
CONTINUOUS DELIVERY MESSAGE DISSEMINATION PROBLEMS
UNDER THE MULTICASTING COMMUNICATION MODE

Teofilo F. Gonzalez
Department of Computer Science

University of California
Santa Barbara, CA, 93106, USA

email: teo@cs.ucsb.edu

ABSTRACT
We consider the continuously delivery message dissemina-
tion (CDMD) problem under the multicasting communi-
cation mode over the n processor complete (all links are
present and are bi-directional) static networks. This prob-
lem has been shown to be NP-complete even when all mes-
sages have the same length. For the CDMD problem we
present an efficient approximation algorithm to construct a
message routing schedule with total communication time at
most 3.5d, where d is the total length of the messages that
each processor may send or receive. Our algorithm takes
O(m2 + n log n) time, where n is the number of proces-
sors and m is the number of messages.

KEY WORDS
Approximation Algorithms, Continuous Delivery, Mes-
sage Dissemination, Multicasting Communication, For-
warding.

1 Introduction

Parallel and distributed systems were introduced to accel-
erate the execution of programs by a factor proportional
to the number of processing elements. To accomplish this
goal a program must be partitioned into tasks and the com-
munications that must take place between these tasks must
be identified to ensure a correct execution of the program.
To achieve high performance one must assign each task to
a processing unit (statically or dynamically) and develop
communication programs to perform all the intertask com-
munications efficiently. Efficiency depends on the algo-
rithms used to route messages to their destinations, which
is a function of the underlying communication network, its
primitive operations and the communication model. Given
a network with a communication model, a set of commu-
nication primitives and a set of messages that need to be
exchanged, our problem is to find a schedule to transmit
all the messages in the least total number of communica-
tion rounds. In the continuous delivery message dissem-
ination (CDMD) problem, the messages have different
length, but may be partitioned into packets. However, every
message must arrive to its destination in its “original” or-
der and all its packets must arrive during consecutive time
units. One may think of the messages as “video clips” to

be viewed without delay on arrival or data that needs to
be processed on-line in the order it is generated. Generat-
ing an optimal communication schedule, i.e., one with the
least total communication rounds, for the CDMD prob-
lem, even when all the messages consist of just one packet,
over a wide range of communication networks is an NP-
hard problem. To cope with intractability efficient mes-
sage dissemination approximation algorithms for classes of
networks under different communication assumptions have
been developed. In this paper we consider the continuous
delivery message dissemination (CDMD) problem for n
processor complete networks. For the case when the mes-
sages have arbitrary length, we present an efficient approx-
imation algorithm to construct a message routing schedule
with total communication time at most 3.5d, where d is the
total length of the messages that each processor may send
(or receive). Our algorithm takes O(m2 + n log n) time,
where n is the number of processors and m is the number
of messages.

The CDMD problem consists of constructing a com-
munication schedule, for an n processor complete static (all
links are present and are bi-directional) network N , with
least total communication time for multicasting (transmit-
ting) any given set of messages. Specifically, there are n
processors, P = {P1, P2, . . . , Pn}, interconnected via net-
work N . Each processor needs to send a set of messages
each with a possibly different length and to a nonempty
subset of processors. The messages must travel through
the network. Our objective is to determine when each of
these messages is to be transmitted so that all the commu-
nications can be carried in the least total amount of time.

Let us formally define our problem. Each processor
Pi holds the set of messages hi each with a possibly dif-
ferent length (positive integer) and needs to receive the set
of messages ni. Message j has length lj (positive integer)
which is the number of its packets or time units needed to
transmit the message from one processor to another. The
messages may be partitioned into units or packets, but ev-
ery processor must receive all the packets of each message
in order and during consecutive time units. We assume
that

⋃
hi =

⋃
ni, and that each message is initially in ex-

actly one set hi. We define the total length of the messages
any processor sends or max hold of a problem instance as
s = max{

∑
j∈hi

| lj |}. Similarly, the total length of

513-207 277

debbie

the messages any processor receives or the max need of a
problem instance as r = max{

∑
j∈ni

| lj |}. We define
the degree of a problem instance as d = max{s, r}, i.e.,
the maximum total length of the messages any processor
sends or receives. We use m to denote the total number of
messages. Consider the following example.

Example 1.1 There are seven processors (n = 7) all of
which need to send and receive messages and the total
number of messages m = 18. The messages each pro-
cessor holds and needs are given in Table 1. The length (in
packets or time units) of the messages are given in Table 2.
For this example d = s = r = 60.

Table 1. Hold and Need vectors for Example 1.1.

h1 h2 h3 h4

{A, B, C} {D, E, F} {G, H, I} {J, K}

n1 n2 n3 n4

{E, G} {A, L, P} {C, N, R} {B, M, O, Q}

h5 h6 h7

{L, M} {N, O} {P, Q, R}

n5 n6 n7

{A, F, J, P} {C, I, K, R} {D, H, M, O}

Table 2. Message Lengths for Example 1.1.

A B C D E F G H I
30 10 20 5 40 10 20 35 5

J K L M N O P Q R
10 5 20 10 20 10 10 30 20

Usually one visualizes these type of problems by di-
rected multigraphs. Each processor Pi is represented by
the vertex labeled i, and each message is represents by a
set of directed edges (or branches) from the sending pro-
cessor to each of the receiving processors. The set of di-
rected edges or branches associated with each message are
bundled together. The problem instance given in Example
1.1 is depicted in Figure 1 as a directed multigraph with
additional thick lines that identify all edges or branches in
each bundle.

In the single port communication mode every proces-
sor sends at most one message and receives at most one
message during each communication round. A processor
may send at each communication round one of the mes-
sages it holds (i.e., a message in its hold set hi at the begin-
ning of the time unit), but such message can be multicasted
to a set of processors. This is why we call this communi-
cation mode multicasting. The message also remains in the

A

C

B

L

M

O

E
F

D

I

N

H

G

K

J

R

Q

P

2

3 6

4 71

5

Figure 1. Example for 1.1. The thick lines joins all the
edges (branches) in the same bundle.

hold set hi. During each time unit each processor may re-
ceive at most one message. The message that processor Pi

receives (if any) will be available in its hold set hi for the
next communication round.

The communication process ends when each proces-
sor has ni ⊆ hi, i.e., each processor holds all the messages
it needs. The total communication time (or simply TCT) is
the total number of communication rounds. Our communi-
cation model allows us to transmit any of the messages to
only a subset of its destinations at a time. I.e., any given
message may be transmitted at different times. This added
routing flexibility reduces the TCT. In many cases it is a
considerable reduction.

Algorithms for the completely connected architecture
have wide applicability in the sense that the schedules can
be easily translated to communication schedules for ev-
ery pr-network, a large family of communication networks.
The class includes sets of processors connected through
Benes networks (e.g., the Meiko CS-2 and IBM GF-11).
There is some penalty one has to pay for the translation
process which is doubling the communication rounds [1].
However, this penalty is not always incurred.

2 Applications and Previous Results

The CDMD problem arises in applications where a non-
preemptive message exchange solution is desired. For ex-
ample when the messages are video clips being exchanged
by servers in order to better satisfy users requests [2].

A restricted version of the CDMD problem where
all messages have have equal length and each message has
only one destination is called the MUC problem. The
MUC problem and its variants have been studied. The ba-
sic results include: heuristics, approximation algorithms,
polynomial time algorithms for restricted versions of the
problem, and NP-completeness results. Coffman et al.

278

[3] present approximation algorithms for a generalization
where there are γ(Pi) sending or receiving ports per pro-
cessor. The power of message forwarding was reported by
Whitehead [4]. When preemptions are allowed, messages
may be transmitted with interruptions, generalizations of
the problem have been considered by Choi and Hakimi [5],
Hajek and Sasaki [6], Gopal et al. [7]. The n-port MUC

problem over complete networks, for transferring files, was
studied by Rivera-Vega et al. [8]. A variation of the prob-
lem, called the message exchange problem, has been stud-
ied by Goldman et al. [9]. The communication model in
this version of the problem is asynchronous and it closely
corresponds to actual distributed memory machines. An-
other restricted version of the MUC problem, called data
migration was studied by Hall et al. [10].

The main difference between the above research and
the one we discuss in this paper is that we concentrate
on the multicasting communication mode, rather than on
the telephone communication mode. Most of the previous
research based on the multicasting communication mode
has concentrated on single messages. The exception is the
work on the multimessage multicasting problem, but it in-
volves equal length messages [1, 11, 12, 13, 14, 15, 16, 17].
The initial research by Shen [16] on this type of problems
was for n-cube processor systems. The objective function
was very general and attempted to minimize the maximum
number of hops, amount of traffic, and degree of message
multiplexing, so only heuristics could be developed. More
recently, different strategies for solving multimessage mul-
ticasting problems over all-optical networks were surveyed
by Thaker and Rouskas [17]. The multimessage multicas-
ting problem based on the telephone communication mode
has been studied under the name of data migration with
cloning by Khuller et al. [18]. The TCT for optimal sched-
ules under the telephone communication mode is consider-
ably larger than the one over the multicasting communica-
tion mode. A generalization of this message dissemination
problem allowing for limited broadcasting or multicasting
was considered by Khuller et al. [2]. These problems are
used to model networks of workstations and grid comput-
ing. These data migration problems have also been studied
under the objective of minimizing the weighted sum of the
message arrival times by Gandhi et al. [19]. This version
of the message dissemination problem is based on the tele-
phone communication mode

The multimessage multicasting problem arises nat-
urally when solving large scientific problems via itera-
tive methods in a parallel or distributed computing en-
vironment, for example, solving large sparse system of
linear equations using stationary iterative methods. An-
other application arises when executing most dynamic pro-
gramming procedures in a parallel or distributed comput-
ing environment. In information systems, these problems
arise naturally when multicasting information over a b-
channel ad-hoc wireless communication network. Other
applications include sorting, matrix multiplication, discrete
Fourier transform, etc. Message routing problems under

the multicasting communication primitives arise in sensor
networks which are simply static or slow changing ad-hoc
wireless networks. These type of networks have received
considerable attention because of applications in battle-
fields, emergency disaster relief, etc. Ad-hoc wireless net-
works are suited for many different scenarios including sit-
uations where it is not economically viable to provide In-
ternet or Intranet wired communication. Other applications
in high performance communication systems include voice
and video conferencing, operations on massive distributed
data, scientific applications and visualization, high perfor-
mance supercomputing, medical imaging, etc. The need
to deliver multidestination (multicasting) messages is ex-
pected to increase rapidly in the near future. The nonpre-
emptive scheduling mode in our problems has additional
applications when the cost of preemptions is large.

Gonzalez [1] shows that even restricted versions of
the multimessage multicasting problem are NP-complete,
but schedules with TCT at most d2 can be constructed in
polynomial time. This bound is best possible in the sense
that for all d ≥ 1 there are problem instances that require
d2 communication time [1].

When forwarding is allowed the multimessage multi-
casting problem remains NP-complete, but schedules with
TCT at most 2d can be constructed in O(m2+n logn) time
[11].

3 New Results

In this section we present our approximation algorithm for
the CDMD problem under the multicasting communica-
tion mode. We assume a fully connected interconnection
network with bi-directional links between every pair of pro-
cessors. We show that in polynomial time it is always pos-
sible to construct a schedule with TCT at most 3.5d. The
difference from previous versions of the problem studied is
that messages have different length and even though mes-
sages can be split into packets all the packets for the same
message must arrive in order and during consecutive time
units to their destinations. But the same message may ar-
rive at different times to different processors.

The single destination continuous delivery mes-
sage dissemination CDMDSD problem is the CDMD
such that every message is sent to only one destination.
The CDMDMSD problem is a slight variation of the
CDMDSD problem where every processor may have one
multidestination message (1 multicast). However all the
multidestination messages (originating at all the proces-
sors) have different destinations. In Section 3.1 we show
how to construct a schedule with TCT s + r for every in-
stance of the CDMDMSD problem. Then in Section 3.2
we show that given any instance I of the CDMD prob-
lem of degree d it is always possible to construct an in-
stance f(I) of the CDMDMSD problem with s = 1.5d
and r = d. The algorithm takes O(m2 + n log n) time and
consists of a message multicasting forwarding step. We
show that this forwarding operation can be carried out by a

279

schedule S with TCT d. Furthermore, schedule S followed
by any schedule for the instance f(I) of the CDMDMSD

is a schedule for the instance I of the CDMD problem.
Any schedule constructed in this fashion has TCT at most
3.5d (the first part of the schedule has TCT at most d and
the second part has TCT at most 2.5d).

3.1 Algorithms for CDMDSD and CDMDMSD

Our algorithm for any instance of the CDMDSD problem
is simple. It falls in the broad category of list schedules.
These schedules are generated as follows. You are given
an ordered list L of the processors. Then whenever a pro-
cessor j finishes receiving a message (or has not started
receiving one), we find the first processor k in the list that
is not currently sending any messages and it holds a pre-
viously unsent message with destination processor j. This
message (if it exists) will be sent without interruption. On
the other hand if no processor k can be identified then pro-
cessor j will not receive messages until another processor
terminates sending a message. At that time we will check
again if a processor k with the above properties exists. Note
that the list is not actually necessary, and one could do the
assignment in any order. The only purpose for the list is to
break ties. Though, ties could be broken in any arbitrary
order.

We claim that the list schedule constructed by the
above algorithm has TCT at most s + r, remember that
s and r are the total length of the messages any processor
may send and received, respectively. The proof of this fact
is straight forward. Let j be a processor that receives a mes-
sage at the latest time. In case of ties, select any processor
that satisfies the property. Lets call this last message X . Let
k be the processor that sent message X to processor j. Let
us now examine processor j time zero to time t. Clearly, at
all times it was either busy receiving messages or idle (not
receiving any messages). Since processor j cannot receive
messages for more than r time units, then it received mes-
sages for at most r time units. When processor j was idle
(not receiving any messages) it must have been that some
other processor must have been receiving a message that
processor k was sending. Otherwise it would contradict
list schedules because message X could have been sent to
processor j at that time. Therefore the total time processor
j is idle is at most s. So the schedule has TCT at most s+r.
By using Fibonacci heaps one can show that the schedule
can be constructed in O(m2 + n log n) time.

Theorem 3.1 Given any instance I of the CDMDSD

problem the list schedules described above generates a
schedule with TCT at most s + r. Furthermore the time
complexity is O(m2 + n log n).

Proof: By the above discussion.
2

The CDMDSD problem can be viewed as the prob-
lem of minimizing the makespan for scheduling a set of

jobs without preemptions in an open shop. In fact, our
list schedule corresponds to the list schedule developed by
Racsmány discussed in [15].

In the next section we construct an instance of a slight
variation of the CDMDMSD problem. We claim that the
above procedure also works for the CDMDMSD provided
that at time zero we send all the multidestination mes-
sages. Since all of them have different destinations there
will not be a conflict. Once we do this we continue (per-
haps scheduling at time zero on some processors) schedul-
ing the tasks as the above algorithm. It is simple to prove
the following result.

Theorem 3.2 Given any instance I of the CDMDMSD

problem the modified list schedules described above gener-
ates a schedule with TCT at most s+ r in O(m2 +n log n)
time

In the next section we show how to construct from an
instance of the CDMD an instance of the CDMDMSD

problem. The concatenation of the schedule in the next
section and the list schedule is a schedule for the instance
of the CDMD problem.

3.2 Transformation from the CDMD to the
CDMDMSD problem.

For every processor i we define the set of message-
destination pairs (md-pairs for short) of the form
(message-id, processor index) that contains one entry for
each message sent by processor i to a different destina-
tion. For example processor 1 in Example 1.1 will have
five message destination pairs: Two for message A ((A, 2),
(A, 5)), one for message B ((B, 4)), and two for message
C ((C, 6), (C, 3)). We corrupt our notation and refer to the
length of the md-pair to mean the length of the message as-
sociated with the md-pair. Also we say that two md-pairs
are equivalent if they correspond to the same message, and
non-equivalent otherwise.

An md-pairs will be labeled large if it has length
greater than d/2, and short otherwise. Each processor may
have zero or more large md-pairs, but no processor will
have two non-equivalent large md-pairs, as otherwise we
contradict the definition of d. Though, any processor may
have two or more equivalent large md-pairs. However,
there can be at most n large md-pairs. The reason for this
is that all of the md-pairs will be received by the processors
and each processor will receive a set of md-pairs with total
length at most d. If there were n + 1 large md-pairs, then
at least two of the md-pairs will have the same destination
and such processor will receive md-pairs with total length
greater than d which contradicts the definition of d. A pro-
cessor with zero, one, or more than one large md-pairs is
said to be of type 0, 1 or 2, respectively.

The idea is to forward messages to other processors so
that we are left with an instance of the CDMDSD problem
in which every processor must send messages with total

280

length at most d. If we could do this then the resulting
problem has a schedule with TCT d and the forwarding
could be done by a schedule with TCT at most d. This
will result in a schedule for the whole problem with TCT
at most 2d. However this is not always possible and even
just determining whether or not this is possible is an NP-
complete problem (bin packing) in the strong sense.

Because of this we need to take a more pragmatic ap-
proach. The idea is to forward a set of messages by us-
ing a schedule with TCT d, but the resulting problem will
have that each processor sends a set of messages with total
length at most 1.5d when counting the large equivalent md-
pairs on a processor as single ones. The resulting problem
is an instance of the CDMDMSD .

A set or group of md-pairs is said to be full if the total
length of the md-pairs in it is in the range [d, 1.5d]. Note
that for this summation we count once all the equivalent
md-pairs on the same processor. A processor type-i, for
0 ≤ i ≤ 2, is said to be light, full and heavy, if the total
length of the md-pairs in it is in the range [0, d), [d, 1.5d],
and (1.5d,∞), respectively. We refer to processors as of
type 0l, 0f, 0h, 1l, 1f, 1h, 2l, 2f or 2h to mean the type and
length level of the processor.

We perform the following transformations until they
can no longer be applied.

F1: Given a processor type-0l and one type-0h we forward
a set of md-pairs from the type-0h processor to the
type-0l processor. As a result of this we end up with a
type-0f processor and the other being type-0h, type-0f,
or type-0l.

F2: Given a processor type-1h and one type-0l with total
length of md-pairs greater than or equal to 0.5d, we
forward small md-pairs from the processor type-1h to
the processor type-0l until it becomes a full one. As
a result of this transformation we end up with a type-
0f processor and the other being type-1h, type-1f, or
type-1l.

F3: Given a processor type-1h and one type-0l with total
length of md-pairs less than 0.5d, we forward the large
md-pair and enough small md-pairs from the proces-
sor type-1h to the processor type-0l. As a result of this
transformation we end up with a type-1f processor and
the other being type-0h, type-0f, or type-0l.

F4: Given a processor type-2h and one type-0l with total
length of md-pairs greater than or equal to 0.5d, we
forward small md-pairs from the processor type-2h to
the processor type-0l until it becomes a full one. As
a result of this transformation we end up with a type-
0f processor and the other being type-2h, type-2f, or
type-2l.

F5: Given a processor type-2h and one type-0l with total
length of md-pairs less than 0.5d, we forward a large
md-pair and enough small md-pairs from the proces-
sor type-2h to the processor type-0l. As a result of

this transformation we end up with a type-1f processor
and the other being type-2h, type-2f, type-2l, type-1h,
type-1f, or type-1l.

Every time that we apply the above transformations
we increase the total number of full processors (i.e., pro-
cessors type-0f, type-1f and type-2f). If the application
of the above transformations eliminates all the heavy pro-
cessors (i.e., type-0h, type-1h and type 2-h) then we have
an instance of the desired CDMDMSD problem. On the
other hand if we still have heavy processors then there are
no type-0l processors. In this case we need to apply the
following additional transformation.

We apply the following procedure to every processor
independently. Sort all the small md-pairs in increasing
(actually non-decreasing) order of their length. We will
form a group of md-pairs for each processor that includes
all the large md-pairs and as many of the small pieces until
one md-pair is added and the group becomes full. As a
result of this operation we will end with the stay-here group
for the processor plus zero or more remaining small md-
pairs. If the total length of the remaining small md-pairs
is at most 0.25d, then they can be added to the stay-here
group and there will be no remaining small md-pairs. So,
if there are remaining small md-pairs their total length is
more than 0.25d. The remaining md-pairs will be have to
be forwarded to other processors, whereas the ones in the
stay-here group will remain in the processor.

A processor whose stay-here group is light is said to
be of type A and a processor with remaining small md-
pairs is said to be of type X . Suppose processor a is type A
and processor x is type X . Let qa be the length of the md-
pairs in the stay-here group of processor a, and qx be the
total length of the remaining md-pairs in processor x. We
will forward a set of the small messages from processor
x to processor a to be included in the stay-here group as
follows. There are two cases depending on qa + qx.

• qa + qx ≥ d: In this case we start forwarding the re-
maining small md-pairs from processor x to the stay-
here group in processor a until the group becomes full.
If the remaining small md-pairs in processor x have
total length at most 0.25d, they are also added to the
group in processor a. We repeat the above process
selecting a pair of processors type A and X . On the
other hand, if the remaining small pieces in proces-
sor x have total length at least 0.25d, then we select
another processor type A and repeat the above proce-
dure.

• qa + qx < d: In this case we add all the md-pairs
from processor x to the stay-here group in processor
a. We select another type X processor and repeat the
procedure again.

We apply the above procedure until it cannot be fur-
ther applied because there are no more processors of type A
and/or X . It cannot be that there remain type X processors
because then all processors will have md-pairs with total

281

length greater than d and it would contradict the fact that
the total length of the md-pairs is at most dn. So it must
be that there are no type X processors left. In this case
the procedure terminates and we have created a problem
instance of the CDMDMSD problem.

Theorem 3.3 The above procedure constructs an instance
of the CDMDMSD problem in which s = 1.5d and r = d.
Furthermore, all the message forwarding can be carried
out in a schedule with TCT d.

Proof: The proof for the first statement follows from
the above discussion. The claim that all the forwarding
can be carried by a schedule wit TCT d is more elaborate.
This requires to specify the time at which each message
is forwarded. For brevity we do not include the details,
though they will be included in the full version of the paper.

2

4 Discussion

We presented an approximation algorithm for the contin-
uously delivery message dissemination (CDMD) prob-
lem under the multicasting communication mode over the
n processor complete (or fully connected) static networks.
For the case when the messages have different length, we
present an efficient approximation algorithm to construct a
message routing schedule with TCT at most 3.5d for ev-
ery degree d problem instance, where d is the total length
of the messages that each processor may send (or receive).
Our algorithm takes O(m2 + n log n) time, where n is the
number of processors and m is the number of messages.

Acknowledgments

We like to thank the referees for pointing out mistakes in
an arlier version of our paper and for their suggestions on
ways to improve the readability of our paper.

References

[1] Gonzalez, T. F., Complexity and Approximations for
Multimessage Multicasting, J. of Parallel and Dis-
tributed Computing, 55(2), 215, 1998.

[2] Khuller, S., Kim, Y.-A., and Wan, Y-C., Broadcasting
on Networks of Workstations, Proc. of SPAA, 2005.

[3] Coffman, Jr. E. J., M. R. Garey, D. S. Johnson, and A.
S. LaPaugh, Scheduling File Transfers in Distributed
Networks, SIAM J. on Computing, 14(3), 744, 1985.

[4] Whitehead, J. The Complexity of File Transfer
Scheduling with Forwarding, SIAM J. on Computing,
19(2), 222, 1990.

[5] Choi, H. A., and S. L. Hakimi, Data Transfers in Net-
works, Algorithmica, 3, 223, 1988.

[6] Hajek, B., and G. Sasaki, Link Scheduling in Polyno-
mial Time, IEEE Transactions on Information The-
ory, 34(5), 910, 1988.

[7] Gopal, I. S., G. Bongiovanni, M. A. Bonuccelli, D. T.
Tang, and C. K. Wong, An Optimal Switching Algo-
rithm for Multibeam Satellite Systems with Variable
Band Width Beams, IEEE Transactions on Commu-
nications, 30(11), 2475, 1982.

[8] Rivera-Vega, P. I., R. Varadarajan, and S. B. Navathe,
Scheduling File Transfers in Fully Connected Net-
works, Networks, 22, 563, 1992.

[9] Goldman, A., Peters, J. G., and Trystram, D., Ex-
changing messages of different sizes, J. of Par. and
Dist. Comput, 66, 18, 2006.

[10] Hall, J., Hartline, J., Karlin, A.R., Saia, J., and
Wilkes, J., On Algorithms for Efficient Data Migra-
tion, Proc. of SODA, 620, 2001.

[11] Gonzalez, T. F., Simple Multimessage Multicasting
Approximation Algorithms With Forwarding, Algo-
rithmica, 29, 511, 2001.

[12] Gonzalez, T. F., MultiMessage Multicasting, Pro-
ceedings of Irregular’96, LNCS (1117), Springer,
217, 1996.

[13] Gonzalez, T. F., Improved Approximation Algorithms
for Multimessage Multicasting, Nordic Journal on
Computing, 5, 196, 1998.

[14] Gonzalez, T. F., Distributed Multimessage Multicast-
ing, Journal of Interconnection Networks, 1(4), 303,
2000.

[15] Gonzalez, T. F., Message Dissemination Using Mod-
ern Communication Primitives, Handbook Parallel
Computing: Models, Algorithms, and Applications,
S. Rajasekaran and J. Reif Eds., CRC Press, (to ap-
pear).

[16] Shen, H, Efficient Multiple Multicasting in Hyper-
cubes, J. of Systems Architecture, 43(9), 1997.

[17] Thaker, D. and Rouskas, G., Multi-Destination Com-
munication in Broadcast WDM Networks: A Survey,
Optical Networks, 3(1), 34, 2002.

[18] Khuller, S., Kim, Y.-A., and Wan, Y-C., Algorithms
for Data Migration with Cloning, SIAM J. Comput.,
33(2), 448, 2004.

[19] Gandhi, R., Halldorsson, M.M., Kortsarz, M., and
Shachnai, H., Improved Results for Data Migration
and Open Shop Scheduling, ACM Trans. on Algo-
rithms, 2(1), 116, 2006.

282

