Flowship and Jobshop Schedules: Complexity and Approximation

Teofilo Gonzalez; Sartaj Sahni
Operations Research, Vol. 26, No. 1, Scheduling. (Jan. - Feb., 1978), pp. 36-52.

Stable URL:
http://links.jstor.org/sici?sici=0030-364 X %28197801%2F02%2926%3A1%3C36%3 AFAISCA%3E2.0.CO%3B2-6

Operations Research 1s currently published by INFORMS.

Your use of the JISTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/informs.html.

Each copy of any part of a JISTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www jstor.org/
Tue Nov 28 00:12:52 2006

OPERATIONS RESEARCH 0030-364X/78/2601-0036 $01.25
Vol. 26, No. 1, January-February 1978 © 1978 Operations Research Society of America

Flowshop and Jobshop Schedules: Complexity
and Approximation

TEOFILO GONZALEZ and SARTAJ SAHNI

University of Minnesota, Minneapolis, Minnesota
(Received March 1976; accepted, February 1977)

We show that finding minimum finish time preemptive and non-
preemptive schedules for flow shops and job shops is NP-complete.
Bounds on the performance of various heuristics to generate reason-
ably good schedules are also obtained.

FLOW SHOPS and job shops are ordered sets of m=1 processors (or
machines), (Py, - -+, P»). In the case of a flow shop the processing
time required by task 7 of job 7 is denoted by ¢;,;, 1 <j<m. For any job
1, task j is to be performed on processor P;. In the case of a job shop the
processing time required by task j of job 7 will be denoted #,:,;. Task 7
is to be performed on processor k. In this case, no restriction is placed on
the number of tasks a job may have. In the case of both flow shops and
job shops, for any job 7 the processing of task j, =2 can begin only after
task 7—1 has been completed. The finish time, FT(S), of a schedule S
is the time at which all tasks of all jobs have been completed (it is assumed
that the schedule starts at time zero). If f;(S) denotes the time at which
all tasks of job 7 have been completed in schedule S, then clearly FT(S)
=max; {f:(S)}. An optimal finish ttme (OFT) schedule is one that has
the least finish time among all feasible schedules. For any schedule S, the
mean flow time, MFT(S), is defined to be the quantity E f:(8)/n. An
optimal mean flow time (OMFT) schedule is one that has the least mean
flow time among all feasible schedules. Finally, for both of the models
under consideration, we shall distinguish between preemptive and non-
preemptive schedules. The reader is referred to [2] and [3] for more details
on the scheduling models being considered. Gonzalez and Sahni [6] study
a related model, the open shop.

Several strategies for obtaining OFT and OMFT schedules for flow
shops and job shops have been advanced (see, for example, [2] and [3]).
Despite all the research effort devoted to these problems, there are no
efficient (polynomial time) algorithms known.

In [1] and [4] it is shown that these problems are NP-complete when one
is restricted to non-preemptive schedules. In this paper we extend the

36

Scheduling: Complexity and Approximation 37

NP-completeness results of [1] and [4] for OFT non-preemptive schedules
to the case of preemptive schedules. A more restricted version of the OFT
non-preemptive flow-shop problem is also shown to be NP-complete. The
best known algorithms for all known NP-complete problems have a worst
case computing time larger than any polynomial in the problem size. Fur-
thermore, any NP-complete problem has a polynomial time algorithm iff
all the others also have polynomial time algorithms [9-11]. Hence, by
showing certain flow-shop and job-shop problems to be NP-complete,
we are in some sense establishing that it will indeed be very difficult to
find efficient algorithms for them. In fact, empirical evidence and intuition
suggest that NP-complete problems are not solvable in polynomial time.

Since it is unlikely that efficient algorithms for the problems of Section
1 exist, an alternate approach, obtaining approximately optimal schedules,
is examined in Section 2. In this section we obtain bounds comparing opti-
mal and arbitrary busy schedules (to be defined later) for flow shops and
job shops. We also present heuristics that result in schedules with a mean
finish time and finish time better than the worst busy schedules. Finally, a
comparison is made between the finish times of preemptive and non-pre-
emptive schedules.

In obtaining the NP-completeness results of the next section, we shall
make use of the following NP-complete problems.

Partition. A multiset S={a, - - -, a,} is said to have a partition if there
exists a subset, u, of the indices 1 through n such that D . a:= (D1 a:)/2.
The partition problem [9] is to determine whether an arbitrary multiset S
has a partition. The {a:} may be assumed to be integers.

3-Partition. Given a positive integer B and a multiset of integers
A={ay, -+, an} withm=3n, D 1 a;=nB and B/4<a;<B/2 for 1 <i<m,
does there exist a partition of A into 3 element sets {4, ---, A,} such
that D .ea; a=B for i=1, - - -, n? This problem is shown NP-complete in
[4], even if the problem size is measured by) a.. The difference between
NP-completeness with respect to binary encoding and the stronger NP-
completeness with respect to unary encoding is important. The partition
problem can be solved in time 0(n Y a:). For 3-partition there exists an
algorithm of complexity polynomial in # and) a if and only if there is a
polynomial time algorithm for every NP-complete problem.

Since NP-complete problems are normally stated as language recogni-
tion problems, we restate the OFT problem as one.

FOFT: Given an m-processor, n-job flow-shop problem with task times
tii, 1£j<m and 1=7=<n and a number 7, does it have a schedule with
finish time <7?

When it is necessary to distinguish between preemptive and non-pre-
emptive schedules, we shall prefix FOFT with the type of schedule being
considered.

38 Teofilo Gonzalez and Sartaj Sahni

JOFT: This is the same as FOFT except it refers to a job shop.

We shall also make use of the operator “a,” as in ®1a®; to mean problem
®1 polynomially reduces to problem ®,. Informally, this will mean that if
®. can be solved in polynomial time, then so can ®;. By P=NP we shall
denote the question: Is the class of non-deterministic polynomial time
languages the same as the class of deterministic polynomial time lan-
guages? For more details regarding our notation on NP-complete problems,
the reader is referred to [9-11].

1. COMPLEXITY OF PREEMPTIVE AND NON-PREEMPTIVE SCHEDULING

Flow Shop

OFT non-preemptive schedules for the two-processor (m=2) flow shop
can be obtained in 0(n log n) time using Johnson’s algorithm (see [8 or 3,
p- 83]). For the case m=2 one can easily show that an OFT preemptive
schedule has the same finish time as an OFT non-preemptive schedule.
Hence, Johnson’s algorithm also gives an OFT preemptive schedule. A
linear time algorithm is presented in [6], which guarantees OFT preemptive
and non-preemptive schedules for the two-processor open shop. It is in-
teresting to note that by eliminating the task ordering, a more efficient
algorithm is obtained. In this section we shall show that finding OFT
preemptive and non-preemptive flow shop schedules for m>2 is NP-
complete. This is true even when the jobs are restricted to have at most
two nonzero tasks each. This then gives us the simplest case of the flow-
shop problem that is NP-complete and for which no polynomial algorithm
is known. (Note that when jobs have only one task each, OFT schedules
may be trivially obtained.) When the complexity of the algorithm is
measured in terms of the sum of the lengths of the tasks, the flow shop
problem remains NP-complete, as shown in [4]. This result is extended for
preemptive schedules. The extension, however, requires the use of a job
with three tasks. In [6] it is shown that for m>2 OFT preemptive schedules
for the open shop can be obtained in polynomial time. For non-preemptive
schedules, the problem remains NP-complete.

TuEOREM 1. FOFT with m=3 and no job having more than two nonzero
tasks ts N P-complete.

Proof. The proof is presented as two lemmas. Lemma 1 shows that
Partition « Preemptive FOFT. Lemma 2 shows that Preemptive FOFT
i8 recognizable in nondeterministic polynomial time. The same proof also
shows that non-preemptive FOFT is also NP-complete.

LemMA 1. Partition « preemptive FOFT with m =3 and at most two nonzero
tasks per job.

Scheduling: Complexity and Approximation 39

Proof. From the partition problem S={a, - --, a,} construct the fol-
lowing preemptive flow-shop problem, FS, with n+2 jobs, m =3 machines
and at most 2 nonzero tasks per job: t,;=a:; ,:=0; &,,=a;, 1=iZn
tl,n+1—T/2 tz,n+1—T; t3,«,,+1—0 tl,n+2—0 tz,n+2—T ta,n+2—T/2 where
T=>1"a;and r=2T.

We now show that the above flow-shop problem has a preemptive
schedule with finish time <27 iff S has a partition.

(a) If S has a partition u, then there is a non-preemptive schedule
with finish time 27'. One such schedule is shown in Figure 1.

(b) If 8 has no partition, then all preemptive schedules for FS must
have a finish time >27. This can be shown by contradiction. Assume that
there is a preemptive schedule for F'S with finish time <27. We make the

Pt SV R
R \\\ /// o //////

ieu} iiu}
¢ \ i/\/\/\()?\ \“f'z KA ¥ AN

0 T/2 T 31/2 2T
Figure 1

following observations regarding this schedule: (i) task f1,,,1 must finish
by time T (as tynya=T and cannot start until ¢, finishes); (ii) task
ts.n+2 cannot start before 7' units of time have elapsed as fz,n 0= T.

Observation (i) implies that only T/2 of the first 7' time units are free
on machine one. Let V be the set of indices of tasks completed on machine
1 by time T (excluding task t1,n41). Then D ey t1,:<7T/2 as S has no par-
tition. Hence Y ¢y t3,:>T/2. The processing of jobs not included in V
cannot commence on machine 3 until after time 7 since their machine 1
processing is not completed until after 7. This together with observation
(i1) implies that the total amount of processing left for machine 3 at time
T i8 tmta+ D iev ta,s>T. The schedule length must therefore be greater
than 27.

The following result, which follows from Lemma 1, is also obtained in
[1]. Their proof is similar.
CoROLLARY 1. Partition « non-preempiive FOFT with m=3 and at most
two nonzero tasks per job.

Proof. The construction of Lemma 1 yields a flow-shop problem that

40 Teofilo Gonzalez and Sartaj Sahni

has a non-preemptive schedule with finish time 7 iff the corresponding
partition problem has a partition.

LeEmMA 2. Preemptive FOFT is in NP.

Proof. One may easily construct a non-deterministic Turing machine
that guesses a preemptive schedule and verifies that it is of length <r.
In order for this Turing machine to be of polynomial complexity, we must
show that every flow-shop problem has an optimal preemptive schedule
with a polynomial number of preemptions. We show this by construction.
Let R be an optimal preemptive schedule for an m-processor, n-job flow-
shop problem. If on any processor j there is a job k such that between its
preemption and next resumption on that processor no task ¢, t%k is
completed, then this preemption for job % can be eliminated without af-
fecting the schedules for the other processors. That is, if the schedule for
processor j has a subsequence' (L =k, s, f1), (I, 83, f2), * =+, (bt Sr—1, fra1),
(I,=k, s, f-)l:#k, 2<i<r and none of the tasks on j for jobs &, &5, - - - I,
finishes in this interval, then the schedule may be modified to
(ll:k: S1, f1+A)7 (lZ; 82+A; f2+A)) Y (lf—-ly Sf—1+A’ ff) where A=f7'
—5,>0. Repeating this preemption elimination process, one will eventually
obtain a preemptive schedule with the same finish time as R and having at
most n’ preemptions per processor. Hence, there is an optimal preemptive
schedule with at most n*m preemptions.

Next we show that preemptive flow-shop schedules need not have pre-
emptions on the first and last processors. This proof will be of use in Lemma
4,

LemMma 3. Any preemptive schedule S for a flow shop with m processors
can be transformed to a schedule S in which there are no preemptions on
processors 1 and m and FT(8)=FT(8).

Proof. We show that S can be transformed into a schedule S’ that is
no longer than S. We begin by defining two transformations that when
applied to S will not increase the schedule length.

The first transformation, which we shall term type 1, is applied to
processor 1 and is illustrated below. In this case task ¢ was preempted by
tasks in set L. A new schedule is constructed by starting tasks in L in the
same order at time « and then task 7. The finish time of any task in L and
task ¢ is never increased, and thus no precedence constraints for their
corresponding tasks on P, - - -, P, can be violated.

a B o B
1 The triple (I;, s;, f:) means task I; is processed on processor j from s; to f;.

Scheduling: Complexity and Approximation 4

The second transformation (type 2) is applied on the last processor and
is illustrated below. Task ¢ has been preempted by the tasks in set L.
We now modify the schedule so as to finish task ¢ first and then all tasks
in set L in the same order as before. As the start time of all these tasks is
never decreased, none of the precedence constraints for their corresponding
tagks on Py, - -+, Py i8 violated.

o B [B

Pm i L {i i| L

It follows from the definitions of the two transformations that after an
exhaustive application of them, we obtain the schedule 8" and FT(S')
=FT(8).

Our next result shows that preemptive FOFT is NP-complete even
when the problem size is measured as the sum of the lengths of the tasks.
Note that this proof requires jobs with 3 tasks.

TarorEeM 2.2 Preemptive FOFT with m=3 and the problem size being mea-
sured as the sum of the length of the tasks 1s N P-complete.

Proof. The proof is presented in two parts. Lemma 4 shows the reduction
3-partition a preemptive FOFT. Lemma 2 shows that FOFT is recogniz-
able in nondeterminstic polynomial time.

LemwMma 4. 3-Partition o Preemptive FOFT with m=3.

Proof. From the 3-partition problem C=(ai, --- a:,, B) and s=3i,
construct the following preemptive flow shop problem FS, with s+¢+2
jobs and m=3 machines: t,;=8,;=a:; t2,;,=0 for 1=7=<s; t1,,,1=0;
troq1=2B; He1=B; beripn=herin=B; t.i1=2B for 1=5i5t—-2;
tl,a+t=B$ t2,a+z=23; t3,a+t=0; tl,a+t+1=t2,s+t+1=05 t3as+t+1=B; tl,s+t+2=B;
t2,3+t+2=t3,3+[+2=0; where Z:—_q a;=1tB and r=2iB.

We show that the above flow-shop problem has a preemptive schedule
with finish time <2¢B iff C has a 3-partition.

(a) If 3-partition has a solution, then there is a non-preemptive schedule
with finish time =<2¢B. One such schedule is shown in Figure 2. The L/s
represent disjoint sets such that |L|=3, Ui L:={1, ---, s} and D ez, a;
=B fori=1, ---,1.

(b) If C has no 3-partition, then all preemptive schedules for FS must
have a finish time >2¢B.

Assume there is a flow-shop schedule for FS with finish time <2¢B.
Then in this schedule exactly B units of the processing required for jobs

2 M. R. Garey and D. Johnson have independently obtained a proof of this theorem.

42 Teofilo Gonzalez and Sartaj Sahni

1, ---, s must be scheduled to complete on P;, by time 2B. To see this,
observe that if more than B units are scheduled, then none of the P, tasks
of jobs s+2, ..., s+¢ can begin until after time 2B. This implies the
schedule length must be greater than 2{B. On the other hand, if fewer than
B units of the jobs 1, - - -, s are scheduled to complete on P; before 2B,
then there would be some idle time on P; before 2B. This would result in a
schedule of length greater than 2¢B. If one of these jobs (i.e., jobs from
1, .-+, s scheduled on P; before 2B) finishes at time 2B, then its corre-
sponding P; task cannot commence until 2B. This would again result in
idle time on P;. From Lemma 3 we know that no preemptions on P; are
needed. Hence the task that finishes at 2B on P; must be one of length B
and this task starts at B.

Before time 2B on P, the only job available to schedule is #,.41; hence
we should schedule it at that time. On P; we should schedule task £3,:4:41

and the corresponding tasks from 1, - --, s that were scheduled on Py, as
g
2B 4B 2(t-2)B 2(t-1)B 2tB
1 i LR QRN oS - ‘1/{4—// {m}l§x i :/

NN BN - S N\ 84777
St SN S5 ot AR
:({(t(l/ 165,70 x\s*l‘) A</ T “m%ﬁ 5! Y
N7/ &’N \:SSV7%

r

Figure 2

those are the only candidates and we must not introduce idle time on the
processors.

We now need to choose the task of time B for P;. If we schedule job
t1,s4142, then after time 2B we will have idle time and a schedule of length
>2tB. From the symmetry of the problem and by using the same argu-
ments of the first part of the proof, we conclude that ¢, should be sched-
uled from 2(¢—1)B to time 2tB. Then if we schedule £ ... before 2B, we
would have idle time after 2B on P,. So the only jobs with time B on P,
are identical, and we may choose any one from jobs s+2 to s+¢—1.

We have now reduced the problem and need only consider the part of
the schedule from time 2B to 2¢B. Note from Figure 2 that this is the
original problem but with a smaller number of jobs.

Now we continue to apply this transformation, which is clearly the only
possibility, until we cannot find a partition equal to B for the remaining
jobs 1, - -+, s. (Note that this will always happen, as there is no 3-parti-
tion.) In this case we would have >B or <B units to schedule on Py, and
we would introduce idle time on P; or Pj; thus our schedule would have
length >2¢B.

Scheduling: Complexity and Approximation 43

Job Shop

The preceding results trivially imply that a severely restricted form of
the job-shop problem for m>2 is NP-complete. For the job shop with
m=2, however, no polynomial time algorithm is known. In [3, p. 105]
an 0(n logn) algorithm to obtain OFT non-preemptive schedules when
m=2 and the jobs are restricted to have at most two nonzero tasks is
presented. For this case OFT preemptive schedules may be similarly ob-
tained. For the non-preemptive case, it is known [1, 2] that when m=2
and the job mix consists of n—1 jobs with one nonzero task each and an
additional job with three nonzero tasks, then the problem is NP-complete.
We extend this result to the case of preemptive schedules. We show that
finding OFT preemptive schedules when m =2 is NP-complete even when
the job mix contains only two jobs with three nonzero tasks. The proof is

7 ///////Wxg / ///3/;&‘ A \\’\O\N\’\N
LLotl,3 [/

a1 N2 iR N R
b

ey {1 /tzynf{)// t.2 n-: 1\\ SN n+2\
RN x\\\\\

/2 T 4T 9/21 ST
Figure 3

presented in Lemmas 5 and 6. In [4] it is shown that even if the complexity
is measured in terms of the sum of the lengths of the tasks, the two-proces-
sor, non-preemptive job-shop problem is NP-complete. This result is ex-
tended to include preemptive schedules. However, this extension requires
a job with n/3 tasks.

LemwmaA 5. Partition o preemptive JOFT.

Proof. From the partition problem S={a, - -, a,} construct the fol-
lowing job-shop problem JS, with n+42 jobs, m=2 processors and all
jobs having 2 nonzero tasks except for two jobs with 3 nonzero tasks:
tia=l,e=a; for 12420 hnpi=lne=T/2; imu1.3=37T; toins2a=3T;
timioe=tonias="T/2; where T= D 1 a; and r=5T.

We now show that the above job-shop problem JS has a preemptive
schedule with finish time <57 iff S has a partition.

(a) If S has a partition u, then there is a schedule with finish time 57.
One such schedule is shown in Figure 3.

(b) If S has no partition, then all schedules for JS must have a finish
time >57'.

This is shown by contradiction. Assume that there is a schedule for

44 Teofilo Gonzalez and Sartaj Sahni

JS with finish time <57. Observe (i) on processor 2, task #;,,41,2 must be
completed before time 27" and f,,421 before 4T (therefore, before 47
only T'/2 units are free for jobs 1, ---,n), and (ii) on processor 1, t;,,41.3
cannot start until 7 and #,,42,2 cannot start until 37. Hence, processor 1
is committed to processing #in+1,5 and t1,.42.2 after time 7. Since these
two tasks together require 77/2 units, at most 7/2 units are free after
time T for jobs 1, - -+, n. This in turn implies that there are at least 7'/2
units of free time on processor 1 before time 7. Let U be the set of indices
of jobs being processed in the time interval [0, 7] on processor 1. Let
U={iJi€¢ U and i<n}. Since the schedule has a finish time of 5T, there
can be no idle time on either of the processors. Hence, Y :cy t1,:2=T/2.
But the only jobs that can start on processor 1 are those for which #,:,1
has completed. Hence, Y icutr.in= 2 icv t.:2=T/2 must be completed
by T on processor 2. By (i) this processor has at most 7'/2 units free before
4T and hence before T. Consequently, D .cy ts,:1=T/2. This contradicts
the assumption that S has no partition.

COROLLARY 2. Partition a nonpreemptive JOFT.

Proof. Same as above. A simpler proof of this corollary may be found in
[1, 2].

LeMMA 6. JOFT s in NP.

Proof. Similar to that for Lemma 2. Note that the bound on the number
of preemptions will now be n’l, where I is the maximum number of non-
zero tasks for any job.

The NP-completeness result of Lemmas 5 and 6 may be strengthened
by increasing the number of tasks per job. When this is done, it can be
shown that the problem of obtaining OFT preemptive and non-preemptive
finish time schedules for the job shop is NP-complete even when the sum
of task lengths is used as the complexity measure. This result is obtained
by showing, in Lemma 7, 3-partition « preemptive JOFT with m=2.
Lemma, 6 provides the remainder of the proof.

Lemma 7. 3-Partition o preemptive JOFT with m=2.

Proof. From the 3-partition problem C=(a, -, a;, B) and s=3t,
construct the following preemptive job-shop problem JS, with s41 jobs
and m =2 machines: ¢;,;,1=#,:;2=a; for 1 £2¢=<8; tmod 2y F+1,041.1 =B for [=1,
-+, 2t, where D i-j a;=tB and r=2tB.

We now show that the above job-shop problem has a preemptive schedule
with finish time <2¢B iff C has a 3-partition.

(a) If 3-partition has a solution, then there is a non-preemptive schedule
with finish time <2¢B. One such schedule is given in Figure 4. L.’s repre-

Scheduling: Complexity and Approximation 45

sent disjoint sets such that |L; =3, Uiy Li={1, ---,s} and D _,cz, a;=B
for j=1, - - -t

(b) If C has no 3-partition, then all preemptive schedules for JS must
have a finish time > 2¢B.

This can be shown by contradiction. Assume there is a schedule with
time <2tB. Job s+1 has to be scheduled as in Figure 4 if we want a schedule
of length 2¢tB. Now since C has no 3-partition, the first time we attempt
to schedule a set of jobs with sum> B we will introduce idle time on proces-
sor 1 or 2. Hence the schedule must be of length > 2¢B.

Note that this proof requires a job with 0(s/3) tasks, where s+1 is
the total number of jobs in the shop. We could easily extend this result
to the case in which all jobs will have at most 0(s"") tasks for some constant
1. This extension is obtained by proving that m"*-partition is NP-complete.
(The mlll-partition problem is to determine whether the multiset A=

{Wﬂ [1,41/2 (xl,i.ll \:t’l’.gol/,d {{1\(; D ’€+//2t/2/ g:xf:ﬂz;{s{{{t

S SIS) R RIS

7777 KSR ARJAT77 77 K 27777 'vyI Vo777 7"“’,"1

2'57/ 3“1‘% 2,s+1/ fs’;:‘.% YR A€ ¢ 2 i, 2%» 1,541, 2/> f’if

U RSIm A R VLR <R 1 Bk
Figure 4

{ay, -+, an} has a partition {4,, ---, A,} such that each A,; has m"*
elements and all A; have the same sum.) This will result with jobs with at
most 0(s"") tasks for the job-shop problem JS with s+1 jobs. We should
note that the maximum number of tasks per job is not a constant as was
the case in Lemma 5.

2. APPROXIMATE SOLUTIONS

Since the problem of finding OFT and OMFT schedules for flow shops
and job shops is NP-complete (see [4] for NP-completeness of OMFT),
we turn our attention to obtaining schedules whose performance approxi-
mates that of optimal schedules. To begin with, we derive a bound for the
ratio of worst and best schedules for the two performance measures being
considered. We then present approximation algorithms that generate
schedules with a worse case bound smaller than this. In examining “worst”
schedules, we restrict ourselves to busy schedules. A busy schedule is' a
schedule in which at all times from start to finish at least one processor is
processing a task. For a given set of jobs and a schedule S we denote by
FT(S) the finish time of S and by MFT(S) the mean flow time: of S.

LemMa 8. Let 8* be an OMFT schedule for an m-processor, n-job flow (or
job) shop problem. Let S be any busy schedule for this problem. Then MFT(S)/
MFT(S*) =n.

46 Teofilo Gonzalez and Sartaj Sahni

Proof. For each job z define L; to be the sum of its task times.
Let T= Zf L. For any busy schedule S we know that f.(S) <7T. Hence
MFT(8)<T. For 8* we know that f:(S*)=L: and so MFT(S8*)>
> Li/n=T/n. Hence, MFT(S)/MFT(S*) <n.

Since rather crude approximations were used to obtain this bound, it is
surprising that there are OFT schedules S such that MFT(S)/MFT(S*)
=n. In fact, this bound may be achieved by OFT schedules generated by
Johnson’s algorithm on 2 processors [3]. The next example gives an in-
stance of a job mix for which this happens.

Example 1. Consider the 2-processor, n-job flow-shop problem with
task times ti,i=¢, 1<i<n, thy=k and b,.=6, 2<i=n. §<eKk/n’. One

\;\\ \;\ -?> >> :>Q\t \\ .T . ‘2\\3
TR

\ ALY L g N \\\\\\\ <
NOEEEN CRRYRIT
\\\&\ NROAS \\ SN
FT(S) = ¢ + (n-1) &§ + k FT(S) = n(e) + k
(a) OFT schedule from (b) OMFT schedule

Johnson's algorithm
Figure 5

may easily verify that Johnson’s algorithm generates the permutation
schedule S= (1, - - -, n). The mean flow time of this schedule is

MFT(S) = ((k+e)+ (k+e+8)+---+(k+et+(n—1)3))/n
= (k+e)+(n—1)s/2.

An OMFT schedule, S¥, for this job set is obtained by using the permu-
tation 2, 3, -- -, n, 1. The mean flow time of this schedule (Figure 5) is:

MFT(S*) = ((e48)+(2e+8)+- - - +((n—1)e+8) 4 (ne+k))/n
=(n+1)e/2+5+k/n.

Hence MFT(S)/MFT(8*) = [n(k+e¢)+n(n—1)8/2]/[n(n+1)e/2+ns+k].
As ¢ approaches zero this bound becomes lim.., MFT(S)/MFT(S*)
=nk/k=n. Note that this example also shows that the bound of » holds
for job-shop schedules and also when preemptive schedules are allowed.

A simple heuristic that results in schedules with an mjfi that in the
worst case is closer to the optimal than the bound of Lemma 8 (it is as-
sumed that m <n) is obtained by processing jobs in order of nondecreasing

Scheduling: Complexity and Approximation 47

L; (L;=sum of task times for job 7). This heuristic will be referred to as
SPT (see [3], p. 76).

Lemma 9. Let S* be an OMFT schedule for an m-processor, n-job flow (or
job) shop problem. Let S be a SPT schedule for this problem. Then MFT(S)/
MFT(8*)<m.

Proof. Let L; be the sum of the task times for job <. Without loss of
generality we assume that Li<L,<---<L,. Let f:(S) be the finish time
of job ¢ using the SPT schedule S. Then f:(S)< >.i L; and so MFT(S)
=20 (8)/n= (Dt D i1 Li)/n. Let (41,4, --+,4.) be the order in
which jobs finish in the OMFT schedule S* For S* we have f.(S¥)
>3 Liy/m=Y % L;/m and so MFT(S*)=(1/n) 3 i 2 -1 Li/m
Consequently, MFT(8)/MFT(S*) <m.

Example 2. Consider the 2-processor, 2n job-shop problem with task
times &1,:=k, t,;=« for 1<7=<n and t1,;= e, bs,;=k for n+1=2=2n, where
6 < eXk/n’. One may easily verify that the SPT algorithm generates the
permutation schedule S= (1, - - -, 2n). The mean flow time of this schedule
is

MFT(S) = ((k+ea)+(2k+ea)+- -+ (nk+e)
+((n+D)k+e)+- - -+ (2nk+e))/n
=(1/n) > % ik+ea+e.

An OMFT schedule, S*, for this job set is obtained by using the permu-
tation (n+1, 1, n+2, 2, ---,n+4,4, -- -, 2n,n). The mean flow time of
this schedule (Figure 6) is

MFT(8*) = ((k+ &)+ (k+e+ea)+- - - +(nk+ne)+ (nk+netea))/n
=(2 2t k42D i ietnea)/n.

Hence MFT(8)/MFT(8*) = (2 12 ik4+nea+ne)/ (2D iatk+2 Y im de
+ne). As ¢ and e approach zero this bound becomes lim,, ;-0 MFT(S)/
MFT(S8*)=(2n)(2n+1)/(2n(n+1))~2. This may be extended to any
arbitrary m by using the following jobset: &,:=k, t2,i=€, -+ *,tm:=€ for
1=5i2n, hi=e, bi=k- -, tni=€ for n41=Zi=2n, - lii=€m, b
=€m**y tmi=k(m—1)n+1=7i<mn, where e;<e;yy for 1=¢<m and
em&k/n’. This example shows that the bound of Lemma 9 is the best
possible.

Let us now turn our attention to the finish time properties of busy
schedules.

LemMA 10. Let S8* be an OFT schedule for an m>2 processor n-job flow
(or job) shop problem. Let S be any busy schedule for this problem. Then
FT(8)/FT(S8*)<m.

48 Teofilo Gonzalez and Sartaj Sahni

Proof. Let T be the sum of task times for all n jobs. Then clearly, for
any busy schedule S, FT(8)<T. Also, for any schedule 8* we trivially
have FT(8*)=T/m. Hence FT(S)/FT(S8*) =m.

Once again, as in the case of Lemma 8, the proof technique would seem
to indicate that any ‘“‘reasonable” heuristic would result in schedules with
a worst case bound less than m. This unfortunately is not the case. We de-
fine by LPT the heuristic: schedule jobs in order of nonincreasing L..
For LPT schedules the bound of Lemma 10 is tight. Note that this heuristic
is similar to the one used by Graham [7] to schedule identical processors
and by Gonzalez, Ibarra, and Sahni [5] to schedule uniform processors.
In both these earlier applications of the heuristic, LPT schedules had a
worst case finish time at most a ‘“‘small” constant times the optimal finish
time. This is no longer the case for flow-shop and job-shop schedules.

NARN \ A\ \ N \
T T | A T
AR . \ _\\\\ M \\\ < N o v\
e \e k lx k\e el\\k\e\
\ \

1 K1 1
A\ R\\\\ y MIMNMNY Y VA Y . \ \1\

3

2n n n

MFT(S) = I ;'Lk+n(-:l+ne:2 MFT(S*) = 2 £ ik + 2 ¢ i€2+nsl
i=1 . i=1 i=1

a) SPT Schedule b) OMFT Schedule

Figure 6

Ezxample 3. Consider the m-processor, m-job flow shop with task times
tii=k, 1=iSmand {;,i=€;, 127<m, 1<j<m and 75J. ;> e, 1S5<m,
and e<Kk. Li=k+(m—1)e and so L;> L1, 12i<m. The LPT schedule,
8, is the permutation schedule obtained by processing jobs in the order
(1, - -+, n) on all processors. The finish time of S [Figure 7(a)] is FT(S)
=mk+ Y 75 e. An optimal schedule, S*, is shown in Figure 7(b). The
finish time of S* is FT(S*) =Y 7 ei+k+(m—1)a. Hence, FT(S)/
FT(8*)=m for ekk.

The worst case bound of m for busy schedules in a flow shop can be re-
duced to Im/21 by using the following heuristic H: Divide the m processors
into Im/21 groups, each group containing at most two processors. The
processors in group 7 are the (2/—1)st and 2¢th ones. Johnson’s 0(n log n)
algorithm is used to obtain optimal finish time schedules for each of these
Im/2] groups of machines. These fm/2] optimal schedules are then con-
catenated to obtain a schedule for the original m-processor flow shop.
Since an optimal two-processor flow-shop schedule can be obtained in
time O(n log n), the total time needed by algorithm H is 0(mn log n).

Scheduling: Complexity and -Approximation 49

Lemuma 11. Let 8 be a schedule generated by algorithm H and let S* be an
OFT schedule. Then FT(8S)/FT(8*)<Im/2).

Proof. Let the length of each of the schedules R(z), 1=¢=Im/2] ob-
tained in algorithm H be denoted by f(R(7)). Since each such schedule
is optimal for its processor pair, it follows that FT(S8*) =max {f(R(7))}.

// //'////
k € € €
/ / 2 3 /4

/ . P

T T
,,1,////,“///,? .
1 B
;/ / /

.~
7}\\
B

N
N

SIEREY,
€ € €
/]/h /2/ I/B/f /J'

(a) LPT permutation schedule

RRNANNE
N %\? Nl
R

(b) Optimal schedule
Figure 7. Schedules for Example 3 when m =4.

N

o]
-~
J-\/’
-
[u]
e 1

In the worst case the schedule S generated by algorithm H will have a
finish time FT(8)=< > f(R(i))<Im/2max {f(R(3))}. Consequently,
FT(S)/FT(S*) im/21.

Example 4. Using algorithm H on the n-job flow-shop problem with
m=3 and task times: t,;=¢, li=k, t5,:=0, 1=i<n and hn=¢, bha=¢,
tsa=(n—1)k e<e <k yields R(1)=R(2)=1,---,n. This gives the
schedule, S, of Figure 8(a). It has a finish time of e+¢ +2k(n—1). Figure
8(b) shows an optimal schedule S*. FT(S*)=2¢ +k(n—1) and FT(S)/
FT(S*)~2=I3/2l.

50 Teofilo Gonzalez and Sartaj Sahni

We close this section with a comparison of OFT preemptive and non-
preemptive schedules. If S,* and S,* are OFT preemptive and non-pre-
emptive schedules, respectively, then from the proof of Lemma 11 it fol-
lows that FT(S,*)/FT(S,*) <Im/2l. The next example shows that this
is a tight bound when m =3 and when m=4.

Ezxample 5. Consider the 3-processor flow shop with 3 jobs and task
times: t1,5=k, t2,5=€, ts,,‘=k, ’i=1, 2, and t1,3=0, t2,3=3k, t3,3=0. The

75/ ////// e/,

T
//(7_})}</////A

(a) Schedule S from algorithm H. FT(S) = ¢ + ¢' + 2(n-1)k

AR
\é\\e\ < LN
AN\ Y \\ AAYAN Y\\ \
e
\

N
\ \\({1\1 X X\\\\\\\ \

(b) Optimal schedule S*. FT(S*) = 2¢' + (n-1)k
Figure 8

OFT preemptive schedule S,,* has FT(S,*)=3k+2¢, while the OFT
non-preemptive schedule S,* has FT(S,*)=>5k+e, FT(S,*)/FT(S,%)
~5/3 for eLk (see Figure 9).

Generalizing this to n—1 jobs with t1 =k, 1, =6 t3,,=k, 1=7=n—1
and 1 job with t;,,=1t;,,=0 and t,,, =nk, we get FT(S,*) /FT(8.*)~2—1/n,
which approximates Im/21 for large n.

For the case of a job shop, we conclude from the proof of Lemma 10
that FT(S,*)/FT(S,*) <m. The next example shows that this is a tight
bound for m=2.

Example 6. Consider the two-processor job-shop problem with two jobs
and task times: ti12:0=Fk, 120=7; basi=¢, 159¢<r and h.oi=rk. An

Scheduling: Complexity and Approximation 51

S,.* and S,* schedule for this set of tasks is given in Figure 10. We
obtain FT(S8,*)/FT(8,*)=((2r—1)k+(r—1)e)/(rk+(r—1)e). Hence,
lime,o FT(8,.*)/FT(8,*) =2~1/r, which approaches 2 as r—.

W 7
AN / /

AR AR // 7
\t\\e\t \\e\t \ \ % e -/k/
2,3 2,3 \ 2,3
\\ A \\ AN (NERN / AR i //

A RN RN 7 ~ ~
W 7
N\ \\ \\ / 7/ / |
(a) f(S;) = 3k + 2¢ (b) s:
Figure 9
k k k k
]/// 7///// 7777 ///////
t1,1041%1,1,3] [F1,1,57 ° 1 1,2r-1
Lo 11 [lr 22/

///// w2 [/

€ € € rk

(a) FT(S:) = (2r-1)k + (r-1)e

k k k k
////// 7 /// ///// (t/// 77
1 1,1 t1,1,21 (51,108, * ° ¢ | 1,1,2r-1)
/,,,, /r// ///// Lt L
t P —
t,2,1 2 2,1 2,2,;/ 2,2,1°°°%2,2,1 =

€ € €
(b) FT(S;) = rk + (r-1)e
Figure 10

4. CONCLUSIONS

We have investigated the properties of OFT preemptive and non-pre-
emptive schedules for flow shops and job shops. Finding such schedules is

52 Teofilo Gonzalez and Sartaj Sahni

NP-complete. Bounds for relative performance of various heuristics to
obtain schedules with either a good finish time or good mjft have been
derived. These bounds are tight when the number of processors is small
(i.e., 3=m =4 for the flow shop).

ACKNOWLEDGMENTS

This research was supported in part by NSF grants DCR 74-10081,
MCS 76-21024 and University of Minnesota Graduate School Research
Grant no. 468-0100-4909-08.

REFERENCES

1. P. Brucker, J. K. LENsTrA, AND A. H. G. Rinnooy Kan, “Complexity of
Machine Scheduling Problems,” Mathematisch Centrum, Amsterdam,
Technical Report BW 43/75, April 1975.

2. E. G. CorrMAN, JR., Computer and Job Shop Scheduling Theory, John Wiley &
Sons, New York, 1976.

3. R. W. Conway, W. L. MaxweLL, AND L. W. MiLLER, Theory of Scheduling,
Addison-Wesley, Reading, Mass., 1967.

4. M. R. Gagrgy, D. S. JounsoN, anNp R. Seta1, “Complexity of Flow Shop and
Job Shop Scheduling,” Math. Opns. Res. 1,117-129 (1976).

5. T. GonzaLez, O. H. IBARRA, aAND S. SanNI, “Bounds for LPT Schedules on
Uniform Processors,” SIAM J. Computing, 5, 155-166 (1977).

6. T. GonzaLez aNDp S. Sauni, “Open Shop Scheduling to Minimize Finish
Time,” J. Assoc. Comput. Machinery, 23, 665-679 (1976).

7. R. L. Granam, “Bounds on Multiprocessing Timing Anomalies,” SIAM J.
Appl. Math. 17, 416-429 (1969).

8. J. R. JacksoN, “An Extension of Johnson’s Results on Job Lot Scheduling,”
Naval Res. Logist. Quart. 3, 201-203 (1956).

9. R. M. Karp, “Reducibility among Combinatorial Problems,” in Complezity
of Computer Computation, pp. 85-104, R. E. Miller and J. W. Thagcher
(Eds.), Plenum Press, New York, 1972.

10. R. M. Karp, “On the Computational Complexity of Combinatorial Problems,”
Networks 5, 45-68 (1975).

11. 8. Sanni, “Computationally Related Problems,” SIAM J. Computing 3,
262-279 (1974).

