj > 30m' ((3) was obtained from (2)). So, assume / j ^ . = 10. Using similar
arguments it can be shown that / j ^ - = 15. Therefore, mft(S) < 10 iff />„' = 5/m' for
1 < / < 3.

This completes the proof of the lemma. I
The notation used in Lemma 3 is the same as the one used in Lemma 1 part (b).

LEMMA 3. / / I^EJ^' ^ Q> IQI = f^' <^^^ '« schedule S the only jobs executing from
time 5(k - 1) to time 5k are jobs in Q , then {,^E-^r'\ 1 < /̂  < 5} C Q .

PROOF. The proof of this lemma is by contradiction. Assume ^^sJf'' G Q , IQ]
= m' and in schedule S the only jobs executing from time 5(A; — 1) to time 5k are jobs
in Q but ^f/,̂ '' ^ Q- ^^^ only jobs using processors /^P/^^^ for 1 < 2 < 5 from time
5(k - 1) to time 5k are some of the node-edge and node jobs in Q {clearly, no edge
job will use such a processor). Since i^^Jf'' G Q and /y^// ' ^ C^, then the node
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processor ^^P/,̂ , is used for one time unit by the node-edge jobs in C^, whereas the
node processor ^P/,;,^ is not used by the node-edge jobs in C^. Since the nodejobs use
a!I processors v̂'P/./.z for 1 < z < 5, it fo!lows that no more than four of these jobs can
be in Ĉ  as otherwise processor ^P/,^, wou!d be used for more than five time units and
a!l jobs in C^ cou!d not be schedu!ed from time 5(/c - 1) to time 5k. But in this case
processor /vP/^^ wi!l not execute five nonzero tasks; and since a!! jobs have five
nonzero tasks, it must be that | Q | < m', which contradicts our earlier assumption. So,
it must be that if ^^Jf^' e C^, then (.vf/^'ll < p < 5) Q Q..

This completes the proof of the lemma, i

LEMMA 4. Preemptive LOMFT is recognizable in nondeterministic polynomial time.

PROOF. It is simple to construct a nondeterministic Turing machine that guesses a
preemptive schedu!e and verifies that its mft is !ess than or equal to d. The on!y
problem that we could encounter is that there could be too many preemptions. But,
using a similar argument to the one in [GS2], one can show that there is always an
OMFT preemptive schedule with at most rnm preemptions for any instance / of
LOMFT; thus for any d there need be no more than rnm preemptions. I

III. NP-hard flow shop and job shop problems. Johnson [J] showed that OFT
preemptive and nonpreemptive schedules for a two machine flow shop can be
constructed by efficient algorithms. When there are more than two machines, the
problems of constructing preemptive and nonpreemptive schedules is NP-hard [GJSe],
[GS2], [LRB]. The reductions used in proving these problems hard cannot be extended
to the case when all nonzero tasks are identical. In this section we show that the
problem of constructing OFT preemptive and nonpreemptive schedules is NP-hard
even when all nonzero tasks are of equal length.

When there are two machines in the flow shop, the problem of constructing an
OMFT nonpreemptive schedule is NP-hard [GJSe]. This reduction cannot be extended
to the case when the objective is to construct an OMFT preemptive schedule or to the
case when all nonzero tasks have equal execution time requirements. In this section it
will be shown that the problem of constructing OMFT preemptive and nonpreemptive
schedules for flow shops is NP-hard even when the execution times of all nonzero tasks
is identical.

Job shop scheduling problems are harder than flow shop problems. The problems of
constructing OFT preemptive and nonpreemptive schedules for a two machine job
shop IS NP-hard [GJSe], [GS2], [LRB]. For three machines, finding OFT nonpreemp-
tive schedules is NP-hard even when all tasks are of equa! length [L]. OMFT
nonpreemptive scheduling problems for two machine job shops is NP-hard [GJSe]. In
this section we show that the problems of constructing OFT and OMFT preemptive
and nonpreemptive schedules for job shops is NP-hard even when all tasks are of
equal length.

The reduction used in this section is similar to the one in the previous section. The
(3,4d)-graph coloration problem which is shown to be NP-complete in Appendix I will
be used.

THEOREM 2. Preemptive FOMFT is NP-complete even when all nonzero tasks are of
equal length.

PROOE. The proof is in two lemmas. Lemma 5 shows that (3,4d)-graph coloration
a preemptive FOMFT. Lemma 6 shows that preemptive FOMFT is recognizable in
nondeterministic polynomial time, i

CoROLi,ARY. Nonpreemptive is FOMFT is NP-complete even when all nonzero tasks
are of equal length.
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PROOF. Similar to Lemmas 5 and 6. i

LEMMA 5. 0,4d)-graph coloration a preemptive FOMFT in which all nonzero tasks
have equal execution times.

PROOF. The proof follows the same type of arguments as the one for Lemma 1;
however, it is much more complex. An interested reader can see the proof in [G2]. I

LEMMA 6. Preemptive FOMFT is recognizable in nondeterministic polynomial time.

PROOF. This proof follows the same arguments as the ones used in Lemma 4. The
bound for the number of preemptions is rn. i

THEOREM 3. Preemptive FOET is NP-complete even when all nonzero tasks have
equal execution times.

PROOE. The proof is similar to Theorem 2, but the reduction in Lemma 5 will
ignore the final jobs, i

COROLLARY. Nonpreemptive FOET is NP-complete even when all nonzero tasks have
equal execution times.

PROOF. Similar to Theorem 3. i
Since all flow shop prob!em instances are also job shop problem instances, the same

results for flow shop hold for job shops.

IV. No-wait schedules. In this section we study the problem of constructing
no-wait schedules (once a job starts execution, it will remain executing until the job
terminates) for open shops, flow shops and job shops. When all nonzero tasks have
equal execution time requirements and all jobs use all the machines, the problem of
constructing OFT and OMFT no-wait schedules for an open shop and a flow shop is
trivial. The next case is when not all jobs use all the machines and all nonzero tasks
have identical execution times. For this case, we show that the problem of constructing
OFT and OMFT no-wait schedules for open shops, flow shops, and job shops is
NP-hard.

For two machine open shop problems, Sahni and Cho [SC] have shown that the
problem of constructing OFT no-wait schedules is NP-hard, even when all jobs require
nonzero execution time requirements on both machines. In this section we show that
the problem of constructing OFT and OMFT no-wait schedules is NP-hard even when
all nonzero tasks are identical.

THEOREM 4. No-wait LOMFT is NP-complete even when all nonzero tasks have
equal length.

PROOF. Similar to Theorem 1. I

THEOREM 5. No-wait LOFT is NP-eomplete even when all nonzero tasks have equal
length.

PROOF. Similar to Theorem 1. i
For two machine flow shop problems, the problem of constructing OFT no-wait

schedules when all tasks have nonzero execution times can be solved efficiently [GGj.
Papadimitriou and Kanellakis [PK] have shown that the problem is NP-hard when
there are four machines in the shop. If some tasks are allowed to skip execution on
some machine, then the problem is NP-hard even when there are two machines in the
shop [SC]. The problem of constructing an OMFT no-wait schedule for flow shops is
NP-hard [LRB]. In this section we show that the problem of constructing OFT and
OMFT no-wait schedules is NP-hard even when all nonzero tasks have identical
execution time requirements.



UNIT EXECUTION TIME SHOP PROBLEMS 65

THEOREM 6. No-wait FOMFT is NP-complete even when all nonzero tasks have
equal length.

PROOF. Similar to Theorem 2. i

THEOREM 7. No-wait FOFT is NP-complete even when all nonzero tasks have equal
length.

PROOE. Similar to Theorem 3. i
Sahni and Cho [SC] have shown that the problem of constructing OFT no-wait

schedules for a two machine job shop is NP-hard even when all jobs have at least two
tasks. The same results stated in Theorems 6 and 7 apply for job shops.

V. Discussion. We have shown that the problem of constructing OMFT preemp-
tive and nonpreemptive schedules for an open shop, flow shop, and job shop is
NP-hard. These results will also extend to the case when the problem is to construct an
OFT preemptive and nonpreemptive schedule for a flow shop and job shop. In §IV we
showed that the problem of constructing OFT and OMFT no-wait schedules for open
shops, flow shops, and job shops is NP-hard. All of these problems remain hard even
when all nonzero tasks have equal execution time requirements. The interesting fact is
that if there exists an efficient algorithm to solve any of these restricted problems, then
there exists an efficient algorithm to solve the more general problems as well as many
other well-known problems.

Acknowledgement. The author is grateful to Professor Donald B. Johnson for his
helpful comments and suggestions while preparing this manuscript.

Appendix I. In this section we show that the (3,4d)-graph coloration problem is
NP-complete. Garey, Johnson, and Stockmeyer [GJSt] showed that the 3-graph
coloration problem in which all nodes are of degree at most 4 is NP-complete. We use
such a problem to prove that the (3,4d)-graph coloration problem is NP-complete. It
would be of interest to prove the (3,3d)-coloration problem to be NP-complete, but as
noted in [GJSt], the 3-graph coloration problem can be solved efficiently when each
node is of degree at most 3. The algorithm relies on the well-known results of Brooks
[B] which implies that a connected graph with maximum degree 3 is 3-colorable iff it
differs from K^, the complete graph on four nodes, which is easy to determine.

THEOREM A.I. The {3,4d)-graph coloration problem is NP-complete.

PROOE. It should be clear that this decision problem is in NP. We now show that
3-graph coloration with node degree at most 4a (3,4d)-graph coloration.

Let G = (N,E) be any graph with node degree at most 4. From this graph we
construct G" = (N",E") in which all nodes are of degree four and such that G" is
3-colorable iff G is 3-colorable.

First of all let us transform G to G' in such a way that each node in G' is of even
degree < 4 and G' is 3-colorable iff G is 3-colorable. It can be easily shown that any
graph G has an even number of odd degree vertices. If the graph has zero vertices of
odd degree then G' = G. Otherwise, let / , , . . . , i^ be the vertices of odd degree in G.
Now, G' = {A^',£') where

It is simple to show that G' is 3-colorable iff G is 3-colorabIe.
We now construct G" is of degree 4 and G" is 3-colorable iff G is 3-colorable.
Initially, G" is just a copy of G'. For each vertex / in G" of degree 2 (vertices of zero

degree can be eliminated), augment G" with the subgraph in Figure 1. It should be
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FIGURE t. New edges for vertex i.

clear that G" will now have all vertices of degree 4 and G" is 3-colorable iff G is
3-colorable. This completes the proof of the theorem, i
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