Nordic Journal of Computing

COMPLEXITY ASPECTS OF TWO-DIMENSIONAL
DATA COMPRESSION *

Hans L. Bodlaender'
Department of Computer Science, Utrecht University
P.O. Boz 80.089, 3508 TB Utrecht, the Netherlands
HANSBQCS.RUU.NL

Teofilo F. Gonzalez
Department of Computer Science, University of California,
Santa Barbara, CA 93106-5110, USA*

Ton Kloks$
Department of Mathematics and Computing Science, .
Eindhoven University of Technology, )
P. O. Bozx 518, 5600 MB Eindhoven, the Netherlands.

Abstract. Let M be a 2-dimensional colored map which has been digitized into a
large 2-dimensional array (M). We define a class of languages (called rectilinear) to
describe our digitized maps and classify them based on their level of succinct repre-
sentation. We also study the map compression problem, i.e., the problem of finding
for any given map a shortest description within a given language. For one dimen-
sional maps we show that a shortest description can be generated quickly for some
languages, but for other languages the problem is NP-hard. We also show that a
large number of linear time algorithms for our languages generate map descriptions
whose length is at most twice the length of the minimum length description. For
all our languages we show that the two dimensional map compression problem is
NP-hard. Furthermore, for one of the most succinct of our languages we present
evidence suggesting that finding a near-optimal map compression is as difficult as
finding an optimal compression.

1. Introduction

Let M be a 2-dimensional colored map, e.g., a landscape, to be stored in a
digital computer system and/or to be drawn on a terminal screen. Assume
that the map has been digitized into a large 2-dimensional array (M). Le., a
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large uniform square grid partitions the map into n by m small grid squares
denoted by I . Grid square I, ; is associated with the matrix entry (7, 7)
in M. Each matrix entry (M(4,j)) is assigned an integer ! € [0,p) to denote
the representative color for grid square I; ;. Hereafter we refer to matrix
entries and grid squares interchangeably.

In many practical applications a map contains large singly colored regions,
and also regions in which the colors change rapidly. So, finding a good
probabilistic model that represents the distribution of the different colors is
at least difficult, if not impossible.

In this paper we define “languages” to describe our digitized maps. The
objective is to find a shortest description within a given language. For exam-
ple, instead of describing a 2-dimensional digitized map by its corresponding
matrix we describe it by an rp-compression, i.e., collection of tuples of the
form (RP;,c;), where RP; is a subset of grid squares bordered by a simple
rectilinear polygon without holes and ¢; is a color (i.e., an integer value in the
range [0,p)). An rp-compression represents map M if map M is generated
by starting from a grid without colors assigned to the entries and then col-
oring all the grid squares in RP; with color ¢;; then all the ones in RP, with
color ¢y, and so forth. Note that if a grid square is in two or more rectilinear
polygons its final color is the last one assigned to it. We shall refer to these
rectilinear polygons as c-rectilinear polygons and denote the language just
defined Lagp. An rp-compression is said to be an pdrp-compression if all the
c-rectilinear polygons in it are pairwise disjoint. The language Lapprp is
obtained by replacing rp-compression by pdrp-compression in the definition
of Lypp. We say that the amount of information required to represent a
map under Logp (Lopprp) is the total number of corners of the c-rectilinear
polygouns in the rp-compression (pdrp-compression).

Maps usually have a more succinct representation under language Lagpp
than under language Lopprp. The following example shows the case when
there is a dramatic difference between the minimum length representation
of a map in these two languages. The “map” is given in a Fig. 1 and it
consists of n X n grid squares, each colored black (represented by a shaded
square) or white (represented by a blank). All grid squares are white except
for grid squares (i,7) for all ¢ and j even. The smallest description under
Lapprp for the map given in Fig. 1 contains at least Q(n?) black squares
(which are islands in the white area). But, under language Logp the map
can be described by one large black square followed by O(n) white strips.
Remember that a c-rectilinear polygon in an rp-compression does not have
to border exactly an area of a given color.

Let M be a map and L be any language. We use T (L, M) to denote the
number of “values” in a minimum length representation of M in L. Two
languages L and L' are said to be equivalent if for every map M, T(L, M) is
O(T(L',M)) and T(L', M) is O(T(L, M)). A language L is said to be more
succinct than language L' if for every map M, T(L, M) is O(T (L', M)), but
T(L', M) is not O(T(L,M)). One can argue that our classification scheme
is not fair because we do not take into account the maximum number of
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bits in each of the values. So extreme care must be taken when classifying
languages because our comparison holds only in certain domains. From the
above discussion it follows that Lagp is more succinct than Lopprp. Also,
Lopprp is more succinct than L, where L is the language that represents a
map by its n by n matrix of colors. Note that this last comparison is not
a fair one because each value in the matrix is an integer value in the range
[0,p), where as in the representation for the other language the values are
integers in the range [0,n). Hereafter we concentrate on languages in which
the c-rectilinear polygons may overlap.

An rp-compression is said to be an rp-nr-compression if all the c-rectilinear
polygons in it assigned the same color are adjacent in the description. A
restricted version of Lopp is the language Lagp nr obtained by replacing
rp-compressions by rp-nr-compressions. The NR stands for no recoloration
because our procedure that generates M from the rp-nr-compression has
the property that once a grid square has been colored with its correct
color, it will never be colored with another color different from its correct
color. This is not true for rp-compressions. By definition T'(Larp, M) is
O(T(Lyrp-ngr, M)). However, it is not possible to show that T(Larp_ngr, M)
is O(T(Lsgp, M)) for every map M. An optimal rp-compression for the map
given in Fig. 2 under language Lagp has O(k) corners, whereas under lan-
guage Logp ng all rp-nr-compressions have Q(k?) corners.

In this paper we study the 2CRgp (2CNRpp) map compression prob-
lem defined as the problem of finding a minimum length representation for
a 2-dimensional map under the Logp (Laogp-nr) language. When the c-
rectilinear polygons have exactly four sides (called c-rectangles) the above
problems are referred to as the 2CRg and the 2CNRpg problem. In this case
the objective function reduces to minimizing the number of rectangles in the
description and we use the term r-compression (r-nr-compression) instead of
rp-compression (rp-nr-compression). The languages are referred to as Lag
and Log_ngr, respectively. In each of these two cases the rectangular lan-
guages are equivalent (with respect to succinctness) to their corresponding
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rectilinear polygon language. The reasoning for this is that any rectilinear
polygon with k corners may be covered by at most 2k rectangles (the fastest
procedure to accomplish this is given in [10]) and a rectangle is a rectilinear
polygon.

When the two dimensional matrix representing a map has a single row,
the map is said to be one dimensional and the names for the above problems
and languages are prefixed by a one instead of a two. Note that in this case
the 1CRrp (1CNRgp) is identical to the 1ICRg (1CNRER) problem because
all c-rectilinear polygons may be replaced simply by c-rectangles. All of
these one-dimensional languages are equivalent with respect to succinctness.
The reason for this is that every r-nr-compression is also an r-compression
and thus T'(M, L1g) is O(T(M, Lir-nr)). The proof of the converse follows
from a lower bound for the number of c-rectangles in an optimal compression
established in the proof of Theorems 3 and 4.

A restricted version of these problems, referred to by aRf3,, where a €
{1,2}, 8 € {CR,CNR} and v € {R, RP}, is the af3, problem in which each
color appears in at most two entries in M. Later on it will be evident why
we introduced these versions of our problems.

In many practical situations the number of different colors in M is small.
Because of this we shall also investigate the complexity of the a3, (k) prob-
lem, where o € {1,2}, 8 € {CR,CNR, RCR, RCNR} and v € {R,RP}, is
the af, problem in which the number of different colors in M is bounded
by the constant £ (which is not an input parameter).

In section 2 we consider the one dimensional case. We present an O(n?)
time dynamic programming algorithm for the 1CRg, where n is the size of
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array M. For the no recoloration variant, we show that the 1ICNRpg problem
is an NP-hard problem. For both of these problems we show that any
algorithm that avoids a set of “bad decisions” generates a solution with a
number of c-rectangles that is within two times the number of c-rectangles
in an optimal solution. We also show that for both problems a solution
within two times optimal can be generated in linear time by a large number
of algorithms. We also show that problems 1RCRg and 1RCNRE reduce to
a well known graph problem which can be solved efficiently.

In section 3, we prove that for the two dimensional case, even restricted
versions of our problems are NP-hard. Specifically, we show that the 2RCRg
and 2RCNRpg problems are NP-hard. Obviously, this also shows that the
2CRR, and 2CNRp, are also NP-hard. Our reduction can be easily modified
to show that the 2CRgrp, and 2CNRgp problems are also NP-hard. In
section 4, we show that the map compression problem remains NP-hard even
when the number of different colors in M is bounded by a small constant
(2CRg(4) and 2CNRg(2)). We discuss some generalizations of our results
and pose some interesting open problems in section 5.

There are many image compression techniques available in the literature
(see [7]). For brevity we cannot elaborate on all of these techniques. At
present the JPEG compression technique is popular. JPEG is based on
applying two-dimensional discrete cosine transform (DCT) to 8 by 8 pixel
subimages, then quantizing the DCT coeflicients, and stretching them into a
one dimensional array that is encoded using Huffman and run-length coding.

Quad-tree decomposition methods partition the image into four subim-
ages by introducing a vertical and a horizontal cut. The subimages are
partitioned recursively until the resulting images are “uniform”. It is simple
to show that this type of compression technique, when applied to produce
lossless compressions, is a restricted form of partition into disjoint rectan-
gles (which is one of the compression methods we study). Therefore, the
quad-tree representation is not as succinct as that for general rectangle de-
composition.

In pyramid decompositions an image is transformed into a smaller “blurry”
subimage plus other (normally three) subimages containing “edge informa-
tion” in such a way that the original image can be generated (either exactly
or approximately) from these subimages. The “blurry” subimage is decom-
posed recursively and all the “blurry” subimages generated can be used
for browsing. All the subimages in the decomposition are then compressed.
Since the subimages containing “edge information” are fairly “uniform”, one
could use heuristics that decompose the subimages into rectangles and then
compress the resulting representation. Thus the analysis in this paper is
not only useful for images, but it is also useful for images that arise in other
decomposition methods, like in pyramids, wavelets, etc.
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2. One dimensional maps

In this section we consider the one dimensional map compression problem
with and without recoloration. We present an O(n®) time dynamic pro-
gramming algorithm for the 1CRg, where n is the number of entries in M.
However, for the no recoloration variant (1CNRg) we show it is an NP-hard
problem. For both of these problems we show that any algorithm that avoids
a set of “bad decisions” generates a solution with a number of c-rectangles
that is at most two times the number of c-rectangles in an optimal solution.
We also show that for both problems a solution within two times optimal
can be generated in linear time. In subsection 2.4 we show that problems
1RCRp and 1RCNRE, reduce to a well known graph problem which can be
solved efficiently.

An instance of our 1-dimensional problems is represented by INS =
(M,n,p), where M; € [0,p) for 1 < i < n. When we refer to a compres-
ston. we mean either an r-compression or an r-nr-compression. Let R; be
a c-rectangle in compression R = (R1, Rs,... , R.). We shall refer to the n
entries in array M as array elements (map grid squares or simply elements).
Array element ¢ included in R; is said to be tight if it is not included in
Ri4q,... ,R,. Since R is a compression, we know that if array element i is
tight in R;, then ¢; = M;. A c-rectangle is said to be tight if the rightmost
and leftmost elements in it are tight, and a compression is said to be tight
if all its c-rectangles are tight.

2.1 Algorithm for the 1CRg problem

Let INS = (M,n,p) be any instance of the 1ICRp problem. For 1 < i <
J < n, we use INS;; to represent the subinstance of the 1CRg problem
INS defined over array elements (3,é +1,... ,5 — 1,5). Let g(4,7) denote
the minimum number of c-rectangles in an optimal solution for the instance
INS; ; of the 1CRR problem. Obviously, g(é,7) = 1 for 1 < i < n. Let
R = (Ry, Ry, ... ,R;) be an optimal r-compression for INS; ;. In Lemma 1
we prove an important property of optimal r-compressions for any instance
INS; ; of the 1CRg problem. This will aid us in the development of the
O(n3) time algorithm that generates optimal r-compressions.

LEMMA 1. Every instance INS;; of the 1CRg problem has an optimal
r-compression that is tight. Furthermore, element i is tight in c-rectangle
R;.

PROOF. We prove a stronger result. That is, given any r-compression for
INS; ; it can be transformed without increasing the number of c-rectangles
into an r-compression for INS; ; that satisfies the conditions of the lemma.

First we show that any r-compression R” for any instance INS;; of the
1CRpR problem can be transformed into a tight r-compression R’ for INS; ;
with no more c-rectangles than the ones in R”. The r-compression R’ is
constructed from R” as follows. If R} is tight then R} is just R/; otherwise,
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R} is R after deleting from each end the elements that are not tight. Delete
from R’ the c-rectangles with no elements. One can easily show that R’ is
a tight r-compression for INS; ; with no more c-rectangles than the ones in
R".

If element i is tight in R} of R’ then R is just R’ and the lemma follows.
So assume that element 7 is tight in R; for some [ > 1. Let k be the
rightmost tight element in Rj. Since the elements 4,i 4+ 1,... ,k cannot be
tight in R}, Rj),... Rj_;, there are no elements to the left of ¢ in INS; j,
and R’ is tight, it must be that elements 4, + 1,... , k are not included in
the rectangles R}, R),... ,R;_;. Let (Ri,Ry,R3,... ,R;,Ri41,... ,R;) be
(R, Ry, RS, ... ,R|_,R},,... ,R;). Clearly, element i is tight in Ry, Risa
tight r-compression for INS; ; and there are no more c-rectangles in R than
in R'. So R satisfies the conditions of the lemma. Therefore, any instance
INS,; ; of the 1CRg problem has an optimal r-compression that satisfies the
conditions of the lemma. This completes the proof of the lemma. O

Let iy < i3 < ... < s be all the elements in (3, +1,... ,j — 1,7)
colored M;. Let R be an optimal r-compression for INS; ; that satisfies the
conditions of Lemma 1. Let j; < jo < ... < jg be the tight elements
in R;. From the conditions of Lemma 1 we know that ¢ > 1 and j; = 1.
By the principle of optimality it is simple to show that if ¢ = 1, then
9(7’7.7) = g(]1+1>])+17 andif ¢ > 1, then 9(7‘7]) = g(J1+1a]2_1)+g(]27])7
where g(k,l) = 0 when k£ > I. Therefore, g(i,j) can be computed via
dynamic programming techniques as follows. Let g(i,4) =1, for 1 <4 < n;
let g(i,7) =0, for 2 > j; and for ¢ < j define

g(i,7) = min{g(i1 + 1,7) + 1, minicp<s{g(i1 + 1,56 — 1) + g(ir, 5)} }.

We define procedure DP to compute the g(i,5)'s for all j —¢ = 1, then
2,3,... ,until n—1, by using the above recursive formulation. It is simple to
show that procedure DP takes O(n?) time to find the number of c-rectangles
in an optimal r-compression for any instance of the 1CRp problem. By using
standard techniques one can also generate an optimal r-compression in O(n3)
time. These results are summarized in the following theorem.

THEOREM 1. Procedure DP generates an optimal r-compression in O(n3)
time for any instance, INS = (M,n,p), of the 1CRg problem.

PROOF. By the above discussion. O

2.2 The 1CNRpg problem is NP-hard

Now we show that the ICNRp problem is NP-hard by reducing the feedback
edge set (FES) problem to it. The FES problem, formally defined below,
is an NP-hard problem [4].
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DEFINITION 1. Feedback edge set (FES): Given a directed graph G =
(V, E), and integer 0 < k <| E |, the FES problem consists of determining
‘whether there is a set W C E with k edges such that the graph (V,E — W)
15 acyclic.

A linear ordering of a directed acyclic graph with n vertices is an assign-
ment of all the vertices to the integer points in [1,7n] along a straight line
(exactly one vertex per point) in such a way that all edges are directed from
left to right. Our main result in this subsection is given by the following
theorem.

THEOREM 2. The 1CNRpg problem is NP-hard.

PROOF. We prove this theorem by showing that the NP-complete problem,
FES, polynomially reduces to the 1CNRg problem. Given any instance of
the feedback edge set problem, FFES, we construct an instance of the 1ICNRg
problem, NR, as follows. Let (k¥', G) be the input to the FES problem, where
k' is any positive integer and G = (V, E) is a directed graph with n' =| V|,
and m' =| E |. Label the edges ¢; = (fi,;), for 1 <i < m'. From FES we
construct the instance NR of the 1CNRR problem with n elements, where
n = (2¢+4)m’ and ¢ = 2m’+k'. The number of different colors is p = gm/+
n’. Colors 1, 2, ..., n’ represent the vertices in G and the remaining colors
are introduced to enforce a special type of feasible solutions. We partition
the set of elements in VR into m’ consecutive sections (T3, 7%, ... , T, ) each
with 2¢+4 adjacent elements. The ith section (T;) represents edge e; and it
contains elements ((¢—1)(2¢+4)+1, (1—1)(2¢+4)+2,... ,(:)(2¢+4)) which
are assigned colors (¢%, (¢ — 1)%,... 28, 1%, fi ts, t, £5,15, 2%, ... (¢ — 1)}, ¢%),
where each j° is a different color. The four elements in the middle of each
section, i.e., the ones colored t; and f; are called edge elements (because
they are introduced to represent edges) and the other ones are called block

elements. For convenience, we say that a c-rectangle with only tight edge
- (block) elements is called an edge (block) c-rectangle.

EXAMPLE 1. The instance FES is the graph G = (V, E) given in Fig. 3 and
k' = 1. The value for n’ = 3 and m’ = 3.

The instance NR constructed by our procedure has: ¢ = 7; p = 24; and
n = 54. The color vector Csq is: 7%,... ,21, 11,1, 2, 2,1, 11, 21 ... 71
72,...,22,12,2,3,3,2,12,22,... 72,78, ...,23,1%,3,1,1,3,13,23,... 73,

We claim that FES has a feedback edge set with cardinality k' if, and
only if, NR has an r-nr-compression with no more than w = gm’ +2m’ + &'
c-rectangles. First lets prove that if FES has a feedback edge set with
cardinality k’, then NR has an r-nr-compression with at most w c-rectangles.
- Let W be a feedback edge set with cardinality k' and let 41,43, ... ,i, be the
indices of the edges in it. For 1 <[ < n, let j; be the vertex at integer point [
in a linear ordering of the directed acyclic graph with vertex set V' and edge
set £ — W. We define the r-nr-compression R as the minimum cardinality
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Fig. 3: Graph G = (V, E).

r-nr-compression in which all the c-rectangles with color o appear before
the ones with color 3 whenever « is before (3 in the following linear ordering
of the colors:

!

qu-" 7217117q27~'~ ,227127“- 7qm7'-- 72m71m1j17j27"' 7jn-

Clearly, all the tight block elements appear before all the tight edge ele-
ments in R, so it must be that the block c-rectangles appear before the edge
c-rectangles in R. It is simple to show that the number of block c-rectangles
is gm/, i.e., one for each pair of differently colored block elements. Let us now
consider the edge c-rectangles. The four edge elements in each section ap-
pear in edge c-rectangles that include only edge elements. The edge elements
introduced for e; = (f;,t;) are included by exactly two edge c-rectangles if
fi; appears before t; in (j1,j2,... ,Jjn); and exactly three edge c-rectangles,
otherwise. Therefore, the edge elements introduced for e; € E — W are in-
cluded in exactly two edge c-rectangles and the ones in W are included in
three edge c-rectangles. Therefore, the total number of c-rectangles in R is
w = gm’ + 2m' + k’. Hence, NR has an r-nr-compression with at most w
c-rectangles.

Let us now prove that if NR has an r-nr-compression with at most w c-
rectangles then FES has a feedback edge set with cardinality k'. Let R be
any r-nr-compression for NR with at most w c-rectangles. If edge elements
from different sections are tight in the same c-rectangle, then the number of
block c-rectangles is at least (m’ + 1)g and the number of edge c-rectangles
are at least n’. But then

(m'+1)g+n >mg+2m' + & +n > w,

since ¢ = 2m/ + k' and n’ > 1. So it cannot be that edge elements from
different sections are tight in the same c-rectangle. Therefore, it is possible
to reorder the c-rectangles in R so that all the block c-rectangles appear
before all the edge c-rectangles. The number of block c-rectangles is at least
gm'. Therefore, the number of edge c-rectangles is at most 2m' + k'. Since
the number of edge c-rectangles required for the edge elements in a section
is at least two, then at least m’' — k' sections have the property that their
edge elements are tight in at most two edge c-rectangles. Therefore, for
each of these sections the edge c-rectangles colored f; appear before the
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ones colored t; in the r-nr-compression. Since all the edge c-rectangles in
which edge element colored j is tight are adjacent, then let ji,j2,... ,Jn
be the ordering in which the colors of these tight elements appear in the:
r-nr-compression. It is simple to prove that the ordering of the vertices
corresponding to the above ordering of the colors is a linear ordering of
G with at most k' edges deleted in which all edges are directed from left
to right. Therefore, G has a feedback edge set with cardinality &’. This
completes the proof of the theorem. O

2.8 Approzimation algorithms for the 1CRg and 1CNRp problems

Let us now consider approximation algorithms for the 1CRg and the 1CNRg
problems. We say that a compression (r-compression or an r-nr-compression)
is irreducible if no two adjacent elements colored with the same color are
tight in different c-rectangles. Given a reducible compression one can easily
transform it into an irreducible one. An instance of the 1ICNRy problem
is said to be c-simple if every pair of adjacent array elements are colored
differently. Given any instance X of the 1CNRg problem we say that the
c-simple instance S(X) corresponds to it if S(X) can be obtained from X
by collapsing adjacent array elements with the same color into a single array
element assigned that color. ‘

The following theorem establishes the fact that any algorithm that gener-
ates irreducible r-nr-compressions for an instance INS of the 1ICNRRg problem
with f(INS) c-rectangles has the property that f(INS)/f*(INS) < 2, where
f*(INS) is the number of c-rectangles in an optimal solution for the instance
INS of the 1CNRp problem. In Theorem 4 we establish an identical bound
for the 1CRp problem.

THEOREM 3. Any algorithm that generates irreducible r-nr-compressions
for an instance INS of the 1ICNRg problem with f(INS) c-rectangles has
the property that f(INS)/f*(INS) < 2, where f*(INS) is the number of
c-rectangles in an optimal solution for the instance INS of the LCNRg prob-
lem.

ProoF. We prove the theorem by showing that for any instance of the
1CNRpR problem the ratio between the number of c-rectangles in any irre-
ducible cover and the number of c-rectangles in an optimal r-nr-compression
is at most two. Let X be any instance of the 1ICNRg problem and let S(X)
be the c-simple instance equivalent to it. Let n be the number of elements in
S(X). Clearly, any algorithm that generates an irreducible r-nr-compression
for an instance X of the 1CNRpg problem, has a number of c-rectangles that
is at most n. Let OFI, denote the minimum number of c-rectangles in an
optimal r-nr-compression for any c-simple instance of the 1CNRg problem
with n elements. It is simple to see that we complete the proof of the the-
orem by showing that OPI,, > (n + 1)/2. The proof is by induction on n.
It is obviously true when n is 1. Assume it holds for 1,2,... ,n — 1 and



TWO-DIMENSIONAL DATA COMPRESSION 11

let us prove it holds for n. Let R be any optimal r-nr-compression for any
c-simple instance with n elements. Let i1,4,... ,%4 be the tight elements
in the first c-rectangle in R. Clearly, the c-rectangles in R after the first
one may not contain any of the i; elements. Therefore, an optimal r-nr-
compression has at least as many c-rectangles as the sum of the number of
c-rectangles in an optimal solution to the ¢ + 1 resulting subproblems (by
resulting subproblems we mean the elements between 1 and 43 — 1,73 +1
and iy — 1, and so on) plus one. Let j1,j2,... be the number of elements in
each of the nonempty resulting subproblems (i.e., each subproblem has at
least one element). Therefore, OPI, > 14 3 OFT}, and by the induction
hypothesis we know that this quantity is at least 1+ > ((1 + ji)/2). Since
g + 3 jrx '= n and since the leftmost and the rightmost subproblems may
have zero elements, then there are at least ¢ — 1 nonempty subproblems.
Therefore, OPT,, > (n + 1)/2. This completes the proof of the theorem. O

THEOREM 4. Any algorithm that generate irreducible r-nr-compressions for
an instance INS of the 1CRg problem with f(INS) c-rectangles has the prop-
erty that f(INS)/f*(INS) < 2, where f*(INS) is the number of c-rectangles
in an optimal solution for the instance INS of the LCRg problem.

PRrooOF. The proof is omitted since it is similar to the one for Theorem 3.
0

A simple linear time algorithm with an approximation bound of two just
assigns one rectangle per square in the c-simple instance S(X) obtained from
X. This is not the only linear time algorithm to achieve this approximation
bound. Any linear time algorithm that generates solutions in which adjacent
array elements assigned the same color are tight in the same c-rectangle has
the same approximation bound.

2.4 An improved algorithm for the LRCRr and 1RCNRg problem

In this subsection we present an improved algorithm for the 1RCRgr and
the 1RCNRpR problems. Remember that for these two problems each color
is assigned to at most two of the array elements. It is simple to prove that
the 1RCRp and the 1IRCNRpg are identical problems, i.e., any solution to
one of these problems can be easily converted to a solution to the other
problem. The dynamic programming algorithm for the 1CRg reduces to an
O(n?) algorithm for 1RCRg. We show that in general there exists a faster
algorithm for this case, by reducing our problems to the problem of finding
a maximum independent set in an overlap graph. Before presenting our
reduction we define overlap graphs as well as other useful terms.

We refer to a horizontal line segment that overlaps with the x-coordinate
axis as an interval. We say that two intervals overlap if they intersect,
but neither fully contains the other. A graph is called an overlap graph if
there is a one-to-one correspondence between the vertices of the graph and a
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collection of intervals such that two vertices are adjacent if and only if their
corresponding intervals overlap [5]. The problem of finding a maximum
independent set in an overlap graph can be solved in O(dn) time [1], where
d is the density, i.e. the maximum number of intervals including any point.
Let us now reduce the 1RCRp problem to the problem of finding a max-
imum independent set in an interval graph. Consider an instance for the
1RCRpR problem. Each color assigned to two entries in the array is repre-
sented by an interval whose extreme points are the centers of the two array
entries. Let G be the overlap graph induced by the set of intervals and let
S be a maximum independent set for G. A solution to the 1RCRg problem
from § is constructed as follows. For each vertex v in S we define the rect-
angle D, which minimally covers both elements in the array colored by the
color of the interval that v represents. The r-compression consists of all the
D, rectangles from largest to smallest followed by a set of 1 by 1 squares
for the remaining elements in the graph. We claim that the r-compression
constructed this way is an optimal solution to the 1RCRg problem.

THEOREM 5. The above procedure solves the 1RCRg and the 1LRCNRpg in
O(dn) time, where n is the number of entries and d is the mazimum number
of “intervals” that include any point.

3. Two dimensional maps

We begin by showing that the 2RCRg problem is NP-hard. This implies
that problems 2RCNRg, 2CRgr and 2CNRp are also NP-hard problems.
With a little adjustment of the proof we show that problems 2CRpp and
2CNRRp are NP-hard problems. We also show that the problems remain
NP-hard even when the number of different colors in M is bounded by a
small constant (2CRg(4) and 2CNRg(2)).

3.1 The 2RCRpg and 2RCNRpR problems are NP-hard

Before we establish that the 2RCRp and 2RCNRp problems are NP-hard,
we define some terms and make some observations.

DEFINITION 2. Let D' be the set of colors that appear in exactly two entries
in M. For each color d € D', let Dy be the minimal rectangle enclosing both
elements colored d in M. Such rectangle is called a minimum 2-element
rectangle.

Note that for any instance of the 2RCRp and the 2RCNRR problem there
exists a minimum r-compression comprised solely of minimum 2-element
rectangles and 1 X 1 squares, otherwise we could shrink the rectangles un-
til all of them are of one of these two types. Furthermore, we can assume
that for each color d € D’ there is either one minimum 2-element rect-
angle, or two 1 x 1 squares assigned this color in the r-compression. We
refer to an r-compression of the above form as a normal r-compression. Let
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Fig. 4: Example of a matrix with its matrix graph.

Dy, (1 < i < k) be the minimum 2-element rectangles in a minimum normal
r-compression. Then the total number of rectangles needed to cover M is
nm — k.

DEFINITION 3. The matrix graph of M, G(M) is a directed graph whose
vertices represent the minimum 2-element rectangles (Dg,d € D') and whose
edges are directed from the vertex representing Dg, to the verter representing

Dy, if and only if the minimum 2-element rectangle Dg, contains an element
in M colored ds.

Since the proof of the following lemma is straightforward, it will be omitted.
Example 2 further illustrates the concepts just introduced.

LEMMA 2. The graph G(M) has an induced acyclic subgraph with p vertices
if and only if there exist an r-compression of M with (nm —p) c-rectangles.

EXAMPLE 2. Fig. 4 illustrates an example of a matrix M and its corre-
sponding matrix graph G(M). An undirected edge in the figure represents
two way edges. The maximum acyclic subgraph contains two vertices. Thus
the minimum number of rectangles needed to cover M is 4.

We show that the 2RCRg problem is NP-hard by reducing a restricted
version of the exact cover by three sets to it. We shall refer to this problem
as the RXC3 problem. The RXC3 problem was shown to be NP-complete
in [6].

DEFINITION 4. Restricted exact cover by three sets (RXC3): Given a
finite set of elements X = {z1,...,%34} and a collection S = {S; |1 <t <,
S; C X and | S¢ |= 3} of 7 = 3q S-sets (3-element subsets of X ) in which
each element of X appears in exactly three S-sets and no element of X
appears more than once in the same S-set. The RXC3 problem consists of
determining whether or not S has an exact cover for X, i.e. a subcollection
S’ of S such that every element of X occurs in ezactly one member of S'.

First we transform the RXC3 problem into the problem of determining
whether or not an undirected graph has an independent set of some given




14 BODLAENDER, GONZALEZ, KLOKS

Yt,5 Ye,k Ye,1

Wt €

Fig. 5: X-subgraph and S-subgraph.

size. Then we transform it into the problem of determining whether a di-
rected graph has an induced acyclic subgraph with certain number of ver-
tices. The transformation to our map compression problem is obtained from
the directed graph generated in the last reduction.

Given an instance of the RXC'3 problem we construct an undirected graph
G as follows. For each element z; € X we introduce a subgraph on vertices
z;; and z; ; for j = 1,2,3 as illustrated in Fig. 5 (left). We refer to these
subgraphs as X-subgraphs. For each S-set S; = {z;, z,2;} we introduce a
K3 3 subgraph with vertices y;;, ¥t 4, y¢1, w and € (see Fig. 5 (right)). We
refer to these subgraphs as S-subgraphs.

DEFINITION 5. For each x; € X, let fi(z;) > fa(wi) > f3(z;) be the indices
of the S-sets that contain x;. Since in every instance of the RXC3 problem
no element in X may appear more than once in an S-set, we know that

fi(zs) > falzs) > fa(as).

The graph G has also the following edges between the X-subgraphs and
the S-subgraphs. For z; € X there is an edge between z; ; and Yf,(z:),io for
J = 1,2,3. This completes the definition of the graph G. When X has 3q
elements the graph G has 6-3¢+5-r = 33¢ vertices and 6-3¢+67+3-3¢q = 45¢
edges. The following lemma establishes an important property of graph G.

LEMMA 3. Any independent set of vertices in G has at most 16q vertices.
Furthermore, G has an independent set with 16q vertices if and only if (X, S)
has an exact cover.

PROOF. Suppose G has an independent set L with more than 16¢ vertices.
Let Ly be the restriction of L to the X-subgraphs (i.e., the set of x; ; and

] vertices in L) and Lo be the restriction of L to the S- subgraphs Clearly,
| L|=| Li |+ | Ly |- Let o; be the number of X-subgraphs with exactly
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i vertices in Ly (i = 0,1,2,3). Let 8; be the number of S-subgraphs with
exactly ¢ vertices in Ly (1 = 0,1,2,3). We can assume that ap = 0 as
otherwise the independent set is not maximal, since we can add to the
independent set at least one z i,; vertex in the X- subgraph. Similarly, we

can assume By = 31 = 0. It is s1mple to show that the following statements
hold.

3¢ = og+taztos
3¢ = B2+ P
|Li| = a1+2az+3as
|La| = 2B82+305

Since each y vertex in an S-subgraph that is in Ly is adjacent to an x;;
vertex in an X-subgraph, and each X-subgraph with exactly ¢ (1 < ¢ < 3)
vertices in Ly has at most (4 — ¢) x; ; vertices that are not in L1, we know
that

383 < 3aq + 2a9 + as.

Thus we obtain
|L1 | -+ | Lo |§ 4(a1+a2+a3)+2ﬂ2 = 12q+2ﬂ2.

By assumption | L |> 16¢, so we know that §; > 2¢. Since 3¢ = (2 + 3, it
must be that 83 < ¢. Thus

| L2 |= 202 +303 =6g+ B3 < Tq

and hence | Ly |> 9¢. Since | L1 |= a1 + 2a3 + 33 and 3¢ = o1 + a3 + a3,
we know that
| Ly |= o1+ 2a9 + 3asz < 9q.

So it must be that | L |= 9¢ and | Ly |< 7q. Therefore, | L |< 16¢ which
contradicts our assumption. Hence, any independent set of G has at most
164q vertices.

Let us now show that G has an independent set with 16¢ vertices if and
only if (X, S) has an exact cover. First we show that if (X, S) has an exact
cover, then G has an independent set with cardinality 16¢. From any exact
cover for (X, S) we construct an independent set, T', as follows. Initially T'
is empty. For each S-set in the exact cover we add to T the three y vertices
in the corresponding S-subgraph and for each S-set not in the exact cover
we add to T the w and € vertices. For each element z; and j € {1,2,3}, if
fi(x;) is an S-set in the exact cover, we add to T vertex z ;, otherwise we
add z; ;. It is easy to verify that T is an independent set Wlth 164 vertices.

Now we show that if G has an independent set with cardinality 16¢, then
(X, S) has an exact cover. From the above discussion we know that if G
has an independent set with 16q vertices, then | Ly |= 9¢ and | Ly |= Tq.
Also, by the above discussion we know that a3 = 3¢,a1 = oy = 0,03 =
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Fig. 6: X-subgraph in H.

g and f2 = 2¢q. Consider the set S’ of ¢ S-sets whose corresponding S-
subgraphs have three elements in the independent set of G. Now we show
that S’ is an exact cover for X. All the X-subgraphs have one ] ; vertex
and two x; ; vertices in the independent set, otherwise we can replace an z; ;
vertex by an 5,; 10 the independent set. Therefore any element in X is in
at most one S-set in S’. Now counting the edges between the S-subgraphs
of S’ and the X-subgraphs which have an edge to an S-set of S’ we know
that every element is in exactly one S-set of S’. Therefore, (X, S) has an
exact cover if and only if G has an independent set with 16¢ vertices. O

Now we transform the graph G into a directed graph H as follows. The
vertices of H are the same as those of G. We replace every edge of G by
two way directed edges (one directed each way). Next, in the X-subgraphs
we add edges from xz 1 to z;2 and z;3, and from :cz 5 to x;3. So the X-
subgraphs of H are of 'the form given in Fig. 6 (two way edges are drawn as
undirected edges). The following lemma establishes an important property
of the H graphs.

LEMMA 4. Any induced acyclic subgraph of H has no more than 16q ver-
tices. Furthermore, H has an induced acyclic subgraph with 16q vertices if
and only if graph G has an independent set with 16q vertices.

Proor. Consider an induced acyclic subgraph in H. Clearly, these vertices
induce an independent set in G. Thus the subgraph has at most 16¢ vertices
and if H has an acyclic subgraph with 16¢ vertices then G has an indepen-
dent set of the same cardinality. Now suppose G has an independent set
with 16¢ vertices. Since the extra edges we have added to the X-subgraphs
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Fig. 7: X-subgraph and rectangle representation.

do not by themselves form a cycle, we have that the independent set induces
an acyclic subgraph in H. O

Now we construct a matrix M such that G(M) = H and the size of M
is bounded by a polynomial in ¢ (remember that | X |= 3¢). We refer to
this construction as the rectangle representation of H. Consider the graph
H. Each vertex v of H is represented by a rectangle D, whose two diagonal
corners (bottom-left and top-right) are colored v. First consider the X-
subgraphs. The rectangle representation of these subgraphs is given in Fig.
7. The solid dots in the rectangles indicate which of the rectangle corners
are to be colored with the color representing the vertex in G. It is easy to
verify that these rectangles correctly represent the interactions in the X-
subgraph. Now consider the S-subgraphs. The rectangle representation of
these subgraphs is given in Fig. 8.

Remember that vertex x;; is adjacent to vertex yy,(s,):, for all z; € X
and 7 = 1,2,3. To account for these interactions, we simply assign the
lower left corner of the rectangle for x; ; so that it just includes the right
upper corner of ¥y, (z,),- This is illustrated in Fig. 9. Now we rearrange
the rectangles in a matrix M in such a way that only the interactions given
by H are allowed. In order to do this we first partition M as in Fig. 10.
In this figure the S;’s are the rectangle representations of the S-subgraphs
and the X;’s are the upper parts of the rectangle representations of the
X-subgraphs. Note that in order to get the correct X-subgraph we have
to be sure that x; is adjacent to the S-subgraph which appears lowest in
the matrix (0therw1se x}q, j, and x5 3 will not form a triangle, see Fig.

9). This, however, is guaranteed by choosing the functions fj(=;) such that
fi(z;) > fami) > f3(z;). From our construction it follows that the graph
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Fig. 8: S-subgraph and rectangle representation.

Fig. 9: Connecting zi,; and yy, (a,),i-
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Fig. 10: Partition of M.

for the rectangles (D,)yecp equals H. The remaining matrix entries in M
are filled with colors that appear only once.

It is clear that one can construct the matrix M with dimensions bounded
by a polynomial in ¢ (the input size of RXC3 is O(g)). By Lemma 2,
Theorem 6 and Lemma 3 this completes the proof that the 2RCRg problem
is NP-hard. This result and obvious extensions are stated in the following
theorem.

THEOREM 6. The 2RCRpg, 2RCNRE, 2CRgr and 2CNRpg problems are NP-
hard.

PROOF. By the above discussion. [J

3.2 The 2CRrp and 2CNRgp problems are NP-hard

In this section we consider the 2CRgrp and 2CNRgp problems. We show
that the 2CRgrp problem is NP-hard by reducing the RXC3 problem to it.
As a starting point we take the partly filled matrix M constructed from the
rectangle representation of the graph H in the reduction for the 2RCRg
problem. We may assume that two occurrences of the same color do not
occur in the same row or column of M. We proceed to replace every element
M;; by a 2 x 2 submatrix S;;. Consider the two occurrences of a color ¢ in
M say (i,7) and (k,1). Without loss of generality assume ¢ < k. The two
squares in S;; and Sy farthest from each other are colored c. The other
three squares in .S; ; are colored ¢. The three occurrences of ¢ are contained
in D,, (the minimal rectangle which encloses both elements c). We call the
matrix constructed in this way A. The remaining entries in A is filled with
colors that are used only once.

We have three types of colors in A. One type corresponds to vertices of
the graph H. We refer to these colors as v-colors. Another type are the
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colors that appear three times in A. These are L-colors. The last type of
colors are those that appear only once and we call these d-colors. Let d be
the number of d-colors in A and let n be the number of vertices of H (so
there are n v-colors in A).

LEMMA 5. The graph H has a mazimum induced acyclic subgraph of p ver-
tices if and only if there is an rp-compression of A such that the total number
of corners is 12n — 2p + 4d.

ProOF. Suppose H has a maximum induced acyclic subgraph S of p
vertices. We construct an rp-compression of A as follows.
(1) Find a sequence of rectangles covering the v-colors representing the
vertices of §. There are p of these rectangles and the total number of
corners is 4p.

(2) The L-colors inside these rectangles are covered by L-shaped RP’s,
with 6 corners each. There are p of these RP’s and the total number
of corners is 6p.

(3) The other L-colors are covered by 2 X 2 squares. There are n — p such
squares and the total number of corners is 4(n — p).

(4) The rest of the v-colors are covered by two 1 x 1 squares. This gives
2(n — p) such squares and the total number of corners is 8(n — p).

(5) Each d-color is covered by a 1x1 rectangle. There are d such rectangles
and the total number of corners is 4d.
The rp-compression has at total of 12n — 2p + 4d corners.

Now consider an rp-compression of A with 12n — 2p + 4d corners. We
first show that we can assume that all v-colors are covered by rectangles.
Consider the RP’s covering a v-color a. If the number of corners of these
RP’s is at least 8 then we can replace these RP’s with two 1 x 1 squares.
The only other case is when a is covered by an L-shaped RP with 6 corners.
Now consider the L-color inside D,, say a’. Clearly, the RP’s covering a’
must have at least 6 corners (one L-shape rectilinear polygon). Thus in total
we have at least 12 corners to cover a and o’. Replace the L-shape covering
a by two 1 X 1 squares, and the RP’s covering a’ by one 2 x 2 square. This
new covering of a and a’ by rectilinear polygons has a total of 12 corners.
Thus we can assume that all v-colors are covered by rectangles. Of course
we can also assume that the rectangles are minimal, i.e. a v-color a is either
covered by D, or by two 1 x 1 squares. Now consider the v-colors of H
which are covered by one rectangle. Clearly, these vertices do not contain a
cycle in H. It follows that the number of these colors is p. O

This lemma has essentially established the NP-hardness of the 2CRgrp
problem. Note that for the matrix A we have constructed the problems
2CRgp and 2CNRpgp are identical. Hence we have the following theorem.

THEOREM 7. The 2CRgp problem and the 2CNRgp problem are NP-hard.

Proor. By the above discussion. O
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4. Maps with a constant number of colors

In the previous section we showed that the 2CRg, 2CNRg, 2CRgp and
2CNRgp problems are NP-hard. However, in many practical cases the num-
ber of colors is small compared to the size of the matrix. So the question
remains whether a restriction on the number of colors makes the problem
computationally tractable. In this section we show that even the 2CRg(4)
and the 2CNRg(2) problems are NP-hard problems. In addition, we provide
evidence that the 2CNRg(2) problem is hard to approximate.

4.1 NP-hardness of the 2CRg(4) problem

In this section we show that the 2CRp(4) problem is NP-hard by reducing
the feedback vertex set to it. First we define the feedback vertex set problem,
formulate related problems and prove some useful properties about them.
Then we present a polynomial transformation and prove a useful property
about it. The main theorem, whose proof is based on these results, is given
at the end of the section. The feedback vertex set problem, formally defined
below, is NP-complete [4].

DEFINITION 6. Feedback vertex set.
Instance: A directed graph H = (Vg, Ex), and integer | <| Vg |.
Question: Is there a set W C Vy such that H[Vyg — W] (i.e., the graph
induced by the set of vertices in Vg — W ) 1s acyclic and | W |< 12

Let H be any graph and an [ be an integer. The graph G = (V, E) is
defined as the disjoint union of two copies of H, and let k£ = 2{. Obviously,
G has a feedback vertex set of size k, if and only if H has a feedback vertex
set of size {. Furthermore, the minimum size of a feedback vertex set in G
is even.

From G we construct the directed graph G' = (V3 U V3, E'), where
‘/7;={U;:IUjGV}fOI'Z.=1, 2, and E' = {(v},v}) | v; € V}U{(v 0
(vj,vr) € E}. Obviously, G’ is bipartite, and (’U e E = (v} ]) g E'.
Let n = [V4| = |V3).

LEMMA 6. The following statements are equivalent:
(1) G has a feedback vertez set W of size at most k (i.e. a set W CV,
| W |< k and G|V — W] acyclic).
(2) G’ has a feedback edge set F of size at most k (i.e. a set F C E' such
that | F |< k and directed graph (V1 U Va, E' — F) is acyclic).
(3) G' has a feedback vertex set W' of size at most k.
PROOF. (1) (2): Let F = {(v], 2 v € W} (2) = (3): Let W' =
{vllEl 2[( vy, J)EFor( i v}) € F1}. (3) = (1): Let W = {v; | J;[v} € W'
or v} € W’]} O
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Before we define the matrix M for the 2CRg(4) problem that we construct

from G’, we introduce a set of objects. We define a horizontal (vertical) strip
as a set of adjacent matrix entries located along the same row (column),
and a square as a submatrix of adjacent rows and columns with the same
number of rows and columns. The first object is a white square that contains
all the matrix elements in M. For each vertex v} € Vi we define a red
horizontal strip, and for each vertex v? € V; we define a green vertical
strip. These objects are referred to as the horizontal and vertical vertex-
strips, respectively. The area of a strip that represents vertex v € V1 U Vj
is denoted by A(v). There are 4L(n + 1) objects called eztra-strips, where
L = 8k 4+ 9. Half of these extra-strips are red horizontal strips, and 2L
of them are located above the topmost horizontal vertex-strip, in between
each pair of adjacent horizontal vertex-strips, and below the bottommost
horizontal vertex-strip. Similarly, there are 2L vertical black extra-strips
located to the left of the leftmost vertical vertex-strip, in between each pair
of adjacent vertical vertex-strips, and to the right of the rightmost vertical
vertex-strip. Each horizontal strip intersects all the vertical strips. Between
every pair of horizontal (vertical) strips there is at least one row (column)
without a horizontal (vertical) strip. Further, the leftmost and rightmost
(topmost and bottommost) matrix entry of any two horizontal (vertical)
strips are located on different columns (rows).
For vertices v}, v3, if (v},v}) ¢ E and (v},v}) € E, define a black square
of size 2i 4+ 2j — 1 centered at the matrix entry in A(v}) U A(v]z). There
is enough space between the horizontal (vertical) strips so that the black
squares do not intersect nor are neighbors of the extra-strips.

Partition each of the sets with 2L consecutive extra-strips (i.e., the ones
between consecutive vertex-strips) into two sets of L consecutive extra-strips.
Let S; and S2 be the resulting sets.

Let us now define from these objects the matrix M. The first rule that
applies to a matrix entry defines its color.

(1) The matrix entries in a black square are colored black.
: 1 2y ; 1,2
(2) The matrix entry A(v;) U A(vf) is colored green when (v}, v?) € E.

(3) The matrix entry in A(v}) U A(v?) is colored red when (v3,v}) € E.
Note that by construction (G’) it cannot be that case 2 and 3 apply
to the same matrix entry.

(4) Color red each matrix entry in A(v}); and color green each matrix
entry in A(vjz).

(5) Color red each matrix entry in a horizontal extra-strip in S5.
(6) Color black each matrix entry in a vertical extra-strip in Ss.
(7) Color red each matrix entry in a horizontal extra-strip in Sj.
(8) Color black each matrix entry in a vertical extra-strip in Sy.

(9) Color white each matrix entry in the white square.
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Fig. 11: Example of map constructed.

The construction is illustrated with an example in Fig. 11 (only the right
upper part of the figure is shown.) Note that the only objects that preserve
their colors in M are the black squares. Let B = n? — |E'| be the number of
black squares (remember that these are not 1 by 1 squares). In the following
lemma we establish the basic property of our transformation.

LEMMA 7. G has a feedback vertex set of size at most k if and only if there
is an r-compression for the matriz M with at most B+2n+1+4L(n+1)+k
c-rectangles.

PROOF. =: By Lemma 6 we know that if G has a feedback vertex set
of cardinality at most k& then G’ has a feedback edge set of size at most
k. Let F be a feedback edge set of G’ of size at most k. Let x1,z2,... %2,
be a topological sort of the vertices in the graph G' — F = (ViU V,, E' —
F). Let us now construct an r-compression for the matrix M with at most
B+ 2n+1+4L(n+ 1) + k c-rectangles. The first c-rectangle is the white
square that covers all the matrix elements. This is followed by a sequence
of c-rectangles that correspond to each of the vertical black extra-strips in
S1, then to each of the horizontal red extra-strips in S;, then to each of
the vertical black extra-strips in Ss, and then to each of the horizontal red
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(b)

(@

© @

Fig. 12: Example of tokens. (a) The upper side of a black square. (b) Pairs of pixels,
corresponding to the token representing this upper side. (c) Rectangles A and B satisfy
the token. (d) Rectangles C and D weakly satisfy the token.

extra-strips in Sy. The next 2n c-rectangles cover exactly the matrix entries
for the vertex-strip for A(z1), then A(z2), and so on. These c-rectangles are
followed by a sequence of B c-rectangles each corresponding to one of the
black squares. At this point the only matrix elements that have not been
assigned their correct color are matrix elements located at the intersection
of the red horizontal vertex-strip for vertex z; € Vi with a green vertical
vertex-strip for the vertex x; € V3, and either ¢ < j and (z;,x;) € E (that
is the position is green but must be red) or j < ¢ and (;,z;) € F (then the
position is red but must be green). In both cases the edge (either (z;,z;) or
(xj,2;)) belongs to the feedback edge set F. So | F |< k matrix elements
have not been assigned the correct color. This can be remedied with | F |
c-rectangles of size 1 by 1. Therefore, there is an r-compression with at most
B+2n+14+4L(n+1)+ k c-rectangles.

<«: Assume that there exists an r-compression with at most B+2n+1+
4L(n + 1) + k c-rectangles. From Lemma 6 we know that to complete the
proof of the lemma we only need to show that there exists a feedback edge
set of G’ of size at most k.

To establish this fact we make extensive use of tokens. A token represents
a collection of pairs of adjacent matrix entries. All the first elements of the
pairs in a token have the same color in M, and all the second elements of the
pairs in a token have the same color in M, but the two colors are different.
There are two types of tokens: horizontal and vertical. All first elements of
pairs in a horizontal (vertical) token lie in the same row (column), and all
the second elements lie in the row (column) below (to its right).
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Fig. 13: A c-rectangle that satisfies the upper side of a vertical strip and also colors pixel
(b) black.

We use Ty (Ty) to represent the following set of horizontal (vertical)
tokens. Each strip (square) has two tokens in Ty and two tokens in Ty,
each corresponding to a side of the strip (square), except for the white
square. The colors in these tokens are always chosen to be the unordered
pair { white, color of the strip or square }.

For each matrix entry pair in each token there must be at least one c-
rectangle in any r-compression that contains exactly one of the two matrix
entries and the color of the c-rectangle is the same color as the matrix entry
it includes. Any such c-rectangle is said to satisfy the token. A c-rectangle
is said to weakly satisfy a horizontal (vertical) token, if it satisfies the token,
or it has matrix entries located on exactly one of the two rows (columns)
where the matrix entries of the pairs in the tokens are located. In other
words, a c-rectangle weakly satisfies a horizontal token, if it would satisfy
the token after a horizontal shift and/or a color change. For an example,
see Fig. 12.

Note that each token in Ty and in Ty must be satisfied by at least one c-
rectangle in an r-compression. We say that a (side of) a c-rectangle satisfies
a side of a strip, if it satisfies the corresponding token. It is important to
note that we have defined all strips and squares in such a way that all the
tokens in Ty and Ty are different, and each c-rectangle can (weakly) satisfy
at most two horizontal and two vertical tokens. This property is exploited
throughout our proof. It is simple to show that there are 2B +4n+8L(n+1)
tokens in Ty, and in 7Ty

From the above observations it is simple to see that an r-compression
satisfies all tokens only if it has at least B +2n+4L(n+ 1) c-rectangles. To
this number, we should add the number of times a side of c-rectangle weakly
satisfies a token that has already been satisfied, or does not satisfy a token
at all, divided by four. So, we may assume that in our r-compression at
most 4(k + 1) sides of c-rectangles weakly satisfy an already satisfied token
or satisfy no token at all.
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Let us now determine the order in which the c-rectangles that color the
extra-strips appear in the r-compression. An extra-strip is said to be well
behaved in an r-compression, if there is a c-rectangle in the compression equal
to the strip (same area and color), none of the tokens associated with the
strip are satisfied more than once, and the tokens corresponding to the long
sides of the strip are not weakly satisfied more than once. In other words,
an extra-strip is not well behaved, if there is no c-rectangle with area and
color exactly equal to this strip, or at least one of its sides is satisfied more
than once, or at least one of its long sides is weakly satisfied more than once.

We claim that the number of strips that are not well behaved is at most
8(k+1). First we establish that for each extra-strip that is not well behaved,
either one of the tokens corresponding to a side of the extra-strip is satisfied
or weakly satisfied at least twice, or there is at least one side of a c-rectangle
that can be associated with with the extra-strip and possibly associated
to another extra-strip that does not satisfy any token (the associated is
between a side of a c-rectangle and extra-strips). There is nothing to prove
when the the extra-strip is not well behaved and one of its tokens is satisfied
or weakly satisfied at least twice. Let us consider the other case. Suppose
that the tokens of the extra-strip are satisfied or weakly satisfied only once
and there is no c-rectangle in the r-compression equal to the extra-strip.
We now associate at least one side of a c-rectangle that does not satisfy
or weakly satisfy a token with this extra-strip. This side of the c-rectangle
may be associated with at most two extra-strips. We only discuss the case
when the extra-strip is a vertical strip, since the proof for the other case is
similar. Consider the c-rectangle that satisfies the upper small end of the
extra-strip. Since it is satisfied or weakly satisfied only once, we know that
the c-rectangle must be black. If it has width one, then we know that the
other small end does not satisfy any token, since the c-rectangle does not
cover exactly the extra-strip. Otherwise (the width is greater than one), a
situation like in Fig. 13 arises. Matrix entry (b) is colored black just after
the black c-rectangle appears in the r-compression, but must end up white.
If it is colored white by a c-rectangle that also contains (a), then the upper
side of the extra-strip has to be satisfied a second time, which by assumption
does not occur. Therefore, the upper side of the c-rectangle R that colors
(b) white does not satisfy a token. This upper side of R is associated with
the extra-strip. Since the same situation can occur on the other side of R,
the same side of R may be associated with another extra-strip. It is simple
to see that such side is never associated more than twice.

From the above discussion we know that for each extra-strip that is not
well behaved we can add at least 1/8 of an additional c-rectangle to a number
of B+2n+4L(n+1). Since there are no more than B+2n+1+4L(n+1)+k
c-rectangles in the compression, it must be that there are at most 8(k + 1)
not well behaved strips. Therefore, each collection of 2L successive extra-
strips contains at least one well behaved strip in S1, and one well behaved
strip in S3. It is important to note that when an extra-strip is well behaved
all matrix elements adjacent to a visible matrix entry (by visible matrix
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Fig. 14: The horizontal strip is drawn before the vertical strip.

entry, we mean that the color of the matrix entry is the same as the one of
the extra-strip) in this extra-strip must have the correct color when the c-
rectangle that color exactly the extra-strip appears in the r-compression and
such entries may not be colored by a c-rectangle afterwards. This is because
a token corresponding to a side of the extra-strip would be satisfied for a
second time, which contradicts the definition of a well behaved extra-strip.

Next, we consider the order in which the c-rectangles for the well behaved
extra-strips appear in the r-compression. Consider a well behaved horizontal
extra-strip s € Sp, and a well behaved vertical extra-strip s’ € S;. By
construction the matrix entry that lies on both strips is colored red. In case
the c-rectangles that covers exactly s’ appears in the r-compression after
the c-rectangle that covers exactly s, then the matrix entry is black after
the c-rectangle that covers s’ exactly (see Fig. 14). If it is recolored by a c-
rectangle of width 1, then a side of the strips is weakly satisfied for a second
time. Otherwise, at least one of the four matrix entries labeled a, b, ¢, and
d in Fig. 14 is no longer white, which also contradicts the well behavedness
of the strips. Hence, we may assume that the c-rectangles for all the well
behaved vertical extra-strips in S; appear before the c-rectangles of all the
well behaved horizontal extra-strips in S; in the r-compression. The same
argument one can be used to show that the c-rectangles of all well behaved
horizontal extra-strips in S; appear before all the c-rectangles for all the
well behaved vertical extra-strips in Sy, and the c-rectangles for all the well
behaved vertical extra-strips in Sy appear before all the c-rectangles for all
the well behaved horizontal extra-strips in .S5.

Given an r-compression for M constructed from G, we partition the set
of vertices in V; (V) into sets X; and Y (X3 and Y3) such that X; U X is
a feedback vertex set for G. First we define a partition for V7 and Vi, and
then we show that X7 U X is a feedback set for G.

Let us now partition the set of vertices in V; into X; and Y;. Consider the
horizontal red strip corresponding to v} € V4. Vertex v} is added to set X
if there are at least two c-rectangles that either weakly satisfy and have the
color red, or satisfy the tokens corresponding to the upper and lower sides
of A(v}). Otherwise, vertex v} is added to set V3.

We claim that for each vertex v} added to set Y; there is a red c-rectangle
with height one that exactly covers it, and in what follows we use g(v}) to
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Fig. 15: Case 1 in proof.

represent such c-rectangle. By definition a vertex vil is added to set Y;j if
at least one of the tokens in its upper or lower side is satisfied only once
by a c-rectangle R and it is not weakly satisfied by another red rectangle.
Therefore, if R is red it must contain every matrix entry in the strip A(v}),
or if it is white it must contain every matrix entry just above or just below
the strip. We claim that R must be red and have height equal to one.
Suppose this is not the case. There are two different subcases.

Case 1. The c-rectangle R is white. Consider a well behaved vertical
black extra-strip s. Since parts of s visible in M are contained in R, it
must be that the c-rectangle that colors exactly the vertical black extra-
strip must appear after R in the r-compression. Just after such c-rectangle
appears in the r-compression, we have the situation depicted in Fig. 15.
The matrix entry marked (*) must end up colored red. This is impossible
without either coloring (a), (b), (¢), or (d), (which cannot occur due to well-
behavedness), weakly satisfying a side of s, or satisfying both sides of A(v}).
A contradiction. So it must be that R is not white.

Case 2. Suppose that R is red, and its height at least 2. (Le., it does not
satisfy the other side of the strip). A proof similar to the one in case 1 also
leads to a contradiction.

Next, we partition the set of vertices in V5 into sets Xy and Y. Consider
the green strip A(v?), and consider its intersection with the topmost and
the bottommost well behaved red horizontal extra-strip in S3. For each of
these two matrix entries we know that there is at least one green c-rectangle
that recolors the matrix entry after the respective red c-rectangles for the
extra-strip appear in the r-compression. This also holds true for all the other
well behaved extra-strips in S1. These green c-rectangle(s) may not contain
visible area of the already colored well behaved extra-strips, hence they
cannot intersect a strip in S;. Therefore, such c-rectangles cannot intersect
another green strip representing a vertex in V5. So, the only horizontal
tokens these c-rectangles can satisfy are the tokens corresponding to the
upper and the lower side of A(v?).

Count the number of green c-rectangles that appear after the last c-

rectangle that colors a well behaved extra-strip in S7, and that intersect
A(v?) and no other A(v3) (¢ #1). There are two cases:
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Case 1. There are at least two such c-rectangles. Note that in this case
these c-rectangles satisfy together at most two horizontal tokens. Put v? in
set XQ. ’

Case 2. There is only one such c-rectangle R. It follows that R contains
all the matrix entries that are in the intersection of A(v?) and a red strip
that represents a vertex in Vi. Put v? in set Y, and let g(v?) = R

We claim that X7 U X5 is a feedback vertex set, or in other words, that
G[Y; UYa) is acyclic. Define the order function f(v) over the set of vertices
v € Y7 UY; that gives the order in which the c-rectangles g(v) appear in
the r-compression, i.e., f(v) < f(w), if and only if c-rectangle g(v) appears
before the c-rectangle g('w)

Consider an edge (v}, ]) € E' v} €Y7, v € Y,, and assume that f(v}) >
f(v}). Recall that the matrix entry in A(v}) N A(v3) is green in M. After
the c-rectangle g(v}) in the r-compression, this matrix entry is red. Hence,
there'must be a green c-rectangle R’ that appears after g(v}), and intersects
A(v}) and A(v? ) If R’ does not intersect another green vertlcal strip A(v2 ),

(j #J'), then v € Y1, contradiction. Hence, R’ must intersect at least two
different green vertlcal strips. Now after the c-rectangle R’ appears in the
r-compression a part of A(v}) is colored green. Some matrix entries in this
part belong to the tokens representing the long sides of A(v}). It follows
that after the c-rectangle R’ there must be another c-rectangle that satisfies
a token representing a side of A(v?) for a second time, contradicting the
definition of Y.

Next consider an edge (v},v}) € E/, v} €Y1, v} € Y3, and assume that
f(v}) < f(v2). Recall that the matrix entry o in A(vl )N A(v?) is red in M.

After the c-rectangle g(v; %) appears in the r-compression this matrix entry
is green. The red c—rectangle R’ recoloring o must contain the matrix entry
above or below a, otherwise both sides of A(v}) are weakly satisfied by this
c-rectangle. The green c-rectangle R” that recolors this matrix entry above
or below « appears in the r-compression after all the c-rectangles for the
well behaved strips in S1; and hence, may not intersect any vertical strip in
S, and it does not intersect with an A(v]2.,) for j' # j. But g(v}) is another
c-rectangle in the r-compression as R”, so we contradict the definition of Y5.
Hence, X; U X is a feedback vertex set for G.

Finally, we claim that the total number of c-rectangles is at least B +2n +
4L(n+1)+|X1UX5|. This follows from the facts that each horizontal side of
a c-rectangle can satisfy at most one token, that there are 2B+4n+8L(n+1)
tokens, at that with each vertex in X; U X, one can associate uniquely two
sides of c-rectangles that do not satisfy a token, or satisfy a token that is
already satisfied. Therefore, X7 U X} is a feedback vertex set of size at most
k + 1. From Lemma 6, the construction of G from H, and the fact that %
is even, we know that this implies that Xy U X is a feedback vertex set of
size at most k. This completes the proof of the lemma. O

THEOREM 8. The 2CRg(4) problem is NP-hard.
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Proor. We use the above transformation from the feedback vertex set
problem. From the lemma and the fact that the matrix can be constructed
in time polynomial in the size of G, (and hence of H), NP-hardness of 2CRg -
follows even when restricted to four colors. O

4.2 The 2CNRRg(2) problem is an NP-hard

We show that the 2CINRg(2) problem is an NP-hard problem by reducing
the problem of covering a rectilinear polygon with at most k rectangles
(CRP) to it. The CRP problem was shown to be an NP-hard problem in
[2]. First we define the CRP problem and then we present our polynomial
time reduction.

DEFINITION 7. Covering a rectilinear polygon (CRP): Given a recti-
linear polygon RP whose corners are at integer points and an integer k > 3,
the problem consists of determining whether there is a set of k rectangles
that cover RP without covering any point outside RP.

THEOREM 9. The 2CNRRg(2) problem is NP-hard.

PrOOF. We prove this theorem by showing that the NP-complete problem,
CRP, polynomially reduces to the 2CNRg(2) problem. Given any instance
of the CRP problem, denoted by CR, we construct an instance of the 2CNRpy
problem, NR. The two color (black represented by shaded areas and white
represented by blank areas) matrix M for NR is given in Fig. 16, where
the rectilinear polygon for the CRP problem is on the left side of the figure
and a square with k? squares inside it is on the right side. We assume that
k < 2h, where h is the number of corners in the rectilinear polygon, as
otherwise the instance of the CRP problem has an answer yes [10], in which
case we can construct a small instance with an answer yes. Therefore the
construction of the instance takes polynomial time with respect to the size
of the CR instance.

We claim that VR has an r-nr-compression with no more than w = 3k + 3
c-rectangles if and only if CR has a covering with k rectangles. First lets
prove that if CR has a covering with k£ rectangles, then NR has an r-nr-
compression with at most w c-rectangles. We construct an r-nr-compression
with w c-rectangles as follows. The first c-rectangle is colored white and
covers the whole map. Then, 2k+2 c-rectangles colored black are introduced
to color the region inside the large square in the NR instance and from the
k rectangle solution to the CR problem instance we define k c-rectangles to
cover the rectilinear polygon in the NR instance. It is simple to show that
this set of 3k + 3 c-rectangles is an r-nr-compression for CR.

Let us now prove that if VR has an r-nr-compression with at most w c-
rectangles then CR has a rectangle cover with cardinality k. Let R be any
r-nr-compression for CR with at most w c-rectangles. If the c-rectangles
with color black appear before all the ones with color white, then we need
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Fig. 16: Example.

at least k% + 5 c-rectangles. This is greater than w when k > 3. So it must
be that the c-rectangles with color white appear before all the ones with
color black. The first c-rectangle covers the entire map and it is colored
white. To color the black region in the large square in NR, we need at least
2k + 2 c-rectangles. Therefore, at most k c-rectangles are used to color the
rectilinear polygon in VR. These k c-rectangles form a k rectangle cover for
CR.

Hence, NR has an r-nr-compression with no more than w = 3k 4+ 3 c-
rectangles if and only if CR has a covering with k rectangles. This completes
the proof of the theorem. O

From this reduction and the approximation algorithm for the optimization
version of the CRP problem given in [10], one may conjecture that there is
also an efficient approximation algorithm for the 2CNRR(2) problem. Let
us now present evidence to the contrary.

DEFINITION 8. Covering a rectilinear polygon with holes (CRP —
WHY): The CRP—WH problem is the same as the CRP problem, except that
now the rectilinear polygon has holes (each hole is a rectilinear polygon). The
problem consists of covering with k rectangles the interior of the rectilinear
polygon that is not covered by holes.

Since each instance of the CRP problem is an instance of the CRP—-WH
problem, and the the CRP problem is an /NP-complete problem, it follows
that the CRP—WH problem is also an NP-complete problem. In what fol-
lows when we refer to the CRP—WH problem we mean its corresponding
approximation problem. So far, research on developing an efficient approxi-
mation algorithm with a constant approximation bound for the CRP—-WH
problem has been fruitless [3]. What we claim is that if there is an efficient
approximation algorithm for the 2CNRg(2) problem with approximation
bound ¢/, where ¢’ is any constant, then there is an efficient approximation
algorithm for the CRP—WH problem with an approximation bound equal
to ¢, where ¢” is a constant.
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Fig. 1'7: Example.

THEOREM 10. The 2CNRR(2) approzimation problem is as difficult as the
CRP—-WH approzimation problem, i.e., if there is an efficient approzima-
tion algorithm for the 2CNRg(2) with an approzimation bound equal to ¢,
where ¢ is any constant, then there is an efficient approzimation algorithm
for the CRP—WH problem with approzimation bound c’, where ¢" is some
constant.

Proor. Consider any instance the CRP —WH problem and let k& be the
number of rectangles in an optimal cover. From such instance we construct
an instance of the 2CNRg(2) problem as shown in Fig. 17. Clearly, an
optimal solution for it has 3k+2 c-rectangles. Now we run the approximation
algorithm with approximation bound ¢ for the 2CNRg(2) problem. We
claim that all the approximations within ¢’ of optimal are n-nr-compressions
in which the first c-rectangle is white. Therefore, from such approximation
we can generate a good approximation solution to the CRP—WH problem.
The only problem with this reduction is that we need to know the value of &
in advance, which we do not know how to compute in polynomial time. In
order to circumvent this problem we guess the value of k. Wetry k=1, 2, ...,
h*, where h is the total number of boundary and hole sides in the CRP—WH
problem. It is simple to show that k is at most h*. The approximation
algorithm now selects the best of the solutions generated. The remaining
part of the proof is omitted since the details are straightforward. O

5. Discussion

We defined a class of languages (called rectilinear) to describe digitized maps
and classified them based on their level of succinct representation. For one
dimensional maps, we showed that a shortest description can be generated
quickly for some languages, but for other languages the problem is NP-
hard. We also showed that a large number of linear time algorithms for our
languages generate map descriptions whose length is at most twice the length
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of the minimum length description. For all our languages we showed that
the two dimensional map compression problem is NP-hard. Furthermore, for
one of the most succinct of our language we presented evidence that suggests
that finding a near-optimal map compression is as difficult as finding an
optimal compression.

The map compression problem in which the c-rectilinear polygons must be
pairwise disjoint and there is only a fixed number of different colors can be
solved in polynomial time. The algorithm is based on the algorithm given
in [8] and [9]. Unfortunately, such language is not a succinct one.

There are several interesting problems that remain open. The most obvi-
ous, is to develop an efficient approximation algorithm for the 2CRg, since
this involves the most succinct of our languages. Another intersting prob-
lem, is to define other languages that are more succinct than the previous
ones and for which we can develop efficient exact or approximation algo-
rithms. Perhaps, languages based on primitive objects other than rectangles
and rectilinear polygons should be investigated. For example, if the primi-
tive objects are triangles, the resulting languages are more succinct than the
rectangular ones. However, if the primitive objects are squares, the resulting
languages are not as succinct as the rectangular ones. Other primitives are
ellipses, simple polygons and circles. Our NP-hard proofs can be adapted
to show that these versions of our problems in which the primitive objects
are triangles and ellipses are also NP-hard. For brevity we do not include
these results.

There are many ways to view approximations to these problems. A way
different to the one explored in this paper, is to relax the restriction that
one can generate the map exactly from the compression. Certainly, such
languages would be more succinct than the ones defined in this paper; how-
ever it is not clear if shortest descriptions in these languages would be any
easier to construct. What we know is that if one allows compressions from
which we can generate maps that differ from the original map in at most
k entries, the corresponding map compression problems are also NP-hard.
This can be established by using arguments similar to those in this paper.
Another way to view approximations is to find a decomposition in which the
error (difference in absolute value between the true color and the generated
color) is bounded by some constant. Of course, if the error is very small,
the resulting problems are also NP-hard, but when the error is allowed to
be large the approximation problem can be solved in polynomial time. It is
interesting to investigate the trade off between quality of approximation (in
a visual sense) and the time required to generate such solutions by different
heuristic methods.

In this paper we concentrated on one and two dimensional maps. An-
other interesting problem, which is as hard as the ones discussed in this
paper, is the three dimensional map compression problem. This problem
has applications in terrain data as well as in “movies”, which we defined as
a sequence of two dimensional maps or frames. Compressions in this case
would be important when there is not too much difference between adjacent
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frames. Perhaps, for certain “movies” even simple heuristics could compress
by a significant factor the amount of data needed to store or transmit this
information. '

(1]
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