DISTRIBUTED ALGORITHMS FOR COMPUTING ALTERNATE PATHS
AVOIDING FAILED NODES AND LINKS

Amit M. Bhosleand Teofilo F. Gonzalez
Department of Computer Science
University of California, Santa Barbara, CA 93106

bhosle@alumni.cs.ucsh.edu, teo@cs.ucsb.edu

ABSTRACT

A recent study characterizing failures in computer net-
works shows that transient single element (node/link} fail
ures are the dominant failures in large communication net-
works like the Internet. Thus, having the routing paths
globally recomputed on a failure does not pay off since
the failed element recovers fairly quickly, and the recom-
puted routing paths need to be discarded. In this paper, we
present the first distributed algorithm that computes the al
ternate paths required by sompeactive recovery schemes

for handling transient failures. Our algorithm computes
paths that avoid a failedode, and provides an alternate
path to a particular destination from an upstream neighbor
of the failed node. With minor modifications, we can have
the algorithm compute alternate paths that avoid a failed
link as well. To the best of our knowledge all previous algo-
rithms proposed for computing alternate paths are central-
ized, and need complete information of the network graph
as input to the algorithm.

KEY WORDS
Distributed Algorithms, Computer Network Management,
Network Reliability, Routing Protocaols.

1 Introduction

Given a computer network represented by an edge
weighted graphzZ = (V, E), the problem is to find the
best route (under normal operation load) to transmit a mes-
sage between every pair of vertices. The number of vertices
(IV]) isn and the number of edgeld|) is m. The shortest
paths tree of a nodeg 7, specifies the fastest way of trans-
mitting a message to nodeoriginating at any given node

in the graph. Of course, this holds as long as messages
can be transmitted at the specified costs. When the system
carries heavy traffic on some links these routes might not
be the best routes, but under normal operation the routes
are the fastest. It is well known that the all pairs shortest
path problem, finding a shortest path between every pair
of nodes, can be computed in polynomial time. In this pa-
per we consider the case when the nddaghe network
may be susceptible to transient faults. These are sporadic
faults of at most one node at a time that last for a relatively

*Currently at Amazon.com, 6055 Ave. S., Seattle, WA - 98144
1The nodes arsingle- or multi-processor computers

short period of time. This type of situation has been studied
in the past [1, 2, 7, 10, 11, 12] because it represents most
of the node failures occurring in networksSingle node
failures represent more than 85% of all node failures [8].
Also, these node failures are usualignsient, with 46%
lasting less than a minute, and 86% lasting less than 10
minutes [8]. Because nodes fail for relative short periods
of time, propagating information about the failure through
out the network is not recommended. The reason for this
is that it takes time for the information about the failure
to be communicated to all nodes and it takes time for the
nodes to recompute the shortest paths in order to re-adapt
to the new network environment. Then, when the failing
node recovers, a new messages disseminating this informa-
tion needs to be sent to inform the nodes to roll back to
the previous state. This process also consumes resources.
Therefore, propagation of failures is best suited for theeca
when nodes fail for long periods of time. This is not the
scenario which characterizes current networks, and is not
considered in this paper.

In this paper we consider the case where the network
is biconnected (2-node-connected), meaning that the dele-
tion of a single node does not disconnect the network. Bi-
connectivity ensures that there is at least one path between
every pair of nodes even in the event that a node fails (pro-
vided the failed node is not the origin or destination of a
path). A ring network is an example of a biconnected net-
work, but it is not necessary for a network to have a ring
formed by all of its nodes in order to be biconnected.

Based on our previous assumptions about failures, a
message originating at nodewith destinations will be
sent along the path specified @y until it reaches node
or a node adjacent to a node that has failed. In the latter
case, we need to use a recovery patk foom that point.
Since we assume single node faults and the graph is bicon-
nected, such a path always exists. We call this problem of
finding the recovery paths tHgngle Node Failure Recov-
ery (SNFR) problem. In this paper, we present an efficient
distributed algorithm to compute such paths. Also, our al-
gorithm can be generalized to solve some other problems
related to finding alternate paths or edges.

A distributed algorithm for computing the alternate
paths is particularly useful if the routing tables themsslv
are computed by a distributed algorithm since it takes away
the need to have a centralized view of the entire network

graph. Centralized algorithms inherently suffer from the

overhead on the network administrator to put together (or
source and verify) a consistent snapshot of the system,
in order to feed it to the algorithm. This is followed by

the need to deploy the output generated by the algorithm
(e.g. alternate path routing tables) on the relevant comput
ers (routers) in the system. Furthermore, centralized-algo
rithms are typically resource intensive since a single com-

puter needs to have enough memory and processing power

to process a potentially huge network graph. Some other
advantages of a distributed algorithm are reliability (imo s

gle points of failure), scalability and improved speed (eom
putation time).

1.1 Related Work

A popular approach of tackling the issues related to tran-
sient failures of network elements is that of usprgactive
recovery schemes. These schemes typically work by pre-
computing alternate paths at the network setup time for the

failure scenarios, and then using these alternate paths to

re-route the traffic when the failure actually occurs. Also,

the information of the failure is suppressed in the hope that
the failure is transient and the failed element will recover
shortly. The local rerouting based solutions proposed in
[2, 7, 10, 11, 12] fall into this category.

Zhang, et. al. [12] present protocols based on local
re-routing for dealing with transient single node failures
They demonstrate via simulations that the recovery paths
computed by their algorithm are usually within 15% of the
theoretically optimal alternate paths.

Wang and Gao's Backup Route Aware Protocol
(BRAP) [11] also uses some precomputed backup routes in
order to handle transient singliek failures. One problem
central to their solution asks for the availability i&verse
paths at each node. However, they do not discuss the com-
putation of these reverse paths. As we discuss later, the
alternate paths that our algorithm computes qualify as the
reverse paths required by the BRAP protocol of [11].

Slosiar and Latin [10] studied the sindli@k failure
recovery problem and presented @xn?) time for com-
puting the link-avoiding alternate paths. A faster aldurit
with a running time ofD(m+n log n) for this problem was
presented in [1].

1.2 Preliminaries

Our communication network is modeled by an edge-
weighted biconnected undirected gragh= (V, E), with

n = |V] andm = |E|. Each edge € E has an associated
cost (weight), denoted st (e), which is a non-negative
real number. We usg; (s, t) to denote a shortest path be-
tweens andt in graphG andd (s, t) to denote its cost.

A shortest path tre@; for a nodes is a collection of
n—1edgesey,ea, ..., e,—1} of G which form a spanning
tree of G such that the path from nodeto s in 7; is a
shortest path fromy to s in G. We say that/ is rooted at

nodes. With respect to this root we define the set of nodes
that are thechildren of a noder as follows. In7, we say
that every nodg that is adjacent te such thate is on the
path in7,; from y to s, is a child ofx. For each node in
the shortest paths treg, denotes the number of children
of z inthe tree, and,, = {1, 2, ... 2y, } denotes this set
of children of the node.. Also, z is said to be th@arent of
eachz; € C, in the tree7Z;. The parent node, of a node:

is sometimes referred to agaimary neighbor or primary
router of ¢, while ¢ is referred to as anpstream neighbor
or upstream router of p. The children of a particular node
are said to baiblings of each other.

V. (T') denotes the set of nodes in the subtree of
the tree7 andE, C FE denotes the set of all edges incident
on the noder in the graphGG. nextHop(z,y) denotes the
next node fromz on the shortest path from to y. Note
that by definitionpextHop(z, y) is the parent o in 7.

1.3 Problem Definition

The Single Node Failure Recovery problem is formally de-
fined in [2] as follows:

SNFR: Given a biconnected undirected edge weighted
graphG = (V, E), and the shortest paths trée(G) of a
nodesin G whereC, = {1, xa, ...y, } denotesthe set of
children of z in 7, for each node: € V andx # s, find a
path fromz; € C, to sinthe graphG = (V\{z}, E\ E,),
whereF, is the set of edges adjacentito

In other words, for each nodein the graph, we are
interested in finding alternate paths from each of its chil-
dren in7; to the nodes when the node: fails. Note that
the problem is not well defined when nogdléails.

The above definition of alternate paths matches that
in [11] for reverse paths: for each noder € G(V), find
a path fromz to the nodes that does not use the primary
neighbor (parent node)of x in 7.

1.4 Main Results

Our main result is an efficient distributed algorithm for the
SNFR problem. Our algorithm requir€3$(m + n) mes-
sages to be transmitted among the nodes (routers), and has
a space complexity @@(m+n) acrossll nodes in the net-
work (this, being asymptotically equal to the size of the en-
tire network graph, is asymptoticallyptimal). The space
requirement at any single node is linearly proportional to
the number of children (the node’s degree) and the number
of siblings that the node has in the shortest paths tree of
the destination. When used for multiplaink nodes in the
network, the space complexity at each node is bounded by
its total number of children and siblings across the shortes
paths trees of all the sink nodes. Note that even though this
is only bounded by)(n?) in theory (since each node in the
network can be a sink, and a node can theoretically have
O(n) children), it is much smaller in practic€(n): for n

sink nodes, as average node degree in shortest paths trees
is usually within 20-40 even fat as high as a few000s).

Our algorithm is based on a request-response model,
and does not require argtobal coordination among the
nodes.

To the best of our knowledge, this is the first com-
pletely decentralized and distributed algorithm for com-
puting alternate paths. All previous algorithms, incluglin
those presented in [1, 2, 7, 10, 11, 12] are centralized al-
gorithms that work using the information of the entire net-
work graph as input to the algorithms.

Furthermore, our algorithm can be generalized to
solve other similar problems. In particular, we can derive
distributed algorithms for: the single link failure recoye
problem studied in [1, 10], minimum spanning trees sensi-
tivity problem [4] and the detour-critical edge problem.[9]
The cited papers present centralized algorithms for the re-
spective problems.

2 Key Properties of the Alternate Paths

We now describe the key properties of the alternate paths
to a particular destination that can be used by a node in the
event of its parent node’s failure. These same principles
have been used in the design of the centralized algorithm
in [2]. However, for completeness, we discuss them briefly

here.

Edge translations fromG to R X

Figure 1. Recovering from the failure af Constructing
the recovery grapik .

Figure 1(a) illustrates a scenario of a single node fail-
ure. In this case, the nodehas failed, and we need to find
alternate paths te from eachz; € C,. When a node fails,
the shortest paths tree of 7, gets split intok,, + 1 com-
ponents - one containing the source nedand each of the
remaining ones containing the subtree of a child: C..

Notice that the edggy,,, g, }, which has one end point
in the subtree of;, and the other outside the subtreexof

provides a candidate recovery path for the nage The
complete path is of the formg(z;, 9p) ~ {gp, 94} ~
pc(gq, s). Sinceg, is outside the subtree af, the path
palgq, s) is not affected by the failure of. Edges of this
type (from a node in the subtree ©f € C, to a node out-
side the subtree of) can be used by, € C, to escapethe
failure of nodex. Such edges are callegleen edges. For
example, the edgfy,, g, } is a green edge.

Next, consider the edgf,, b, } between a node in
the subtree ofr; and a node in the subtree of. Al-
though there is no green edge with an end point in the sub-
tree ofz;, the edgegb,, b, } and{g,, g,} together offer a
candidate recovery path that can be used:pyo recover
from the failure ofz. Part of this path connects to x;
(pa(xi, by) ~ {by, by} ~ pa(by, x;)), after which it uses
the recovery path of;; (via z;'s green edge{g,, g4})-
Edges of this type (from a node in the subtreexpfto a
node in the subtree of a sibling; for some: # j) are
calledblue edges{b,, b,} is another blue edge and can be
used by the node; to recover from the failure of.

Note that edges likgr,,r,} and{b,, g,} with both
end points within the subtree of the same child:afo not
help any of the nodes i@}, to find a recovery path from the
failure of noder. We do not consider suaied edges in the
computation of recovery paths, even though they may pro-
vide a shorter recovery path for some nodes (§lg, g, }
may offer a shorter recovery pathitg). The reason for this
is that routing protocols would need to be quite complex in
order to use this information. As we describe later in the
paper, we carefully organize tlgeeen andblue edges in a
way that allows us to retain only these edges and eliminate
useless (red) ones efficiently.

We now describe the construction of a new gréph
called therecovery graph of x, which will be used to com-
pute recovery paths for the elementsdafwhen the node
x fails. A single source shortest paths computation on
this graph suffices to compute the recovery paths for all
z; € Cyp.

The graphR, hask, + 1 nodes, wheré:, = |C.|.

A special nodes,, represents ink,, the nodes in the
original graphG = (V, E). Apart froms,, we have one
node, denoted by;, for eachxz; € C,. We add all the
green and blue edges defined earlier to the graf,. as
follows. A green edge with an end point in the subtree
of x; (by definition, green edges have the other end point
outside the subtree af) translates to an edge betwegn
ands,. A blue edge with an end point in the subtree of
x; and the other in the subtree of translates to an edge
between nodeg; andy;.

Note that the weight of the edges addedig need
not be the same as the weight of the corresponding green
or blue edges inG = (V, E). The weights assigned to
the edges irkR,. should take into account the weight of the
actual subpath id7 corresponding to the edge R,.. As
long as the weights of edges®, don’t change withe, or
can be determined locally by the node, they can be directly
used in our algorithm. The candidate recovery path: pf

that uses the green edge- {u, v} has total cost given by:

greenWeight(e) = da(z;,u) + cost(u,v) + dg(v, s)
@)

This weight captures the weight of the actual subpath
in G corresponding to the edge addedRq. However,
since the weight given by equation (1) for an edge depends
on the noder; whose recovery path is being computed, it
will typically be different in eachR, in which e appears
as a green edge. The following weight function is more
efficient since it remains constant acrossijl graphs that
e is part of.

greenWeight(e)
=dg(s,z;) + da(z;,u) + cost(u,v) + dg(v, s)
=dg(s,u) + cost(u,v) + dg (v, s) (2)

Note that the correct weight (as defined by equation
(1)) to be used for aR, can be derived by the node
x from the weight function defined above by subtracting
da(s,zj) = da(s,z) + cost(x, x;). Also, the green edge
with an end point in the subtree ef with the minimum
greenWeight remains the same, immaterial of the green-
Weight function (equations (1) or (2)) used since equation
(2) basically adds the valug; (s, ;) to all such edges.

As discussed earlier, a blue edge provides a path con-
necting two siblings ofz, sayz; andx;. Once the path
reachese;, the remaining part of the recovery path of
coincides with that of:;. If b = {p, ¢} is the blue edge
connecting the subtrees of andx; the length of the sub-
path fromz; to z; is:

blueW eight(b) = da(wi, p) + cost(p, q) +da (g, x;) (3)

We assign this weight to the edge corresponding to
the blue edgép, ¢} that is added irR , betweery; andy;.
Note that ifw is the nearest common ancestor of the
two end points: andv of and edge: = (u, v), e is a green
edge in ther graphs for all nodes on path betweerand
u, andw andv (excludingu, v andw: it is a blue edge
in R, and is unusable iR, andR, since a node is
deemed to have failed while constructiRy). Assuming
that a node can determine whether an edge is blue or green
in its recovery graph (we discuss this in detail in the next
section), it is easy to see that it can derive the edge’s blue
weight from its green weight:

blueWeight(e) = greenWeight(e)—
(2-dg(s,w) + cost(w,wy,) + cost(w,w,)) (4)

wherew, andw, are respectively the child nodes of
whose subtrees contain the nodesind v. Information
about all terms being subtracted is available locallyvat
and consequently, the greenWeight and blueWeight values
for an edge can be computed/derived using information lo-
cal to the nodev.

If there are multiple green edges with an end point in
V., the subtree of;, we choose the one which offers the
shortest recovery path fgy; (with ties being broken arbi-
trarily) and ignore the rest. Similarly, if there are mulép
edges between the subtrees of two siblingsindz;, we
retain the one which offers the cheapest alternate path.

The construction of our grapR.,. is now complete.
Computing the shortest paths tree f in R, provides
enough information to compute the recovery paths for all
nodesr; € C, wheng fails.

Note that any edge = (u,v) acts as a blue edge in
at most oneR,.: that of the nearest-common-ancestor of
u andv. Also, any nodec € G(V) belongs to exactly
oneR,: that of its parent ir7,. As we discuss later, the
space requirement at any node is linearly proportional to
the number of children and the humber of siblings that it
has.

Figure 1 illustrates the construction &, used to
compute the recovery paths from the nade € C, to
the nodes when the noder has failed. In this simple
example, the path frony; to s, iS y; ~ y; ~ ss.
The corresponding recovery path for is pa(x;, by) ~
{bu,bv} ~ pc(by,z;), followed by the recovery path of

r;: pa (T, 9p) ~ {9p, 9g} ~ PG (9q5 5)-

3 A Distributed Algorithm for Computing
the Alternate Paths

In this section, we use the basic principles of the alternate
paths described earlier to design an efficient distributed a
gorithm for computing the alternate paths.

3.1 Computing the DFS Labels

Our distributed algorithm requires that each node in
the shortest paths tre€, maintain itsdfsStart(-) and
df sEnd(-) labels in accordance with how a depth-first-
search (dfs) traversal &f, starts or ends at the node. Ref.
[5] reports efficient distributed algorithms for this padt
lar problem (of assigning labels to the nodes in a tree as
dictated by a dfs traversal of the tree). The basic algorithm
reported in Ref. [5], nametlake & Label 4, assigns
dfs labels to the nodes in the randen] in asymptotically
optimal time and require8n messages to be exchanged
between the nodes. We sketch the basic algorithm below.
The Wake & Label 4 algorithm runs in three
phases: wakeup, count, and allocation. In the first
(wakeup) phase, which is a top-down phase, the root node
sends a message to all of its child nodes asking them to re-
port the number of nodes in their subtree (including them-
selves). The child nodes recursively pass on the message
to their children. In the seconadunt) phase, which is a
bottom-up phase, each node reports the size of its subtree
to its parent node. The variants of théke & Label
algorithms differ in the last phasal{ocation) which deals
with assigning the labels to the nodes of the tree. In the sim-

plest version, once the root node knows the value (the
total number of nodes in the tree), knowing the size of the
subtrees of each child node, it can split the rafige] dis-
jointly among its children, and each child node recursively
assigns a sub-range to its children (a child withodes in

its subtree is assigned a range containinglues).

The reader is referred to Ref. [5] for the detailed
description and analysis of thédke & Label 4 algo-
rithm and its variants. For computing ti¢sStart(-) and
df sEnd(-) labels required by our algorithm, the total range
of these labels across all the nodesTinis [1,2n], and
a child with ¢ children is assigned a range 2 values.

All other aspects of any of the dfs label assignment al-
gorithms reported in Ref. [5] can be used as appropri-
ate. Note that even though it is not explicitly mentioned in
Ref. [5], theWwake & Label 4 algorithm (including our
modifications) can be implemented on a request-response
model, without the need of any global clock for coordina-
tion across the nodes.

3.2 Collecting the Green and Blue Edges

Our algorithm requires that each node in the network main-
tains the following data-structures:

1. Parent Bl ueEdges Li st: The list of edges
in the network graph which have one end point within the
subtree of the node, and the other end point in the subtree
of a sibling node. I.e. all edges from the node’s subtree that
arebluein the recovery grapik of the node’s parent.

2. ChildrenG eenEdges Map: A map that
stores for each child node, the cheapest green edge with
an end point in the child node’s subtree. Recollect that a
green edge of a node has the other end point outside the
subtree of the node’s parent.

We now discuss the details of this part of the
algorithm for building the Par ent Bl ueEdges and
Chi | drenGr eenEdges data-structures. A procedure,
Col | ect NonTr eeEdges, triggers a protocol where
each node recursively asks each of its children to forward it
the non-tree edges that have an end point in the child’s sub-
tree. Each node processes all its own non-tree edges, and
those forwarded by a child node. For processing a non-tree
edge, a node uses thsStart(-) anddfsEnd(-) labels
of the edge’s two end points to decide whether the edge
should be added to itPar ent Bl ueEdges list or the
Chi | drenGr eenEdges map. For an edge to be added
to thePar ent Bl ueEdges list, the edge should have ex-
actly one end point in the node’s subtree, while the other
end point still be within the parent’s subtree (but outside
this node’s subtree). For each edge that is forwarded by
a child, the node updates the corresponding entry for the
child in the Chi | dr enGr eenEdges map if the newly
forwarded edge is cheaper than the edge currently stored
for the child. Finally, if at least one of the two end points
of the edge lies outside this node’s subtree, it forwards the
information of the edge to the parent after updating its lo-
cal data-structures. Otherwise, it simply discards theeedg

and does not forward it to its parent. The reason for this is
that edges whose both end points belong to a node’s sub-
tree cannot serve as a blue or green edge in the recovery
graph of the node’s parent, and informing the parent about
such an edge does not serve any purpose (if this node is the
nearest-common-ancestor of the edge’s two end points, the
edge would be stored in tHear ent Bl ueEdges lists at

the two child nodes whose subtrees contain the edge’s end
points).

A child node invokes the procedure
Recor dNonTr eeEdge defined below on its parent,
with a messageM containing the following information
associated with a non-tree edge

e ¢ = (p1,p2): The non-tree edge, withy andp- as the
end points.

e weight(e): Weight of the edge.

e senderld: Id of this child node sending the message
to the parent node.

Procedure RecordNonTreeEdgef1)
if (isMyDescendant (M. p;) AND
i sMyDescendant (M. p2)) do:
/1 both end points in ny
/] subtree: ignore
return;
fi
/'l retrieve the current green
/1 edge for this sender from
/1 the Chil drenG eenEdges nap
Edge existing =
CGE. get (M. sender | d);
Edge edge = M. edge;

if (existing == null OR

edge. wei ght < exi sting.weight), do:
/1 if new or cheaper edge,
/1 update our data-structure
CGE. put (M. sender | d, edge);
fi
i f (edgel sBl ueFor Parent (edge)), do:

Par ent Bl ueEdges. add(edge) ;

fi

/'l Reset the senderld,

/1 and forward edge to parent

M.senderld = self.id,

par ent . Recor dNonTr eeEdge(M) ;
End RecordNonTreeEdge

Theedgel sBl ueFor Par ent method used above
determines whether or not an edge is blue for this
node’s parent. This can be determined easily if the
node knows its parent'dfsStart(-) and dfsEnd(-) la-
bels. For efficiency, after the dfs label computation phase
(Assi gnDf sLabel s) is over, each node can query its
parent for its labels, and store these locally. In some gases
these values can just be queried from the parent node as and
when needed.

3.3 Computing the Alternate Paths to Recover from a
Node’s Failure

Once the edge propagation phase is over, part of the infor-
mation required to constru®,., the recovery graph af, is
available at the node, and the remaining is available at the
children ofz. In particular,x has the information about the
nodes ofR, and the green edges &, while the children
of z have the information of the blue edgespf.
Conceptuallyx can construct the entire grafd, lo-
cally, and compute the shortest paths tree,of This pro-
cess would result in a space complexity@fm,. + n,,) at
nodex, wherem, andn, denote the number of edges and
nodes inR, respectively. Note that, can be as large as
O(n2) = O(|C,|?). In order to keep the space requirement
low, the shortest paths tre&,_, of s, is built incremen-
tally, by looking at the edges dR, only when they are

needed. Essentially, we use the edges exactly in the or-

der dictated by the Dijkstra’s shortest paths algorithm[3]
2 initially builds R, using the information it locally has:
the k&, + 1 nodes, and the green edge framto s, for

1 < i < kg (if the Chi | drenG eenEdges map has
an entry forx;). = maintains a priority queue data struc-
ture,candi dat es, which initially has an entry for each
i, with a priority? equal to the weight of the edge between
s, andy;. The remaining steps of the algorithm are as
follows.

1. While there are more entries gandi dat es, exe-
cute steps 2 - 4.

2. Delete entry frontandi dat es with highest prior-
ity.

3. Assign the priority value as the final distance (from
s.;) for the nodey, associated with the queue entry.

4. Fetch the blue edges from child nodg. For each
blue edge thus retrieved, if it provides a shorter path
to its other end point, say,, update the priority of the
gueue entry corresponding g with this value.

Note that the blue edges stored at a child noglare
retrieved only when they are needed by the algorithm, and
that each node: needs space linearly proportional to its
number of children, and the number of its siblings. For

each sibling, a node needs to store at most one edge (which

has the smallest blue weight) with an end point in its own

subtree, and the other in the sibling’s subtree. These edges

failed node. To the best of our knowledge, this is the first

completely decentralized algorithm that computes such al-
ternate paths. Our algorithm can be generalized to solve
other similar problems.

The paths computed by our algorithm are required by
the single node failure recovery protocol of [2]. They also
qualify as thereverse paths required by the BRAP proto-
col of [11]. Our distributed algorithm computes the exact
same paths as those generated by the centralized algorithm
of [2], and even though not optimal alternate paths, they
are usually good - within5% of the optimal for randomly
generated graphs with00 to 1000 nodes, and with an av-
erage node degree of up36. The reader is referred to [2]
for further details about the simulations.

References

[1] A. M. Bhosle and T. F. Gonzalez. Algorithms for
single link failure recovery and related problems.
Graph Algorithms Appl., 8(2):275-294, 2004.

[2] A. M. Bhosle and T. F. Gonzalez. Efficient algo-
rithms and routing protocols for handling transient
single node failures. 180" IASTED PDCS, 2008.

[3] E. W. Dijkstra. A note on two problems in connec-
tion with graphs. InNumerische Mathematik, pages
1:269-271, 1959.

[4] B. Dixon, M. Rauch, and R. E. Tarjan. Verification
and sensitivity analysis of minimum spanning trees in
linear time.SAM Jr. C., 21(6):1184-1192,1992.

[5] P. Fraigniaud, A. Pelc, D. Peleg, and S. Perennes. As-
signing labels in unknown anonymous networks (ex-
tended abstract). IRODC, 101-111, 2000.

[6] M. L. Fredman and R. E. Tarjan. Fibonacci heaps
and their uses in improved network optimization al-
gorithms.JACM, 34:596-615, 1987.

[7] S. Lee,et. al. Proactive vs reactive approaches to fail-
ure resilient routingl EEE INFOCOM, 2004.

[8] A. Markopulu, et. al. Characterization of failures in
an ip backboneln Proc. of IEEE INFOCOM, 2004.

[9] E. Nardelli, G. Proietti, and P. Widmayer. Finding
the detour-critical edge of a shortest path between two
nodes.Inf. Process. Lett., 67(1):51-54, 1998.

are the blue edges that are added to the parent node’s recov- [10] R. Slosiar and D. Latin. A polynomial-time algorithm

ery graph. Using Fibonacci heaps[6] for the priority queue,
7,, can be computed i®(m, + n, logn,) time.

4 Concluding Remarks

In this paper we have presented an efficient distributed
algorithm for the computing alternate paths that avoid a

2lower value implies higher priority
3if no edge is present, a priority ob is assigned

for the establishment of primary and alternate paths in
atm networks. InEEE INFOCOM, 509-518, 2000.

[11] F. Wang and L. Gao. A backup route aware routing
protocol - fast recovery from transient routing fail-
ures. ININFOCOM, 2008.

[12] Z. Zhong.et. al. Failure inferencing based fast rerout-
ing for handling transient link and node failuréSEEE
INFOCOM, 2859-2863, 2005.

