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The problem of constructing makespan-optimal preemptive schedules for » independent jobs on m unrelated
parallel processors is discussed. For the case of two processors, we present a linear time algorithm to construct
optimal schedules. The schedules generated by our algorithm have at most two preemptions.

In this paper we study the problem of preemptively
scheduling » independent jobs on m unrelated parallel
processors, with the objective of minimizing “make-
span,” i.e., the completion time of the last job to be
finished. For the case of two processors, we present a
linear time algorithm to construct optimal schedules.
Our algorithm constructs optimal schedules with no
more than two preemptions. This algorithm can be
generalized to construct optimal schedules in O(n)
time when the number of processors is bounded by
some fixed constant k. For arbitrary values of m, our
problem can be formulated as a linear programming
problem and thus it can be solved by standard simplex
algorithms or by other algorithms that solve linear
programming problems. %!

As part of the general problem formulation, we
assume that there are m processors, indexed i 1,
2, ..., mand n jobs, indexed j = 1, 2, ..., n. A
processor can work on only one job at a time, and a job
can be worked on by only one processor at a time. The
processing of a job may be interrupted at any time and
resumed at a later time, by the same processor or a
different processor. There is no cost and no time loss
associated with such an interruption or “preemption.”

The input data for a problem instance consists
of integers n and m, and mn positive numbers Dy
where p, , represents the total processing time required
to complete job j, if the job is worked on exclusively
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by processor i. More generally, if processor i works
on job j for a total time x,,, then it is necessary that
221 (x.,/p.,) = 1, in order for the job to be completed.

We assume no particular relation between the D,
values. That is, the processors are unrelated. This is in
contrast to the following two more specialized cases. If
for all i, j, and k, p,, = py ,» then the processors are
identical. If each p,, can be expressed in the form D=
p,/s, where s, (a “speed factor”) and p, are parameters
associated with machine / and job j, then the machines
are said to be uniform. For identical processors, a simple
O(n) algorithm, due to McNaughton,” yields an opti-
mal schedule with no more than m — 1 preemptions.
Gonzalez and Sahni'™ have obtained a more complex
O(n + m log m) algorithm for the case of uni-
form processors, and have shown that no more than
2(m — 1) preemptions are required in an optimal
solution.

For a given feasible schedule, the last point in time
at which job j is processed is its completion time C,. We
wish to find a feasible schedule for which makespan or
maximum completion time, Cpax = max, {C,}, is min-
imized. We assume that all jobs are available for proc-
essing at time ¢ = 0. Consider any feasible schedule of
n jobs on m unrelated processors, where with respect
to this schedule, x,, is the total amount of time that
processor [ works on job j. It is evident that the values
of Crax and x,, for the schedule constitute a feasible
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solution to the following linear programming problem:
minimize Cuax

subject to

j=1L2,...,n

Yxi,<$Cnax, I=1,2,...,m

x,;=0.

The converse is also true. That is, for any feasible
solution to the linear programming problem, there is a
feasible schedule with the same values of x, , and Cpax,
as shown in [6]. Such a schedule can be obtained
through the preemptive “open shop” problem."*

The bulk of this paper is concerned with finding
an efficient procedure for solving the linear program-
ming problem (1) for the case when m = 2 (Sections 1
and 2). In Section 3 we briefly discuss the case when
m>2.

1. Optimal Solutions to the Two-Processor
Problem

Let us restrict our attention to the case m = 2, with the
objective of obtaining a characterization of optimal
solutions to the linear programming probtem (1). For
simplicity, let us assume that the jobs have been ordered
in such a way that p; /D> < P12/D22 < ... < Din/D2ne

Let us call a column ¢ of a feasible solution X =

(x:,) and the corresponding job ¢ tight if x;, + X, =

Conax. If 1> 2, as we shall hereafter assume, there can
be at most one tight column. Hence, an optimal solu-
tion to (1) is of one of the following three types.

Type-1. There is a tight column ¢ for which either

Dy

— =<1, = ; 2

. D El D2j (2)
or

Bz, pz= 3o 3)

p2,t Niadi

Type-2. There is a tight column ¢ for which neither (2)
nor (3) holds.

Type-3. There are na tight columns.

A schedule corresponding to a type-i optimal
solution to (1) is called a type-i schedule. Let us now
examine in more detail and establish some important
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properties of the three different types of optimal solu-
tions to (1).

Type-1 Solutions and Schedules

A type-1 schedule (corresponding to a type-1 optimal
solution to (1)) for a problem instance that satisfies (2)
has no preemptions and it is of the form shown in
Figure 1. Similarly, for a problem instance that satisfies

*(3), the type-1 schedule has no preemptions and it is of

the form shown in Figure 2.

Type-2 Solutions and Schedules

Type-2 schedules are of the form shown in Figure 3.
“The shaded portions of the schedule are completely
occupied with the processing of jobs other than ¢.

We assert that there exists a job s such that

X, =0, forallj<s,j#t
and 4)
x, =0, forallj>s, j#1.

In other words, there exists an optimal schedule, with
at most two preemptions, of the form given in Fig-
ure 4. This assertion can be established by the following
argument: If there exists an optimal schedule with jobs
jand k, j < k and j, k # t; x,, > 0; and x,, > 0; then
it is possible to increase the values of x,, and x,, and
to decrease X, ; and X, while maintaining optimality.
A finite sequence of such rearrangements yields an
optimal schedule satisfying (4).

We also claim that if p; ,/p., < 1 then there is an
optimal solution with s < ¢, otherwise s > 7. Let us
prove first the case when p, ,/p», < 1. The proof is by
contradiction. Suppose that p, ,/p,, < 1 and s > t. Then
it is possible to increase the values of x,, and X, and
to decrease x,, and x, ; and maintain or improve the
length of the schedule. After a finite sequence of such
rearrangements we know that there is a better schedule

L=t

Figure1. Schedule type-1 for a problem instance that
satisfies (2).

j=t

t

Figure 2. Schedule type-1 for a problem instance that
satisfies (3).




0,

Figure3. Type-2 schedule.

j<s, j=t s t

t s j>s j#t

Figure4. Type-2 schedule.

(contradicting the optimality of the previous one) or
there is an optimal schedule with s < 1. It is important
to note that the above interchange argument will not
work when p, ,/p,, < 1 and 5 < ¢. The reason is that
the length of the schedule will increase because the
total execution time requirement for job ¢ increases.
Also, when p,,/p., = | and s < ¢ the interchange
argument will not reduce the length of the schedule.
We omit the proof for the case when p, ,/p,, = | and
§ > t since it is similar to the one above. This concludes
the proof of the claim.

Type-3 Solutions and Schedules

We assert that in this case there exists a job s satisfying
(4) and that there is an optimal schedule of the form
shown in Figure 5. As in the case of type-2 optimal
schedules, the existence of such an optimal schedule
can be verified by a sequence of rearrangements.

The question that arises at this point is: How can
the value of ¢ be determined? The answer to this ques-
tion is simple and it is based on the following lemma.

Lemma 1. Ifthere is a type-1 or type-2 optimal solution
to (1), the tight job t is uniquely determined by the
inequalities

YXDpi;< Y D2y

<t J=t

and %)
X0, YD,
ISt >t

And, moreover, if there is type-3 optimal solution, the
inequalities (5) are satisfied with job s in the role of t.

Proof. The proofis partitioned into three parts depend-
ing on the type of optimal solution to (1).

Case 1. If there is a type-1 optimal solution to (1) then
t is given by (5). There are two cases depending on
whether (2) or (3) hold.
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J<s s

s j>s

Figure 5. Type-3 schedule.

Subcase 1.1. p\./p,,<1andp,, = Y .« p>,.

Since the p,’s are positive real numbers, we know
that 3 ., p», 2 ¥ <, p», and since p, /p,, < 1 forj <1,
we know that ¥ <, p,, = ¥ ,<, p1,. Clearly, ¥ ., p,, =
D2 and since p,,/p,, < 1, we know that p,, = p,,. If it
were the case that ¥ ., pi, > Y5, p»,, then combining
the above inequalities we know that ¥ ,., p,, > p,,
which contradicts the condition of this case. Therefore,
it must be that ¥ ,<, p;, < 3,5, ps,.

Since the p,’s are positive real numbers, we know
that ¥ <, py, = p,,. This inequality together with the
condition of this case (p,, = ¥ ,«, p,,) and the fact that
21#! D2, = Z/>t D2 WE know that stt 4w = 2/>tp2,1-
Therefore (5) holds when there is a type-1 optimal
solution to (1) and inequality (2) holds.

Subcase 1.2. p\,/p>,=1and p,, = 3, ., p:,. The proof
is omitted since it is similar to the one for Subcase 1.1.
This completes the proof of case 1.

Case 2. 1f there is a type-2 optimal solution to (1) then
t is given by (5). There are two subcases depending on
whether p, ,/p,. < 1 or not.

Subcase 2.1. p,./p, < 1. Since p, ,/p,, < 1 for all j <
LY, Diy < Yj<e X1y + <t X2, S Crax. Since Comax =
X1, + X2, and py,/p>, < 1, it follows that Cpax < pa,.
Since the p, ,’s are positive real values, we know that p, ,
< Y2 P2,,- Combining the above inequalities, 3 ,<, p,
< p2: < Y,5: Do, From Figure 4 and the fact that s < ¢
we know that

Yt D1 D1 Z Xy, DI IV D W D2,

Hence, (5) holds when there is a type-2 optimal solution
to (1) and py./ps. < 1.

Subcase 2.2. p,,./p,, = 1. The proof for this case is
omitted since it is similar to the one of Subcase 2.1.

Case 3. If there is a type-3 optimal solution to (1) then
s is given by ¢ in (5). The proof for this case is omitted
since it is similar to the one of Case 2.

This completes the proof of the lemma. =

Our strategy is to first find the unique job ¢ satis-
fying inequalities (5). Having found such a job ¢, it is
easy to check if there is a type-1 solution to (1) and, if
50, to construct a corresponding type-1 optimal sched-
ule. Optimality is guaranteed by Lemma 1. So let us

Copyright © 2001 All Rights Reserved



222 Gonzalez, Lawler and Sahni

suppose that there is no type-1 optimal solution to (1).
In this case, we have the following two equations:

Sp,t X=X D2yt Xous

=<t >t
and
Ko, X2
DPvi D2
These two equations have the following solution.

= 1.

I -
X1 = [__pl—l— 2 D2, = 2 Dy,

D1 + D24 L}Bt <t ]
and (6)
T
D2, W
Xo = |7/ — D, — D2y |-
2 [pl,t + D2 _;Et b j§t 21_

Note that necessarily x;,, x2, = 0, since the bracketed
expressions are nonnegative by (5). If

X< X D2y

>t

and (7N

X2, < 2 Duy
<t

then there is a type-3 solution with s = . The type-3
schedule is shown in Figure 5. Optimality follows from
Lemma 1. If there are no type-1 and type-3 optimal
solutions to (1) then there is a type-2 optimal solution
to (1). For this case we know that the appropriate choice
of ¢ is given by (5). But, what is the appropriate choice
for s? Equations 8 and 9 define a value for 5. In Lemma
2 we show that this is an appropriate choice for s.

If there is a type-2 optimal solution to (1) and there
are no type-1 and type-3 optimal solutions to (1), then
s is defined as follows.

() If p1./p.. < 1, column s (s < t) is given by
the smallest integer that satisfies the following two
inequalities

S pi/pt T Dp/pi> 1,

J<8, )7t =5, %1

and t))
Y b/t X D/pis L
]S85, )%t J>s, g%t

(i) If pi./p2; > 1, column s (s > ) is given by
the largest integer that satisfies the following two
inequalities

S py/pat X P>,

s, j#t =507t

and )
Y pu/pt+ T Dy/pies L
J<8, 1%L FEXNL ]
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Let us now show that such a value for s always exists.
Since the proof for (ii) is similar to the one for (i), we
only prove (i). Clearly, p,/p2. < 1. Since there is no
type-1 solution to (1), we know that pi, < ¥, D2,
Therefore when s = 1,

Y D/t X DP2/p> L
J<8,J#EL FELXNETS
Since there is no type-3 optimal solution to (1), we
know that x,, > ¥,>, p2, and X, > ¥ </ 1. Substitut-
ing these bounds in the equation X ./pi, + X2./P2,. = 1,
we know that fors =1~ 1,

E pl,j/p2,1 + 2 pZ,J/pl,t <L
JES5,#L J>5,0%1
Therefore there exists an s (s < t) that satisfies (8). This
completes the proof of (i) and the claim.
The following lemma shows that the value of s
given by (8) and (9) is optimal.

Lemma 2. If there are no type-1 and type-3 optimal
solutions to (1), then there is a type-2 optimal solution
to (1) with t given by (5) and s given by either (8) or (9).

Proof. Since there are no optimal solutions of type-1
and type-3, it is simple to see that there is a type-2
optimal solution to (1) whose corresponding schedule
is of the form given in Figure 4. This schedule is de-
fined over variables x,;, and Cmax, With Crax = X1, +
X2, = 2;<s,ﬁét Diy + Xis + Xos + Zj>s,1#t D2,y From
Lemma 1 we know that the appropriate choice for ¢ is
given by (5). Let us prove that the appropriate choice
of s is given by either (8) or (9).

We only prove that if p, ,/p,, < 1 then s is given
by (8), since the proof for the other case is similar.
Suppose that the above schedule is not optimal. Let
x!, and Crax (Chax < Cmax) be an optimal schecule of
the same form with job s’ and ¢ being the jobs scheduled
with preemptions. The schedule is given in Figure 6. If
P1./D2; = 1, we know that Crax = X1; + X2, = X1, +
x5, = Chax. A contradiction. So it must be that
P12 < 1. Let us now consider the case s’ < s. Since
s < t, we know that p\ ¢/p2.s < P1.s/D2.s < Pr,d/P2s < 1.
Therefore it must be that Cuax = X j<s e D1y + X1s T
X2,5 + 21>s,1#t Pz,; < Ej<s’,j#t pl,j + X1,s' + x2,s’ +
355wt D2,y = Chax. A contradiction. So, it must be
that s’ > s. However, for this case we know that

Z Pl,; + x{,s' > 2 pl,j + xl,s-

<8’ ,J#*t J<s, g%t

j<s,j#t s t

t s’ j>shj=t

Figure 6. Schedule for x;,.




Therefore it must be that xj, > x,,. But since
pl,t/p2,t <1, Cuax = X+ X0 < X{;+ X3 = Chax.
A contradiction. So, it must be that an optimal solution
is given by the choice of s in (8). This completes the
proof of the lemma. m

Once we have determined ¢ and s we solve the
following linear programming problem. Since this lin-
ear programming problem has at most 4 variables and
6 constraints, it is fair to assume that it can be solved
In constant time.

minimize Cpa,

subject to
X1, X
ALY} + MY

= ], j=s1
pl,j p2,j

X, + X2, € Crax, J=5,1

-xl,s + -xl,t + 2 pl,j = Cmaxa (10)

<8, )71

xZ,x + x2,l + Z pZ,/ = Cmax;

J>5, )%t

xl,s, xZ,sa xl,ta xZ,l = 0~

2. An O(n) Algorithm for Two Processors
To summarize, our procedure is as follows:

(i) Find the unique job ¢ satisfying inequalities (5).

(i1) If ¢ satisfies either (2) or (3), then there is a type-1
solution and an optimal schedule with no preemp-
tions has been found.

(iii) If the solution to (6) satisfies inequalities (7), then
there is a type-3 solution and an optimal schedule
with at most one preemption has been found.

(iv) Find the job s satisfying inequalities (8) or (9). An
optimal schedule with at most two preemptions
can be found from the solution to the linear pro-
gramming problem given by (10).

If the ratios are initially sorted, it is simple to see
that all steps can be carried out in O(n) time. When
the input is not initially sorted all parts of this procedure
can be implemented to run in O(n) time except possibly
(1), finding the job ¢ satisfying inequalities (5), and (iv),
finding the job s satisfying inequalities (8) or (9). We
propose to refine this approach so as to reduce the
overall time required to solve the two-processor prob-
lem to O(n). We first observe that it is not necessary to
sort the p,,/p,, values in order to identify job ¢ by
conditions (5). Instead, we propose to employ as a
subprocedure an algorithm which can find the median
of n numbers in O(n) time.”>® First compute all the
ratios p,/p2,,j =1, 2, ..., n, which can, of course be
done in O(n) time. Next find p; +/p,,, the median of
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the n values pi,,/p;1, pr2/D22s .-, Din/P2n and with

respect to k let
J= {j <”—“<’L’k> or(?’—’=&i‘andj<k)},
D2, Dak 2 D2k

and
J'={jllsj<snl-J

Recalling conditions (5), it is clear that if both

20,< 3 Dy

JEJ JES
and

XD, tDik= Y Do, — Dos,

JEJ JES

then 7 = k, and job ¢ has been found in O(n) time. If
the first inequality in (5) does not hold, it is known that
t € J. If the first inequality in (5) holds, but the second
inequality in (5) does not, it is known that # is contained
in J’ (i.e., the complement of J). In either of these
latter two cases, the search for job ¢ is narrowed to a set
of n/2 possibilities. The procedure is then iterated until
D1.«/P2,« and corresponding set J are found for which
conditions (5) are satisfied. At this point job ¢ has been
found.

In the worst case, the median-finding algorithm is
applied successively to sets of size n, n/2, n/4, ...,
which require time < cn + cn/2 + cn/4 + . .., or O(n).
Since the sums appearing in (5) are known from the
previous iteration, the sums required for testing (5) can
be found at each iteration in time proportional to the
application of the median-finding algorithm at that
iteration. It follows that job ¢ can be found in O(n)
time overall. It is simple to show that finding job s can
also be carried out in O(n) time by following a proce-
dure similar to the one used to find .

It is possibly worth noting the similarity between
some of the techniques applied here and the methods
used by Adolphson and Thomas'"! for obtaining a linear
time algorithm for the 2 X n transportation problem.
Lemma 1 here is comparable to Theorem 1 in [1].

The authors have been able to generalize the pre-
ceding results to the case of m > 2 processors so as to
obtain an algorithm with O(n™) running time. This
generalization is fairly involved and difficult to describe.
Moreover, it is unclear that it has any practical value,
in competition with a straightforward solution of the
LP by other means.
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