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Abstract

We consider Multimessage Multicasting over the n
processor complete (or fully connected) static network
(M Mc) when Forwarding of messages is allowed. We
present an efficient algorithm that constructs for ev-
ery degree d problem instance a schedule with total
communication time at most 2d, where d is the max-
imum number of messages that each processor may
send (receive). Our centralized algorithms require all
the communication information ahead of time. Ap-
plications where this information is available include
iterative algorithms for solving linear equations, and
most dynamic programming procedures. Our sched-
ules can also be used by systems communicating via
dynamic permutation networks, e.g., Meiko CS-2.

1 Introduction

The Multimessage Multicasting problem over the
n processor static network (M Mc) consists of con-
structing a schedule with least total communication
time for multicasting (transmitting) any given set
of messages. Specifically, there are n processors,
P ={Py, P, ..., Py}, interconnected via a network N.
Each processor is executing processes, and these pro-
cesses are exchanging messages that must be routed
* through the links of N. Our objective is to determine
when each of these messages is to be transmitted so
that all the communications can be carried in the least
total amount of time. To generate communication
schedules with significantly smaller total communica-
tion time we allow forwarding, which means that mes-
sages may be sent through indirect paths even though
single link paths exist! This version of the multicasting
problem is referred to as the M M F¢ problem.

Routing in the complete static network (there are
bidirectional links between every pair of processors) is
the simplest and most flexible when compared to other
static and dynamic networks. Dynamic networks that
can realize all Permutations and Replicate data (e.g.,
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n by n Benes network based on 2 by 2 switches that
can also act as data replicators) will be referred to
as pr-dynamic networks (e.g., IBM GF11, and Meiko
CS-2). Multimessage Multicasting for pr-dynamic and
complete networks is not too different, in the sense
that any schedule for a complete network can be trans-
lated automatically into an equivalent communication
schedule for any pr-dynamic network. This is accom-
plished by translating each communication phase for
the complete network into no more than two communi-
cation phases for the pr-dynamic networks. The first
phase replicates data and transmits it to other pro-
cessors, and the second phase distributes data to the
appropriate processors ([10], [11], [14]).

Let us formally define our problem. Each processor
P; holds the set of messages h; and needs to receive
the set of messages n;. We assume that |Jhi = | n;,
and that each message is initially in exactly one set
h;. We define the degree of a problem instance as d =
max{h;,n;:}, i.e., the maximum number of messages
that any processor sends or receives.

Example 1.1 There are nine processors (n = 9).
Processors Py, P,, and P3 send messages only, and
the remaining siz processors receive messages only.
The messages each processor holds and needs are hy =
{a,b}, ho = {c,d}, ha = {e,f}, ha = ... = ho = 0,
n1:ng_ng—ﬂ,m—{ace},ns~{adf}
ne = {bce}, nz = {b,d,f}, ns = {c,d,e}, and
ng = {c,d, f}. The density is 3.

One can visualize problem instances by directed
multigraphs. Each processor P; is represented by
the vertex labeled 7, and there is a directed edge (or
branch) from vertex i to vertex j for each message
that processor P; needs to transmit to processor B,
The set of directed edges or branches associated with
each message are bundled together. The problem in-
stance given in Example 1.1 is depicted in Figure 1 as
a directed multigraph with additional thin lines that
identify all edges or branches in each bundle.



Figure 1: Directed Multigraph Representation for Ex-
ample 1.1. The thin line joins all the edges (branches)
in the same bundle.

The communications allowed in our complete net-
work satisfy the following two restrictions.

1.- During each time unit each processor P; may
transmit one message it holds (i.e., message in
h; at the beginning of the time unit), but such
message can be multicasted to a set of processors.
The message remains in hold set h;.

2.- During each time unit each processor may receive
at most one message. The message that processor
P; receives (if any) is added to its hold set A; at
the end of the time unit,

The communication process ends when each pro-
cessor holds all the messages it needs. Our commu-
nication model allows us to transmit each message at
different times. This routing flexibility reduces the
total communication time considerably. The instance
given in Example 1.1 requires six communication steps
if one restricts each message to be transmitted only at
a single time unit. However, by allowing messages to
be transmitted at different times one can perform all
communications in four steps. This is best possible
unless forwarding is allowed, in which case all commu-
nications can be carried out in three steps [6].

A communication mode C'is a set of tuples (m, , D),
where [ is a processor index (1 <1< n), and message
" m € hy is to be multicasted from processor P, to the
set of processors with indices D. In addition all tuples
In a communication mode C must obey the following
communications rules imposed by our network:

1.- All the indices [ in C' are distinct, i.e., each pro-
cessor sends at most one message; and

2.- Every pair of D sets in C are disjoint, i.e., every
processor receives at most one message.

A communication schedule S for a problem instance
I is a sequence of communication modes such that af-
ter performing all these communications every proces-
sor holds all the messages it needs. The total commu-
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nication timeis the latest time at which there is a com-
munication which is equal to the number of communi-
cation modes in schedule S, and our problem consists
of constructing a communication schedule with least
total communication time.

Multimessage multicasting problems arise when
solving sparse systems of linear equations via iterative
methods (e.g., a Jacobi-like procedure), most dynamic
programming procedures, etc.

Previous Work, and New Results-

The basic multicasting problem consists of all degree
d = 1 M Mc¢ problem instances, and can be trivially
solved by sending all the messages at time zero. For
pr-dynamic networks, communication modes can be
performed in two stages: the data replication step fol-
lowed by the data distribution step ([10], [14], [11}).

Gonzalez [5] also considered the case when each
message has fixed fan-out k (maximum number of
processors that may receive a given message). When
k = 1 (multimessage unicasting problem M U¢), Gon-
zalez showed that the problem corresponds to the
Makespan Openshop Preemptive Scheduling problem
which can be solved in polynomial time, and each de-
gree d problem instance has a communication schedule
with total communication time equal to d. The inter-
esting point is that each communication mode trans-
lates into a single communication step for processors
interconnected via permutation networks.

It is not surprising that several authors have stud-
ied the MU¢ problem as well as several interesting
variations for which NP-completeness has been estab-
lished, subproblems have been shown to be polyno-
mially solvable, and approximation algorithms and
heuristics have been developed ([1], [15], [2], [9], [8],
[12]). Research has been limited to unicasting, and all
known results about multicasting are limited to sin-
gle messages, except for the work by Shen [13] who
has studied multimessage multicasting for hypercubes.
Since hypercubes are static networks, there is no direct
comparison to our work.

Gonzalez [5] showed that even when k& = 2 the
MMc¢ problem is NP-hard. Gonzalez [3] cieveloped
an efficient algorithm to construct for any degree d
problem instance a schedule with total communica-
tion time at most d?, and presented problem instances
for which this upper bound is best possible. Gonzalez
(5], [3] and [4] developed several fast approximation
algorithms for problems instances with any arbitrary
degree d, but small fan-out ([3], {4]). These problem
arise in practice, since the fan-out restriction is im-



posed by the applications and the number of proces-
sors available in commercial systems.

The M M F¢ problem is also an NP-hard problem
[5] and all the approximation results for the M Mc
problem also solve the M M F¢ problem.

In this paper we present an efficient algorithm to
construct for every degree d problem instance a com-
munication schedule with total communication time at
most 2d, where d is the maximum number of messages
that each processor may send (receive). We should
point out that the previous approximation algorithms
are faster than the one in this paper. However,
our new algorithm generates communication schedules
with significantly smaller total communication time.
Qur new algorithm consists of two phases. In the first
phase a set of communications are scheduled to be car-
ried out in d time periods, and when these communica-
tions are performed the resulting problem that needs
to be solved is a MUc¢ problem of degree d. In the
second phase we generate a schedule for this problem
by reducing it to the Makespan Openshop Preemptive
Scheduling problem which can be solved in polyno-
mial time [7]. The solution is the concatenation of the
schedules for each of these two phases.

2 Approximation Algorithm for the
MM Fo Problem

We show that for every degree d instance of the
MMFc problem one can construct in polynomial
time, with respect to the input length, a schedule with
total communication time 2d. ‘

Problem instances will be represented by the tuple
(I,G), where G is a directed multigraph (introduced
in the previous section (see Figure 1)) that changes at
each iteration, and I = (P, H,N,d). We say that a
processor is critical if it has d bundles emanating from
- it, otherwise it is called noncritical.

Our algorithm consists of four basic steps explained
in the following subsections. As we describe our algo-
rithm, we illustrate its operations by applying it to the
problem instance given in figure 2 (solid objects).

2.0.1 Input Balancing

Given instance (I, G) of the MM F¢, we transform it
to the balanced incoming message (all processors have
equal number of incoming messages) problem (I,G) of
the MM F¢ as follows.

Problem (I, G) is (I, G), except that there are two
additional processors, Pny1 and Py 1a. Processor P

sends d distinct messages to processor P42, and pro-
cessor Pn+g sends d distinct messages to processor
P,11. In addition, the ith message emanating from
P, 19 is also transmitted to every processor with less
than i total incoming messages in (I, G). All the new
processors and messages are referred to as dummy pro-
cessors, and messages.

Applying our transformation to the problem in-
stance given in Figure 2 (solid objects) results in the
addition of the dotted objects shown in Figure 2.

Figure 2: Solid objects represent (I, G), and all the
objects represent (I, G).

Problem instance (I, G) is of degree d = d, has
i = n + 2 processors, and each processor has exactly
d incoming messages. Given any schedule for problem
instance (I, G) one can easily construct a comImuni-
cation schedule for problem instance (I, G) by simply
deleting all the dummy messages and dummy proces-
sors. This step takes O(dn) time.

2.0.2 Transform to the MUg Problem

This is the most involved step of our algorithm that
transforms (I, G) to the instance (I,G) of the MUc
problem with 7 = 7 processors and degree d =d.
This transformation requires that a set of communica-
tions take place. We construct schedule X with total
communication time d = d for these message trans-
missions. The final schedule is X plus a schedule for
(f , G) with total communication time equal to d.

Our transformation begins by constructing (fo, Go)
from (I, G). Then, for 1 <i < d, we coustruct (I, Gi)
from (I;—1,Gi—1). Problem instance (Ii; Gi), for 0 <
i < d, is an instance of the MM Fo problem of degree
d; = d that satisfies the following two properties:

W1: Each processor in G; has at least i single-edge
bundles (unicasting messages) emanating from it.

W2 : Every noncritical processor (processor needs to
send less than d; messages) in G; contains only
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single-edge bundles emanating from it, i.e., and
its bundles represent unicasting messages.

By property W1, and the fact that dg = d, we know
that (14, Gg) is also an instance of the M U¢g problem
and it will be referred to as (I,G).

Initially (Io, Go) is set to (I,G). Since i = 0, we
know that (I, Go) satisfies W1. Now we apply trans-
formation T' to (lo,Go) as many times as possible.
Transformation T: For each noncritical processor with
at least one multiple-edge bundle emanating from it,
split one of its multiple-edge bundles into two bun-
dles (a multiple-edge bundle and a single-edge bundle).
Eventually all noncritical processors (if any) will con-
sist only of single-edge bundles, i.e., it satisfies W2,
and since the transformation does not decrease the
number of single-edge bundles emanating from pro-
cessors, it then follows that it also satisfies W 1.

Applying transformation T to (I, G) given in Figure
2 we generate the problem instance (fo,Go) given in
Figure 3 (all objects). The only difference (ignoring
the different types of lines and circles) is that processor
Py two single-edge bundles for message a instead of a
two-edge bundle.

Figure 3: Final problem instance (Ip, Go) (whole fig-
ure). The dotted lines correspond to the Qs for
jeSUS wheni=1.

It is simple to prove that after O(nd) steps the pro-
cedure terminates, and the resulting problem instance
({0, Gq) satisfies properties W1 and W2.

Let us now show how to construct problem instance
(I;, G;) of the M M Fg with degree d; = d;_; that sat-
isfies W1 and W2 from ([;—1,Gi—1), for 1 < i < d.
Our procedure initializes (I;, G;) to (I;—1,G;—1). For
each processor P; we define @); to be a bundle with
the largest number of edges emanating from it unless
there are no bundles emanating from it in which case
Q; = 0. All critical processors with exactly i single-
edge bundles emanating from them are marked. Let
S be the set of indices of the critical processors. Since

375

(Ii-1,Gi-1) satisfies W1 and W2, we know that if one
deletes from each processor in j € S US’, for some
S" C {l| P, is noncritical and P, has at least i bun-
dles emanating from it} the bundle @Q;, and if one can
distribute all of this communication load by adding
a single-edge bundle to the marked processors, and a
single or multiple-edge bundle to the unmarked pro-
cessors, then we end up with an equivalent instance
that satisfies W1 and W2, provided that the set of
messages that were redirected are transmitted to the
appropriate processors. In what follows we specify
this process in detail. OQur procedure is more complex
than needed because we want to use the same schedule
for pr-dynamic networks without increasing the total
communication time. This can be accomplished when
each multicasting operation in the schedule sends each
message to adjacent processors only.

Figure 4: (a) Problem instance (I;, G1) before apply-
ing the transformation T'. (b) Communication mode
generated when ¢ = 1.

X « 0
fori=1toddo
(I;, Gi) + (Li=1,Gi-1);
/* Modify (I;, G;) to satisfy W2*/
/* The following references are for pair (I;, G;)*/
Unmark all processors;
S + {j | processor P; is critical};
for each processor P; do
Q; « set of edges (possibly empty) in a bundle with
largest fan-out emanating from FPj;
Mark P; if it is critical and has exactly i — 1
single-edge bundles emanating from it;
endfor
S 0
if Zjes |Q;| < n then
/* We claim that the set S exists. */
Let ' € {1,2,...,n} such that Y j € S, Pjis
noncritical and has at least ¢ bundles
emanating from it, and Zjes |Q;] + |S'] =n;




/* Redistribution of @; for j € SU S */
l +0;
for j = 1 to n do;
ifje SUS then bot 1 +1;
repeat
l«1+1
case /* add to P, */
:P; is marked:
/* add a new single-edge bundle */
delete an edge from Q;, and add it as a
bundle emanating from F;
-else:
/* add a new single or multi-edge bundle */
w= min{ |Q;|, Fjes|Qpl+IS[-(n-D}
/* move the largest number of edges in @, but
leave enough for the remaining processors */
delete w edges from @, and add them as a
bundle éemanating from F;
endcase
until Q; = ;
top « I;
During the #** time period in communication
schedule X multicast (unicast if bot = top)
the message represented by bundle ); emanating
out of P; to processors Pooty Poot41, -y Prop;
Delete (empty) bundle @; emanating out of Pj;
Delete j from S or S';
endfor
Apply transformation T to (I3, G;) until W2 holds
endfor

The final problem instance (Ip, Go) is given in figure
3 (all objects). The dotted lines correspond to the @;s
for j € S|US when i = 1. Note that S =9

The new transmissions that appear in (I1, G1) (Fig-
ure 4 (a)) just before applying transformation T' are
as follows: Message a originates at P; rather than just
at Py, message b originates at P, rather than at Py,
- message f originates at Ps rather than at Ps, message
g originates at P4 rather than at P7, and message j
now originates at Ps, Ps, P7, and Pg rather than just at
Pg. The communication mode generated when ¢ = 11is
given in figure 4(b). This communication mode sends
message a from Py to P; so that in (I}, G1) message
a can be transmitted from P;; sends message b from
P, to Py so that in (I3, G1) message b can be trans-
mitted from Ps; etc. Note that in this particular case
there is no need to transmit message j from Pg to Py
because that has already been done in the communi-
cation mode. In what follows we will not comment
again about this type of situations.

Transformation 7' generates the final problem in-
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stance (I1, Gi1) given in Figure 5 (all objects). The -
only difference from Figure 4 is that instead of mes-
sage f emanating from Pj as a two-edge bundle, it is
now two single-edge bundles emanating from Ps. The
dotted lines correspond to the Qs for j € S S’ when
i = 2. Note that S’ = 0.

Figure 5: Final problem instance (I1, G1) (all objects).
The dotted lines correspond to the @;s for j € S| s
when ¢ = 2.

The problem instance (Iz, G3) and the communi-
cation mode generated when ¢ = 2 is given in figure
6(b). We claim the following result without a proof.

Figure 6: (a) Problem instance (I3, G2) = (I, G). (b)
Communication mode generated when ¢ = 2.

Lemma 2.1 Problem (I4,Gg) = (f, G) is an instance
of the MUc problem and schedule X plus any schedule
for (f, G) is a schedule for (I,G). The time complexity
for our procedure is O(nd log d)

Yz

2.0.3 Solving the MU¢ Problem /

We construct schedule (X') for the instance ,G) of
the MUg problem of degree d with total communica-
tion time d by reducing it to the Makespan Openshop
Preemptive Scheduling problem, which can be solved
by the polynomial time algorithm given in [7]. The
reduction appears in [5] and the time complexity is
O(r(min{r,m?} 4+ m log m)), where r < d.




Problem instance (I, G) is given in Figure 7 {a) (all
objects). The two communications modes generated
for it are given in Figures 7 (b) and (c).

G) (all objects).
(c) generated for
), respectively.

(a) Problem instance (J,
The communication modes (b) a nd
the dotted lines, and solid lines in (a

Figure 7:

2.0.4 Constructing the Final Schedule

Concatenate the communication schedule X and X',
and eliminate all dummy processors and messages. In
our example thes schedules are given in Figures 4 (b),
6 (b), 7 (b) and 7 (c). The resulting communica-
tion schedule has total communication time at most
2d and it is the output generated by our procedure.
We summarize our results in the following Theorem
whose proof is omitted for brevity.

Theorem 2.1 Schedule X plus schedule X' is a
schedule for (I,G) with total communication ltime
2d. The overall time complexity for our procedure is
O(r(min{r,m?} + m log m)), where r < dn.

3 Discussion

The approximation algorithm in this paper gener-
ates a communication schedule with total communi-
cation time at most 2d. This is significantly better
than the one of previous algorithms ([3], [4]). How-
ever those algorithms are faster and were designed for
the case when forwarding was not allowed. The time
complexity for our procedure may be reduced by han-
dling the dummy messages differently.
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