Nordic Journal of Computing 5(1998), 196-213.

BOUNDED FAN-OUT MULTIMESSAGE
MULTICASTING

TEOFILO F. GONZALEZ
Department of Computer Science, University of California
Santa Barbara, CA 93106, USA
teoQcs.ucsb.edu

Abstract. We consider Multimessage Multicasting over the n processor complete
(or fully connected) static network (MMc). We present a fast approximation al-
gorithm with an improved approximation bound for problem instances with small
fan-out (maximum number of processors receiving any given message), but arbi-
trary degree d, where d is the maximum number of messages that each processor
may send or receive. These problem instances are the ones that arise in prac-
tice, since the fan-out restriction is imposed by the applications and the number of
processors available in commercial systems.

Our algorithm is centralized and requires all the communication information
ahead of time. Applications where this information is available include iterative
algorithms for solving linear equations and most dynamic programming procedures.
The Meiko CS-2 machine as well as other computer systems whose processors com-
municate via dynamic networks will also benefit from our results at the expense of
doubling the number of communication phases.

CR Classification: F.2.2,C.1.4,G.22,C.2.1, G113

Key words: approximation algorithms, multimessage multicasting, dynamic net-
works, parallel iterative methods, generalized edge coloring

1. Introduction

1.1 The MM¢ problem

The Multimessage Multicasting problem over the n processor complete static
network (there are bidirectional links between every pair of processors),
MMy, consists of finding a communication schedule with least total com-
munication time for multicasting (transmitting) any given set of messages.
Specifically, there are n processors, P = {P, P,..., P,}, interconnected
via a network N. Each processor is executing processes, and these processes
are exchanging messages that must be routed through the links of N. Our
objective is to determine when each of these messages is to be transmitted
so that all the communications can be carried in the least total amount of
time. Our introduction is a condensed version of the one given by Gonzalez
[1999], which includes a complete justification for the MM problem as well
as motivations, applications and examples.

Received June 18, 1997; revised September 15, 1998; accepted October 2, 1998.

Ll

BOUNDED FAN-OUT MULTIMESSAGE MULTICASTING 197

Routing in the complete static network (or simply a complete network) is
the simplest and most flexible when compared to other static and dynamic
networks. Multimessage Multicasting for dynamic networks (or multistage
interconnection networks) that can realize all permutations and replicate
data (e.g., n by n Benes network based on 2 by 2 switches that can also
act as data replicators) is not too different, in the sense that the number of
communication phases for these dynamic networks can be shown to be twice
of that in the complete network. This is accomplished by translating each
communication phase for the complete network into two communication
phases for these dynamic networks. The first phase replicates data and
transmits it to other processors, and the second phase distributes data to
the appropriate processors [see Lee 1988, Liew 1995, Turner 1993]. The
messages transmitted in each of these communication phases have to go
through O(logn) switches on Benes networks based on 2 by 2 switches. The
IBM GF11 machine [see Almasi and Gottlieb 1994], and the Meiko CS-2
machine use Benes networks for processor interconnection. The two stage
translation process can also be used in the Meiko CS-2 computer system,
and any multimessage multicasting schedule can be realized by using basic
synchronization primitives. This two step translation process can be reduced
to one step by increasing the number of network switches by about 50% [see
Lee 1988, Liew 1995, Turner 1993]. In what follows we concentrate on the
MM problem because it has a simple structure, and, as we mentioned
before, results for this network can be easily translated to other dynamic
networks.

Let us formally define our problem. Processor F; needs to multicast m;
messages, each requiring one time unit to reach all of its destinations. The
7% message of processor P; has to be sent to the set of processors Ti; €
P—{P,;}. Let r; be the number of distinct messages that processor P; should
receive. We define the degree of a problem instance as d = max{m;,r;},
i.e., the maximum number of messages that any processor sends or receives.
We define the fan-out of a problem instance as k = max{ | T;; | }, ie,
the maximum number of different processors that must receive any given
message. Consider the following example.

ExaMPLE 1. There are three processors (n = 3). Processors Py, Py, and P
must transmit 3, 4 and 2 messages, respectively (i.e., my = 3, mo = 4, and
mg = 2). The destinations of these messages are given in Table I. For this
example r1 = 4, 1o = 4, r3 = 4, d = 4, and the fan-out is 2.

It is convenient to represent problem instances by directed multigraphs.
Fach processor P; is represented by the vertex labeled 4, and there is a
directed edge (or branch) from vertex ¢ to vertex j for each message that
processor P; needs to transmit to processor P;. The |T; ;| directed edges or
branches associated with each message are bundled together. The problem
instance given in Example 1 is depicted in Fig. 1.1 as a directed multigraph.

198 T. F. GONZALEZ

TaBLE I: Destination of messages for Example 1.

[Ty [[s=1]2] 38 | 4]
i=1] (2] {31231 0
2 iy [{ar [{3 | {1,3}
3 [{L2y [{2y | 0]

The communications allowed in our complete network satisfy the following
two restrictions.
(1) During each time unit each processor may multicast a message to a
set of processors; and

(2) During each time unit each processor may receive at most one message.

Our communication model allows us to transmit any of the messages in
one or more stages. Le., each set T;; (or bundle) can be partitioned into
subsets, and each of these subsets is transmitted at a different time. This
added routing flexibility reduces the total communication time.

A communication mode C is a collection of subsets of branches from a
subset of the bundles that obey the following communication rules imposed
by our network:

ranches may emanate from at most one of the bundles in eac
1) B h te f % t f the bundles i h
processor; and

(2) All of the branches end at different processors.

A communication schedule S for a problem instance [is a sequence of com-
munication modes such that each branch in each message is in exactly one
of the communication modes. The total communication time is the number
of communication modes in the schedule, i.e., the latest time at which there
is a communication. Our problem consists of constructing a communication
schedule with least total communication time. From the communication
rules we know that a degree d problem instance has at least one processor
that requires d time units to send, and/or receive all its messages. There-
fore, d is a trivial lower bound for the total communication time. To simplify
the analysis of our approximation algorithm we use this lower bound as the

Fig. 1.1: Directed multigraph representation for Example 1. The thick line joins all the
edges (branches) in the same bundle.

BOUNDED FAN-OUT MULTIMESSAGE MULTICASTING 199

objective function value of an optimal solution. A communication schedule
with total communication time equal to four for the problem instance given
in Example 1 is given in Table TI

TABLE II: Communication schedule for Example 1.

Time 1 T171 : Pl — Pz T2,4 Py — (Pl,Pg) -
Time 2 T172 : P1 — P3 T2,1 Py = Py T372 : P3 — Py
Time 3 T1’3 : Pl — P3 TQ’Q Py — P T371 : P3 — Py
Time 4 T1,3 P = Py T2’3 Py = Ps T371 Py - P

Using our multigraph representation one can visualize the MM prob-
lem as a generalized edge coloring directed multigraph (GECG) problem.
This problem consists of coloring the edges with the least number of col-
ors (positive integers) so that the communication rules (now restated in the
appropriate format) imposed by our network are satisfied: (1) every pair of
edges from different bundles emanating from the same vertex must be col-
ored differently; and (2) all incoming edges to each vertex must be colored
differently. The colors correspond to different time periods. In what follows
we corrupt our notation by using interchangeably colors and time periods;
vertices and processors; and bundles, branches or edges, and messages.

1.2 Previous work, new results, and applications

Gonzalez [1999] developed an efficient algorithm to construct for any degree
d problem instance a communication schedule with total communication
time at most d2, and presented problem instances for which this upper bound
on the communication time is best possible, i.e. the upper bound is also a
lower bound. One observes that the lower bound applies when the fan-out is
huge, and thus the number of processors is also huge. Since this environment
is not likely to arise in the near future, we turn our attention in subsequent
sections to important subproblems likely to arise in practice.

The basic multicasting problem (BMc¢) consists of all the degree d = 1
MMy problem instances, and can be trivially solved by sending all the mes-
sages at time zero. There will be no conflicts because d = 1, i.e., each
processor may send at most one message and receive at most one mes-
sage. When the processors are connected via a dynamic network whose
basic switches allow data replication, the basic multicasting problem can be
solved in two stages: the data replication step followed by the data distri-
bution step [see Lee 1988, Turner 1993, Liew 1995]. This two stage process
can be used in the Meiko CS-2 machine.

Gonzalez [1999] considered the case when each message has fixed fan-out
k, and showed that when k& = 1 the problem corresponds to the Makespan
Openshop Preemptive Scheduling problem which can be solved in polyno-
mial time [see Gonzalez and Sahni 1976]. In this case every degree d prob-

200 T. F. GONZALEZ

lem instance has a schedule with total communication time equal to d. The
interesting point is that each communication mode translates into a single
communication step for processors interconnected via permutation networks
(e.g., Benes Network, Meiko CS-2, etc.), because in these networks all pos-
sible one-to-one communications can be performed in one communication
step.

It is not surprising that several authors have studied the MUg problem
as well as several interesting variations for which NP-completeness has been
established, subproblems have been shown to be polynomially solvable, and
approximation algorithms and heuristics have been developed. Coffman
et al. [1985] studied a version of the multimessage unicasting problem when
messages have different lengths, each processor has y(F;) ports each of which
can be used to send or receive messages, and messages are transmitted with-
out interruption (non-preemptive mode). Whitehead [1990] considered the
case when messages can be sent indirectly. The preemptive version of these
problems as well as other generalizations were studied by Choi and Hakimi
[1987, 1988], Hajek and Sasaki [1988], and Gopal et al. [1982]. Some of
these papers considered the case when the ports are not interchangeable,
i.e., it is either an output port or an input port. Rivera-Vega et al. [1992]
studied the file transferring problem, a version of the multimessage uni-
casting problem for the complete network when every vertex can send (re-
ceive) as many messages as the number of outgoing (incoming) links. The
distributed version of the multimessage unicasting problem with forward-
ing, DMUF¢, corresponds to the h-relation problem in the area of optical-
communication parallel computers [see Goldberg et al. 1997, Valiant 1990].
This distributed work is more general than ours, but the expected total
communication time for this problem is O(d + loglogn) [see Goldberg et
al. 1997]). With the exception of the work by Gonzalez [1999, 1996, 1996,
1997, 1998], and Shen [1997], research has been limited to unicasting and all
known results about multicasting are limited to single messages. Shen [1997]
has studied multimessage multicasting for hypercube connected processors.
His procedures are heuristic and try to minimize the maximum number of
hops, amount of traffic, and degree of message multiplexing. The MM¢
problem involves multicasting of any number of messages, and its commu-
nication model is similar in nature to the one in the Meiko CS2 machine,
after solving basic synchronization problems with barriers.

The MM¢ problem is significantly harder than the MUg. Gonzalez [1999]
showed that even when k = 2 the decision version of the MMy problem is
NP-complete. He also developed an algorithm to construct a communica-
tion schedule with total communication time 2d — 1 for the case when the
fan-out is two, i.e.; k = 2. Gonzalez [1999] developed an O(q-d-e) time algo-
rithm, where e < nd (the number of branches), to construct for problem in-
stances of degree d a communication schedule with total communication time

qd + k% (d — 1), where ¢ is the maximum number of colors that can be used
to color each bundle and 2 < ¢ < k. Gonzalez [1997, 1998] has studied

R

BOUNDED FAN-OUT MULTIMESSAGE MULTICASTING 201

the MMy when messages can be sent indirectly (forwarding is allowed) and
when all the message destinations are not known globally (distributed ver-
sion). The algorithm in this paper is faster. The distributed work is more
general, but the expected total communication time of those solutions is
O(d 4+ logn) [see Gonzalez 1998].

In this paper we present a fast approximation algorithm with an improved
approximation bound for problem instances with any arbitrary degree d, but
small fan-out. These problem instances are the ones that arise in practice,
since the fan-out restriction is imposed by the applications and the number
of processors available in commercial systems. We should point out that
Section 2 does not depend on any results in previous papers. All of our
approximation algorithms generate a coloration that uses at most a1 -d+ a2
colors. The value of a1 for the different methods we have developed and for
different values for k is given in Table I1I. The number inside the parenthesis
that follows the method’s names indicates the maximum number of different
colors one may use to color the branches in each bundle. The methods
labeled “Simple” are for the method developed by Gonzalez [1999].. The
method labeled “Involved (2)” is the fastest and it is the one discussed
in Section 2. The method labeled “With Matching” is similar to the one
in this paper but uses matching [see Gonzalez 1996], and the one labeled
“Best Bound” is the best one so far for small values of k. The proofs for
these bounds are tedious because the equations and algorithms are more
complex, but the proof technique is similar to the one for the method given
in Section 2. All of these bounds are asymptotic to the ones reported in
this paper. By selecting three colors per bundle instead of two colors, one
can also improve the asymptotic bound reported in this paper (see Table 11
the line labeled “Improved (3)”). The algorithm is slower, its correctness
proof is quite involved, but the proof for the approximation bound is similar
in nature to the one in Section 2. The benefit when k is 15 is about 10%
improvement and about 40% when k is 100. At the end of Section 2 we
explain how we generate the entry labeled “Involved (2)” from our lemmas
and theorem.

TABLE III: Value of a1 for different methods.

[Method \ % 3 [4 [5 [7 [10 15] 20 [50 [100 |
Simple (2) 373 | 4.00 | 4.23 | 4.65 | 5.16 | 5.87 | 6.47 | 9.07 | 12.00
Tnvolved (2) 3.33 | 3.50 | 3.60 | 443 | 4.60 | 553 | 6.00 | 8.56 | 11.54

With Matching (2) || 2.67 | 3.00 | 3.50 | 4.20 | 4.50 | 547 | 6.00 | 854 | 11.53
Better Bound (2) 2.50 | 3.00 | 3.50 | 4.14 | 440 | 5.40 | 5.75 | 8.52 | 11.52

Simple (3) — — 4.00 | 4.55 | 4.81 | 5.27 | 5.60 | 6.67 | 7.62
Involved (3) — 3.56 | 400 | 426 | 467 | 5.00 | 520 | 6.23 | 7.24
Simple (4) — — 550 | 5.63 | 578 | 597 | 6.11 | 6.66 | 7.16

Simple (5) - - — 6.48 | 6.58 | 6.72 | 6.82 | 7.19 | 7.51

202 T. F. GONZALEZ

Multimessage multicasting problems arise when solving sparse systems of
linear equations via iterative methods (e.g., a Jacobi-like procedure), most
dynamic programming procedures, etc. Let us now discuss the application
involving linear equations. We are given the vector X (0) and we need to
evaluate X (¢) for t = 1,2,..., using the iteration z;(t + 1) = f;(X(¢)). But
since the system is sparse every f; depends on very few terms. A place-
ment procedure assigns each x; to a processor where it will be computed at
each iteration by evaluating f;(). Good placement procedures assign a large
number of f;()s to the processor where the vector components it requires
are being computed, and therefore can be computed locally. However, the
remaining f;()s need vector components computed by other processors. So
at each iteration these components have to be multicasted (transmitted) to
the set of processors that need them. The strategy is to compute X (1) and
perform the required multimessage multicasting, then compute X(2) and
perform the multicasting, and so on. The same communication schedule is
used at each iteration, and can be computed off-line once the placement of
the z;5 has been decided. The same communication schedule can also be
used to solve other systems with the same structure, but different coeffi-
cients. Speedups of n for n processor systems may be achieved when the
processing and communication load is balanced, by overlapping the compu-
tation and communication time. This may be achieved by executing two
concurrent tasks in each processor. One computes the x;s, beginning with
the ones that need to be multicasted, and the other deals with the mul-
ticasting of the z; values. If all the transmissions can be carried out by
the time the computation of all the x;s is finished then we have achieved
maximum petformance. But if the communication takes too long compared
to the computation, then one must try another placement or try alternate
methods. Clearly, our solutions are machine dependent, but the solutions we
generate have total communication time smaller than those for more general
problems [see Gonzalez 1998].

2. Approximation algorithm

The input to our algorithm is a directed multigraph G with bundled edges,
integers h and [that restrict the color selection process and it is assumed that
(k > 1> h >1). The different values for [and h generate solutions with a
different number of colors. There is no simple formula to determine a optimal
choice of [and h; however, [= k—1 and h =~ [v/k — 1] generate near optimal
solutions. Note that k& and d can be easily extracted from the multigraph.
The algorithm colors the edges emanating out of P, then P, and so on
until P,. Each bundle is colored with at most two different colors. When
coloring the branches emanating out of P;, each of these branches leads to a
processor with at most d — 1 other edges incident to it, some of which have
already been colored. These colors are called t;_1-forbidden with respect
to a given branch emanating from P;. When considering processor P, a

BOUNDED FAN-OUT MULTIMESSAGE MULTICASTING 203

tj_1-forbidden color with a special property is selected from each bundle
and then such color is used to color as many of the branches of the bundle.
The remaining uncolored branches are colored with a second color whose
existence is guaranteed by setting the total number of colors available to an
appropriate value. Before we present our algorithm we define some useful
terms.

At the beginning of the j** iteration the algorithm has colored all the
branches emanating from processors Pi, P, ..., Pj_1. Let us define the fol-
lowing terms from this partial coloration. For 0 < i < k, let C? be the
set of colors that are ¢;_;-forbidden in exactly ¢ branches of bundle b. Let
c? = |C?|. When the set b is understood, we will use ¢; for ¢, and C;
for C’f. Since there can be at most d — 1 t;_i-forbidden colors in each
branch and there are at most k branches in each bundle, it then follows that
¥ Lict < (d — 1)k for each bundle b emanating from P;. Clearly, all the
branches of bundle b can be colored with any of the colors in 08 that have
not been used to color other branches emanating from P;. Also, one can
color all the branches of bundle b with two colors, p € Cf and q € C,f’,, for
i # i, provided that colors p and ¢ are not ¢;_1-forbidden in the same branch
of bundle b, and have not been used to color another branch emanating from
processor ;. We say that a color is s;-free if such color has not yet been
used to color any of the branches emanating from processor P;. Note that
a color stops being s;-free as soon as it is used to color a branch emanating
out of P;.

To simplify our notation we define the expressions L and R as follows

__ h2+h+2 ! R24h—2 _ (h+1)(R243h) | —2lh2+h3+h
L=t g oy — 2(?;—1) yand R=(h+1)*+ 50—R) T Z(d—l_;(l——lt)

Procedure Coloring is defined for all d > il(—);i};)’ kEk>L k>1>h>1
and d > 4. These preconditions might give the feeling that there is a large
number of cases for which our algorithm is not defined, but this is not the
case because for each k > 3 there is a nonempty set of A and [values for
which it is defined. We begin by establishing in Lemma 1 that . < R. This
fact will be used to partition in two cases the set of values for which our
algorithm is defined.

LEMMA 1. For the set of values Procedure Coloring is defined L < R.

Proor. The proof of this lemma is in the Appendix, since it involves
simple algebraic manipulations of long expressions. [

In Table IV we define equations eq.(0), .. ., eq.(h+1) that are used by the
algorithm and are necessary for the correctness proof (Theorem 1). Let us
now briefly outline our Procedure Coloring as well as some of the arguments
used in the correctness proof. When coloring the bundles emanating out
of processor Pj, Procedure Coloring finds the smallest integer g, such that
equation eq.(gp) holds. Lemma 5 shows that at least one of such equation
holds for each bundle b. Then ry, is defined as min{qy, h}. For each bundle b

204 T. F. GONZALEZ

TaBLE IV: Equations eq.(0), ..., eq.(h + 1).

co > d; eq.(0)
for1<t<h Z:’:O ci > (t+2)d — 2t;or eq.(t)
S0 > (h+2)d—2h, eq.(h+1)
emanating from processor F; an s-free color from cs Ch, ..., C’f?b is selected

to color as many branches in bundle b as possible. Lemma 4 can be used to
show that one such color exists. The integer wy, is defined as ¢, if 0 < g <h
and it is set to [otherwise. The remaining uncolored branches of each
bundle b are colored with an s-free color in CS ,Cho C’,fj,b. One can show
the existence of one such color from Lemma 5.

Procedure Coloring is given in the next page. For the set of valid in-
puts defined above, the procedure computes the maximum number of colors
needed (A) and a coloration for G with at most A colors.

To establish that Procedure Coloring generates a valid coloration for the
cases it is defined is difficult. Theorem 1 establishes that our algorithm
generates valid colorations for all valid inputs, and that it takes O(ed),
where e is the total number of edges. The proof of this theorem is based on
Lemmas 4 and 5. Lemma 5 established that at least one of the equations
eq.(t) holds for each bundle emanating out of processor P;, and Lemma 4
is used to show that one color from each bundle can be selected to color a
subset of its branches. These lemmas are then used to show that a second
color exists to color the remaining branches of each partially colored bundle.
Lemma 3 is used in the proof of Lemmas 4 and 5, and requires Lemma 2.

The purely mechanical proofs (or parts of proofs) appear in the Appendix.
Mathematica programs (and their outputs) for all of these mechanical proofs
were developed by Gonzalez [1996].

LEMMA 2. For the set of values Procedure Coloring is defined

R h+41
Rz(h+1)2_ﬁ+ﬁ‘

ProOOF. The proof of this lemma is in the Appendix, since it involves
simple algebraic manipulations of long expressions. OJ

BOUNDED FAN-OUT MULTIMESSAGE MULTICASTING 205

Procedure Coloring (G, h,!)
/* Note that k,d, L, and R can be easily computed from G, h and [. */

/"‘Assumethatdz2l+2h2 k>L,k>l>h>1andd>4%/

Wit 3)

case d(k-+h 1)~ (k+h)

e A:&_“)mrl—);(Ykt (2—d)h?+(d—2)

_ _ _ ((2d—4)h+4d—2)1+2(d—1)k+(2—d)h*+(d—2)h+2d |

LSIC<R A= 2(l+1) y
endcase
/* The correctness of our procedure will be established in Theorem 1.*/
for j=1tondo /* For each processor P;. */

for b=1to m; do /* For each bundle emanating out of P;.*/

compute C§,C? Ch, ... ,C’,l;;
let g, be the smallest integer such that equation eq.(gs) holds;
let 7, = min {gp, h};
let wy = qp if 0 < qp < h and wyp = | otherwise;
endfor
/* Color a subset of edges emanating from each bundle of P; */
for each uncolored bundle b of P; do; /* for-loop-a */
color as many branches of bundle b with one s;-free color
in C§,C%,.. .,C’fb;
/* The above statement and the definition of the C' sets implies
that the color comes out of the smallest indexed set with
an s;-free color;*/
/* Color the remaining uncolored edges emanating from P; */
for each partially colored bundle b of P; do; /* for-loop-b */
color all uncolored branches of b with an s;-free color in
chCh, ... ,C’gb;
endfor;
end of Procedure Coloring

LeMMA 3. The value for A defined by Procedure Coloring is greater than
or equal to (h + 2)d — 2h.

Proor. The proof of this lemma is in the Appendix, since it involves
simple algebraic manipulations of long expressions. O

LEMMA 4. At the beginning of the j* iteration of Procedure Coloring each
bundle b emanating from processor P; satisfies Z?:o ¢ > d.

PrOOF. Suppose not. Suppose that there is a bundle b for which Zzhzo <
d. Let bundle b emanating from processor P; be a counter-example to the
lemma with the least value for Y% ;2. In case of ties select the bundle b
emanating from P; with the largest value for c}. If ties persist, then select
any bundle with the two properties given above. In what follows we drop
the superscript b, since b is fixed.

206 T. F. GONZALEZ

If Z?zl ¢; > 1, one can easily find another counter-example with smaller
2?20 ¢;, or one with the same Z?:o c; but larger value for ¢g. In either
case we contradict the properties of our counter-example. So we can assume
without loss of generality that 31, ¢; < 1.

Let © = Y0 g¢; < d—1. If # = 0 then t is set to zero; otherwise, ¢
is set to the largest value in [0, h] such that ¢; # 0. From Lemma 3 we
know that A > (h + 2)d — 2h, and since h > 1 and d > 1, we know that
A > (h+2)d — 2h > d. Since the remaining ¢;_;-forbidden colors must be
in Cpt1,Chaga ..., Ck, it then follows that

SK i >t+(A—z)(h+1).
Substituting z = E?:o c; < d—1 in the above inequality, we know that
S gice > t+ (A= (d—1))(h+1).

To complete the proof of the Lemma we need to show that the above expres-
sion is greater than k(d — 1), which contradicts that fact that 3% i+ ¢; <
k(d — 1). Since the remaining part of the proof is purely mechanical it
appears in the Appendix.

LEMMA 5. At the beginning of the j** iteration of Procedure Coloring each
bundle b emanating from processor P; satisfies at least one of the inequalities
eq.(t), for 0 <t < h+1, holds.

PROOF. Suppose not. Suppose that there is a bundle b for which all the
above inequalities do not hold, i.e., ¢§ < d; S ok < (t+2)d — 2t for all
1<t<hand Yo < (h+2)d— 2h. Let bundle b emanating from
processor P; be a counter-example to the lemma with the least value for
Sty ci. In case of ties select a bundle b emanating from P; with the least
value for Zé:o c; that is largest in lexicographic order. Le., cg has the largest
value; in case of ties, c? is the largest value; in case of ties, c} is the largest
value; in case of ties, and so on. Since b is fixed, in what follows we drop
the superscript b.
We define the vector (dg,ds,...,dy) as follows:

do=d—1,dy=2d—2dy=d—2,ds=d—2,ds=d—2,...,
dp=d—2,dpe1 =0,dpy1 =0,dp2=0,...,
dl:(),dH,l:A—((h+2)d—2h—1),dl+2:0,..., and dj = 0.

Note that by Lemma 3, we know that d;; > 1. The subvector (c1,¢2, ..., ch)
is either the subvector (dy,ds,...,dp), or it is such that ¢; = d; for all
0<i<f<h, cpp1 < dgir and ¢pyo,...,cp are zero except possibly for
one ¢; such that f +2 <t < h. Note that if this is not the case then either
the problem instance satisfies one of the inequalities, or it does not satisfy
any of the inequalities but either it is not one with least Sty ¢ or it is one

BOUNDED FAN-OUT MULTIMESSAGE MULTICASTING 207

with least Eﬁ:o ¢i, but not the largest in lexicographic order. In all cases
we contradict the properties of the bundle b selected.
By definition, Y% i - ¢; < k(d — 1). We now establish a contradiction by
showing that 3% (i - ¢; > k(d —1). It is simple to see that Y% ;i - ¢; >
¥ oi-d;. From the definition of the D vector, and A > (h + 2)d — 2h
(Lemma 3), we know that

S i dy = 2d — 24+ EDOHD A (B4 2)d — 2k — 1))(1+ 1),

To complete the proof of the Lemma we need to show that the above expres-
sion is greater than k(d — 1), which contradicts that fact that 3% (i -¢; <
k(d — 1). Since the remaining part of the proof is purely mechanical it
appears in the Appendix. O

THEOREM 1. Procedure Coloring generates a communication schedule with
total communication time at most the value of A computed by the algorithm,
for every instance for which the Procedure is defined. The time complexity
of the procedure is O(ed), where e is the total number of edges.

ProoF. First we prove that Procedure Coloring colors all the edges in the
multigraph with A colors, where A is determined by the algorithm. Then
we establish the time complexity bound.

Consider now the iteration for P; for any 1 < j < n. By Lemma 5 we
know that at least one of the equations eq.(t) for 0 < ¢ < h+ 1 holds for
cach bundle emanating from P;. Therefore, all the g, values are integers in
the range [0,h + 1], and all the 7, values are integers in the range [0,h].

We now claim that one can color a nonempty subset of branches from
each bundle with a distinct s-free color in C§,C%, ..., C’é’j. We prove this

by showing that 3 7%, c? > d, since this fact guarantees that one unique
s-free color in C§,CY, ..., C’gj for each bundle b can be selected in for-loop-
a to color a nonempty subset of edges emanating out of each bundle. As
we established before, r, < h. If r, = h then by Lemma 4 it follows that
>ito c? > d. On the other hand, if r, < h then by definition of r, and
Lemma 5 we know that eq.(r;) holds. This implies that either ¢y > d or
b e > (ry + 2)d — 2rp. Since d > 2, it then follows that >.10,c? > d.
Therefore, in for-loop-a one can select unique s-free color in C§,C%, ..., CY

q
for each bundle b to color a nonempty subset of edges emanating out of each

bundle.

We now claim that at each iteration in the for-loop-b one can select unique
colors to color the remaining uncolored branches of each bundle. From the
definition of wp, we know that >7% ¢; > (wp + 2)d — 2wp. The number
of colors that were t;_;-forbidden in the same branch as the color selected
in for-loop-b is at most (d — 2) - 75, and the maximum number of colors
used during for-loop-a and for-loop-b is at most 2d — 1. It follows that
the colors that one can use to color the remaining branches are at least

208 T. F. GONZALEZ

TABLE V: Value of a1 for different methods.

[k & [IJR] L | R |
3 3.33 2 111 211 7.95
4 3.50 3 11| 216 5.95
5 360 | 4 | 1] 221 5.28
7 4.43 6 | 2] 421 12.50
10 4.60 9 | 2| 437 10.91
15 553 | 14 | 3| 747 18.74
20 6.00 | 11 | 3 | 7.32 19.95
50 856 | 49 | 6 | 23.53 | 51.37
100 || 11.54 | 99 | 9 | 48.89 | 101.53

(wp+2)d — 2w, — (d—2) -7y — 2d+1. This is equivalent to (d—2)(wy —rp) +1.
Since d > 2 and wp > 13, we know that there is at least one color left with
which we can color all the remaining uncolored branches. This completes
the correctness proof.

It is simple to see that the time complexity of the algorithm is bounded by
O(ed), where e is the total number of edges in the graph. This follows from
the observation that each edge is considered a constant number of times and
each time the algorithm spends O(d) time on it. O

For d = 20 and different values for k, Table V gives the value for h and [
that minimizes a1. Table V also gives the values of L and R. Note that for
d < 20 some of the a1 values are smaller than the ones in Table V.

3. Discussion

We have developed exact and approximation algorithms for problem in-
stances with small d and small k, but for brevity we do not include these
special results. We have also studied the multimessage multicasting prob-
lem with o buffers and the result are schedules whose total communication
time is about 1/« of the total communication time of the schedules without
buffering. However, buffering complicates the hardware and it is not avail-
able on the Meiko CS-2 machine. The problem is equally difficult with or
without buffering, provided that only a fixed number of buffers are available.

BOUNDED FAN-OUT MULTIMESSAGE MULTICASTING 209

Appendix
LEMMA 1. For the set of values Procedure Coloring is defined L < R.

PROOF. By applying simple algebraic transformations one can readily
see that the definition of L is equivalent to

_ h2+43h l h2+h—2
L= (h+1)? = 50 + 15 — 58, and

—(h%+3h)d+2h+2+21
L= (h+1)2 4 BRI h,

Substituting [< w — h? in the above inequality, and simplifying we
obtain

_op2
L < (h+1)? + =222

Since [> h we multiply the last term of the inequality by % and obtain

2 h(h+1)(h+3)d—2R2%(h+1 3_op2_.
L < (h+1)? — gy +)2((d-1))(l—h) () ST

After simple algebraic manipulations we get

2 h+1)h(h+3 3
L<(h+1)* - 2(d—21h)(ll—h) + 1 2()l—(h) L 2(dﬁl—)i_(]ll—h) = R.

This completes the proof of the Lemma. O

LEMMA 2. For the set of values Procedure Coloring is defined

h? h+1

R2(h+1)2—d_1+d_1.

Proor. Since! > h we multiply the last two terms in left-hand side (LHS)

of the inequality by 38:23 and obtain

2_on3 | (Ar1)2(=h
LHS = (h+1)* — of 5 + §<Z_i>&_h§-

Substituting [< W — h? in the rightmost [of the above inequality, we

know

2_op3 h+1)(h(h+3)d—2h?—2h
LHS < (h+1)* = 50" 50" ()(2((d—1))(l—h) 2

This is equivalent to

LHS < (h+1)% + MFLOHS) 4 ALk — R,

210 T. F. GONZALEZ

This completes the proof of the Lemma. O

LEMMA 3. The value for A defined by Procedure Coloring is greater than
or equal to (h + 2)d — 2h.

Proor. By Lemma 1 we partition the proof into the following two cases
depending on the relative values of k, L and R.

Case 1: k> R.
Substituting the inequality in Lemma 2 in the equation for the condi-
tions of Case 1, we know that k > (h+1)% — th21 + %. The resulting
expression after multiplying both sides by d — 1 and rearranging terms
is
k(d—1) > (h2+2h+1)d — h(2h + 1).

Adding d(h + 1) — h to both sides and rearranging terms,
kE(d—1)+h(d—1)+d > (h?+3h +2)d — 2h(h + 1).
Factoring h + 1 in the right hand side of the inequality, rearranging
terms, and substituting for the value of A determined by the proce-

dure, we know
k+h+1)d—(k+h
A = EHHDEER) > (4 2)d — 2h.
This completes the proof for Case 1.

Case 2: L <k < R.
From the conditions of Case 2, we know that

h24h+2 _ h24+h—2 | 1
k> Hd-1) T a1

This is equivalent to
2k(d — 1) > d(h? + h + 2) — (2h% 4 2h) + 21,
which is equivalent to
2k(d — 1) — (h? — h — 2)d + (2h% — 2h) — 21 > 2(h + 2)d — 4h.

Adding 2(h + 2)dl — 4hl to both sides of the inequality, distributing
terms, and replacing for the value of A determined by the procedure

we know that
A = ((2d—4)h+4d—2)1+2(d—1)k+(2—d)h?+(d—2)h+2d

20+1)
> (h+2)d — 2h.

This completes the proof for Case 2 and the Lemma.

PROOF. Remaining Part of Lemma 4.
Sk gie>t+(A—(d—=1))(h+1)>Ek(d-1).

By Lemma 1 we partition the proof into the following two cases depending
on the relative values of k, L and R.

BOUNDED FAN-OUT MULTIMESSAGE MULTICASTING 211

Case 1: k> R.

Substituting the value A = %W computed by the algorithm

for Case 1 in the above inequality
SE gicep >t (APEUSEE (g 1)) (R + 1),
This reduces to
Sk gicg>t+dk+h+1)—(k+h)—(d—1)(h+1),
which is equivalent to
SF i > t+k(d—1)+1.

Since t > 0, we know that 3% i - ¢; > k(d — 1). This contradicts the
definition of the ¢;s, and completes the proof for Case 1.

Case 2: L <k <R.
Substituting the value

A = ((2d—4) h+4d—2)1+2(d— 1) k+(2—d)h2+(d—2) h-+2d
= 20+1)
computed by the algorithm for Case 2 in the above inequality
koo k(h+1)(d—1 2d1(h%+2R+1)—21(2h%+2h) —d(R3~1)+2(h3+1
YE yici >t + (lJZg) 4 2di()—2(2(l+1)) ()+2()
20141) _

Adding and subtracting 0T 1, the equation becomes

k. k(h+1)(d—1 2dl(h24+2h+1)—21(2h2+2h+1)—d(h3—1)+2k3
2= iC = T+ (szg b) (2(z+1) LA + 1.

Factoring from the third term 2(d — 1)(I — h), the expression becomes
Sk gic > ¢4 HADE=D |

+1
d(h3+4h2+-3h)—21h% +2(—2R%*—h)y (d=1)(I=h
((h+1)?+ % S L=l
Factoring (d — 1) from the fourth term, the expression becomes
k (h+1)(d—1)

i=0fC > T+ kH_—1+

h(h+1)(h+3) | —20h2-+h3+hy (d—1)(I—h
((h+1)2 4+ M 2(11(11) L4 2(25}11%—;];)(l)+(1 L1,

By the conditions of the case we know that

h(h+1)(h+3) —2h2+h*+h
2(1—h) 2(d—1)(1—h)

k<R=(h+1)?+

Substituting in the above inequality and simplifying,

S i >t+ k(h’;{ggd—l) + k(d_z%l_h) .y

which is equivalent to
Sk i >t4+k(d—1)+1.
Since t > 0, we know that 3% i - ¢ > k(d — 1). This contradicts

the definition of the ¢;s, and completes the proof for Case 2 and the
Lemma.

Proor. Remaining Part of Lemma, 5.

S giodg = 2d—2+ G0 LA (B42)d— 20— 1))(I+1) > k(d—1).

212 T. F. GONZALEZ

By Lemma 1 we partition the proof into the following two cases depending
on the relative values of k, L and R.

Case 1l: R<k.
Substituting the value for A and reordering terms the expression be-
comes,
Ek— id = 2k(d~1)(l+1)—2ld(h+1)2+dh(h2—1)-|—21(2h2+2h+1)—2h3.
=0 g 2(h+1)

Adding and subtracting 2(h+1) to the numerator
S i dy = PHAD0T)-Ad(h1)? |

= IS
dh(R?—1)4+21(2R?+2h+1)+-2(—h3+h+1)+2(A+1)
(A1) -
Multiplying the right hand side by ((d*hllfll_h) I 0 d—’i;r(ll— h)) = 1 we know

that
. d—1)(1-h) Ek(+1
S i dy = UspEER (HED 4
—21d(h+1)24+dh(h?—1)+21(2n%42h+1)—2R83 ht1
2(d—1)(I—h) + (d—l)(l~h>)'

Substituting the conditions for Case 1

2d(h +1)? — dh(h? — 1) — 21(2h% + 2h + 1) + 23
2(d —1)(1 — h))

(k>R=

in the above equation, we know that

. d—1)(1—h) k(I+1
Zéﬂzol‘diz(hzr(l)((E—Jrh))_k+(d_—}§r(ll_—m)’

which is equivalent to

. d—1)(I=h) s k(h+1
Foi-d; > U0 ((l—h)) + @)

and thus
Sk giedi > k(d—1)+1.

Therefore, Efzoi ccp > Z?:o’i -d; > k(d —1). A contradiction. This
completes the proof for Case 1.

Case 2: L <k < R.

Substituting the value for A and reordering terms the expression be-
comes

Zf:oi dy=2d—2+ (d—2)(h22+h—2) + 2(d—l)k+(2—d)h22—|-(2—d)h—2d+2

?

which is equivalent to
Sk giodi=k(d—1)+1.

Therefore, Zfzoi S > Zf:oi ~d; > k(d —1). A contradiction. This
completes the proof for Case 2 and the Lemma.

BOUNDED FAN-OUT MULTIMESSAGE MULTICASTING 213

References

ArMasi, G. S. AND GOTTLIEB, A. 1994. Highly Parallel Computing, 2nd edition. The
Benjamin/Cummings Publishing Co., Inc., New York.

Cuoi, H. A. anD Haxkmvr, S. L. 1987. Data Transfers in Networks with Transceivers.
Networks 17, 393-421.

Cuo1, H. A. aND HaxkmMi, S. L. 1988. Data Transfers in Networks. Algorithmica 3,
223-245.

CorrMAN, E. G., GAREY, M. R., JoHNSON, D. S., AND LAPAUGH, A. S. 1985. Schedul-
ing File Transfers in Distributed Networks. STAM J. on Computing 14, 3, 744-780.

GOLDBERG, L. A., JERRUM, M., LEIGHTON, T., AND RAO, S. 1997. Doubly Logarithmic
Communication Algorithms for Optical-Communication Parallel Computers. SIAM
J. Computing 26, 4, 1100-1119.

GonzaLEz, T. F. 1996. Improved Multimessage Multicasting Approximation Algorithms.
In Proceedings of the Ninth International Conference on Parallel and Distributed
Computing Systems, 456—461. Also, Technical Report TRCS-96-16, UCSB, Dept. of
Computer Science.

GonzaLEzZ, T. F. 1996. Proofs for Improved Approximation Algorithms for Multimessage
Multicasting. Technical Report TRCS-96-17, UCSB, Dept. of Computer Science.

GonzaLez, T. F. 1997. Algorithms for Multimessage Multicasting With Forwarding.
In Proceedings of the Tenth International Conference on Parallel and Distributed
Computing Systems, 372-377. Also, Technical Report TRCS-97-24, UCSB, Dept. of
Computer Science.

Gonzargz, T. F. 1998. Distributed Algorithms for Multimessage Multicasting. Technical
Report TRCS-98-23, UCSB, Dept. of Computer Science.

GonzaLez, T. F. 1999. Complexity and Approximations for Multimessage Multicasting.
Journal of Parallel and Distributed Computing (to appear). Also, Technical Report
TRCS-96-15, UCSB, Dept. of Computer Science.

GonNzaLEz, T. F. AND SAHNI, S. 1976. Open Shop Scheduling to Minimize Finish Time.
JACM 23, 4, 665-679.

GoraL, I. S., BONGIOVANNI, G., BONUCCELLI, M. A., TaNG, D. T., AND WoNg, C. K.
1982. An Optimal Switching Algorithm for Multibean Satellite Systems with Variable
Bandwidth Beams. IEEE Transactions on Communications 30, 11, 2475-2481.

HaJex, B. AND SAsAki, G. 1988. Link Scheduling in Polynomial Time. IEEE Transac-
tions on Information Theory 34, 5 (Sept.), 910-917.

Leg, T. T. 1988. Non-blocking Copy Networks for Multicast Packet Switching. IEEE J.
Selected Areas of Communication 6, 9 (Dec.), 1455-1467.

Liew, S. C. 1995. A General Packet Replication Scheme for Multicasting in Interconnec-
tion Networks. In Proceedings IEEE INFOCOM, Volume 1, 394-401.

RIVERA-VEGA, P. 1., VARADARAJAN, R., AND NAVATHE, S. B. 1992. Scheduling File
Transfers in Fully Connected Networks. Networks 22, 563-588.

SHEN, H. 1997. Efficient Multiple Multicasting in Hypercubes. Journal of Systems Ar-
chitecture 43, 9 (Aug.), 655-662.

TURNER, J. S. 1993. A Practical Version of Lee’s Multicast Switch Architecture. IEEE
Transactions on Communications 41, 8 (Aug.), 1166-1169.

VALIANT, L. G. 1990. General Purpose Parallel Architectures. In Handbook of Theoret-
ical Computer Science. Elsevier, New York, 943-971.

WHITEHEAD, J. 1990. The Complexity of File Transfer Scheduling with Forwarding.
SIAM Journal on Computing 19, 2 (Apr.), 222-245.

