
DISTRIBUTED ALGORITHMS FOR COMPUTING ALTERNATE PATHS
AVOIDING FAILED NODES AND LINKS

Amit M. Bhosle∗and Teofilo F. Gonzalez
Department of Computer Science

University of California, Santa Barbara, CA 93106
bhosle@alumni.cs.ucsb.edu, teo@cs.ucsb.edu

ABSTRACT
A recent study characterizing failures in computer net-
works shows that transient single element (node/link) fail-
ures are the dominant failures in large communication net-
works like the Internet. Thus, having the routing paths
globally recomputed on a failure does not pay off since
the failed element recovers fairly quickly, and the recom-
puted routing paths need to be discarded. In this paper, we
present the first distributed algorithm that computes the al-
ternate paths required by someproactive recovery schemes
for handling transient failures. Our algorithm computes
paths that avoid a failednode, and provides an alternate
path to a particular destination from an upstream neighbor
of the failed node. With minor modifications, we can have
the algorithm compute alternate paths that avoid a failed
link as well. To the best of our knowledge all previous algo-
rithms proposed for computing alternate paths are central-
ized, and need complete information of the network graph
as input to the algorithm.

KEY WORDS
Distributed Algorithms, Computer Network Management,
Network Reliability, Routing Protocols.

1 Introduction

Given a computer network represented by an edge
weighted graphG = (V, E), the problem is to find the
best route (under normal operation load) to transmit a mes-
sage between every pair of vertices. The number of vertices
(|V |) is n and the number of edges (|E|) is m. The shortest
paths tree of a nodes, Ts, specifies the fastest way of trans-
mitting a message to nodes originating at any given node
in the graph. Of course, this holds as long as messages
can be transmitted at the specified costs. When the system
carries heavy traffic on some links these routes might not
be the best routes, but under normal operation the routes
are the fastest. It is well known that the all pairs shortest
path problem, finding a shortest path between every pair
of nodes, can be computed in polynomial time. In this pa-
per we consider the case when the nodes1 in the network
may be susceptible to transient faults. These are sporadic
faults of at most one node at a time that last for a relatively

∗Currently at Amazon.com, 605 5th Ave. S., Seattle, WA - 98144
1The nodes aresingle- or multi-processor computers

short period of time. This type of situation has been studied
in the past [1, 2, 7, 10, 11, 12] because it represents most
of the node failures occurring in networks.Single node
failures represent more than 85% of all node failures [8].
Also, these node failures are usuallytransient, with 46%
lasting less than a minute, and 86% lasting less than 10
minutes [8]. Because nodes fail for relative short periods
of time, propagating information about the failure through-
out the network is not recommended. The reason for this
is that it takes time for the information about the failure
to be communicated to all nodes and it takes time for the
nodes to recompute the shortest paths in order to re-adapt
to the new network environment. Then, when the failing
node recovers, a new messages disseminating this informa-
tion needs to be sent to inform the nodes to roll back to
the previous state. This process also consumes resources.
Therefore, propagation of failures is best suited for the case
when nodes fail for long periods of time. This is not the
scenario which characterizes current networks, and is not
considered in this paper.

In this paper we consider the case where the network
is biconnected (2-node-connected), meaning that the dele-
tion of a single node does not disconnect the network. Bi-
connectivity ensures that there is at least one path between
every pair of nodes even in the event that a node fails (pro-
vided the failed node is not the origin or destination of a
path). A ring network is an example of a biconnected net-
work, but it is not necessary for a network to have a ring
formed by all of its nodes in order to be biconnected.

Based on our previous assumptions about failures, a
message originating at nodex with destinations will be
sent along the path specified byTs until it reaches nodes
or a node adjacent to a node that has failed. In the latter
case, we need to use a recovery path tos from that point.
Since we assume single node faults and the graph is bicon-
nected, such a path always exists. We call this problem of
finding the recovery paths theSingle Node Failure Recov-
ery (SNFR) problem. In this paper, we present an efficient
distributed algorithm to compute such paths. Also, our al-
gorithm can be generalized to solve some other problems
related to finding alternate paths or edges.

A distributed algorithm for computing the alternate
paths is particularly useful if the routing tables themselves
are computed by a distributed algorithm since it takes away
the need to have a centralized view of the entire network

graph. Centralized algorithms inherently suffer from the
overhead on the network administrator to put together (or
source and verify) a consistent snapshot of the system,
in order to feed it to the algorithm. This is followed by
the need to deploy the output generated by the algorithm
(e.g. alternate path routing tables) on the relevant comput-
ers (routers) in the system. Furthermore, centralized algo-
rithms are typically resource intensive since a single com-
puter needs to have enough memory and processing power
to process a potentially huge network graph. Some other
advantages of a distributed algorithm are reliability (no sin-
gle points of failure), scalability and improved speed (com-
putation time).

1.1 Related Work

A popular approach of tackling the issues related to tran-
sient failures of network elements is that of usingproactive
recovery schemes. These schemes typically work by pre-
computing alternate paths at the network setup time for the
failure scenarios, and then using these alternate paths to
re-route the traffic when the failure actually occurs. Also,
the information of the failure is suppressed in the hope that
the failure is transient and the failed element will recover
shortly. The local rerouting based solutions proposed in
[2, 7, 10, 11, 12] fall into this category.

Zhang, et. al. [12] present protocols based on local
re-routing for dealing with transient single node failures.
They demonstrate via simulations that the recovery paths
computed by their algorithm are usually within 15% of the
theoretically optimal alternate paths.

Wang and Gao’s Backup Route Aware Protocol
(BRAP) [11] also uses some precomputed backup routes in
order to handle transient singlelink failures. One problem
central to their solution asks for the availability ofreverse
paths at each node. However, they do not discuss the com-
putation of these reverse paths. As we discuss later, the
alternate paths that our algorithm computes qualify as the
reverse paths required by the BRAP protocol of [11].

Slosiar and Latin [10] studied the singlelink failure
recovery problem and presented anO(n3) time for com-
puting the link-avoiding alternate paths. A faster algorithm,
with a running time ofO(m+n logn) for this problem was
presented in [1].

1.2 Preliminaries

Our communication network is modeled by an edge-
weighted biconnected undirected graphG = (V, E), with
n = |V | andm = |E|. Each edgee ∈ E has an associated
cost (weight), denoted bycost(e), which is a non-negative
real number. We usepG(s, t) to denote a shortest path be-
tweens andt in graphG anddG(s, t) to denote its cost.

A shortest path treeTs for a nodes is a collection of
n−1 edges{e1, e2, . . . , en−1} of G which form a spanning
tree ofG such that the path from nodev to s in Ts is a
shortest path fromv to s in G. We say thatTs is rooted at

nodes. With respect to this root we define the set of nodes
that are thechildren of a nodex as follows. InTs we say
that every nodey that is adjacent tox such thatx is on the
path inTs from y to s, is a child ofx. For each nodex in
the shortest paths tree,kx denotes the number of children
of x in the tree, andCx = {x1, x2, . . . xkx

} denotes this set
of children of the nodex. Also,x is said to be theparent of
eachxi ∈ Cx in the treeTs. The parent node,p, of a nodec
is sometimes referred to as aprimary neighbor or primary
router of c, while c is referred to as anupstream neighbor
or upstream router of p. The children of a particular node
are said to besiblings of each other.

Vx(T) denotes the set of nodes in the subtree ofx in
the treeT andEx ⊆ E denotes the set of all edges incident
on the nodex in the graphG. nextHop(x, y) denotes the
next node fromx on the shortest path fromx to y. Note
that by definition,nextHop(x, y) is the parent ofx in Ty.

1.3 Problem Definition

The Single Node Failure Recovery problem is formally de-
fined in [2] as follows:

SNFR: Given a biconnected undirected edge weighted
graphG = (V, E), and the shortest paths treeTs(G) of a
nodes in G whereCx = {x1, x2, . . . xkx

} denotes the set of
children of x in Ts, for each nodex ∈ V andx 6= s, find a
path fromxi ∈ Cx to s in the graphG = (V \{x}, E \Ex),
whereEx is the set of edges adjacent tox.

In other words, for each nodex in the graph, we are
interested in finding alternate paths from each of its chil-
dren inTs to the nodes when the nodex fails. Note that
the problem is not well defined when nodes fails.

The above definition of alternate paths matches that
in [11] for reverse paths: for each nodex ∈ G(V), find
a path fromx to the nodes that does not use the primary
neighbor (parent node)y of x in Ts.

1.4 Main Results

Our main result is an efficient distributed algorithm for the
SNFR problem. Our algorithm requiresO(m + n) mes-
sages to be transmitted among the nodes (routers), and has
a space complexity ofO(m+n) acrossall nodes in the net-
work (this, being asymptotically equal to the size of the en-
tire network graph, is asymptoticallyoptimal). The space
requirement at any single node is linearly proportional to
the number of children (the node’s degree) and the number
of siblings that the node has in the shortest paths tree of
the destinations. When used for multiplesink nodes in the
network, the space complexity at each node is bounded by
its total number of children and siblings across the shortest
paths trees of all the sink nodes. Note that even though this
is only bounded byO(n2) in theory (since each node in the
network can be a sink, and a node can theoretically have
O(n) children), it is much smaller in practice (O(n): for n

sink nodes, as average node degree in shortest paths trees
is usually within 20-40 even forn as high as a few1000s).

Our algorithm is based on a request-response model,
and does not require anyglobal coordination among the
nodes.

To the best of our knowledge, this is the first com-
pletely decentralized and distributed algorithm for com-
puting alternate paths. All previous algorithms, including
those presented in [1, 2, 7, 10, 11, 12] are centralized al-
gorithms that work using the information of the entire net-
work graph as input to the algorithms.

Furthermore, our algorithm can be generalized to
solve other similar problems. In particular, we can derive
distributed algorithms for: the single link failure recovery
problem studied in [1, 10], minimum spanning trees sensi-
tivity problem [4] and the detour-critical edge problem [9].
The cited papers present centralized algorithms for the re-
spective problems.

2 Key Properties of the Alternate Paths

We now describe the key properties of the alternate paths
to a particular destination that can be used by a node in the
event of its parent node’s failure. These same principles
have been used in the design of the centralized algorithm
in [2]. However, for completeness, we discuss them briefly
here.

x
1

x x
i

k x
x

j

x

b b

b b g
u

qp

v p

s

g k

y y y y1 i j k x

s
x

Edge translations from

G

G to R x

(a)

(b)

xR

rb
ra

g
q

Figure 1. Recovering from the failure ofx: Constructing
the recovery graphRx

Figure 1(a) illustrates a scenario of a single node fail-
ure. In this case, the nodex has failed, and we need to find
alternate paths tos from eachxi ∈ Cx. When a node fails,
the shortest paths tree ofs, Ts, gets split intokx + 1 com-
ponents - one containing the source nodes and each of the
remaining ones containing the subtree of a childxi ∈ Cx.

Notice that the edge{gp, gq}, which has one end point
in the subtree ofxj , and the other outside the subtree ofx

provides a candidate recovery path for the nodexj . The
complete path is of the formpG(xj , gp) ; {gp, gq} ;

pG(gq, s). Sincegq is outside the subtree ofx, the path
pG(gq, s) is not affected by the failure ofx. Edges of this
type (from a node in the subtree ofxj ∈ Cx to a node out-
side the subtree ofx) can be used byxj ∈ Cx to escape the
failure of nodex. Such edges are calledgreen edges. For
example, the edge{gp, gq} is a green edge.

Next, consider the edge{bu, bv} between a node in
the subtree ofxi and a node in the subtree ofxj . Al-
though there is no green edge with an end point in the sub-
tree ofxi, the edges{bu, bv} and{gp, gq} together offer a
candidate recovery path that can be used byxi to recover
from the failure ofx. Part of this path connectsxi to xj

(pG(xi, bu) ; {bu, bv} ; pG(bv, xj)), after which it uses
the recovery path ofxj (via xj ’s green edge,{gp, gq}).
Edges of this type (from a node in the subtree ofxi to a
node in the subtree of a siblingxj for somei 6= j) are
calledblue edges.{bp, bq} is another blue edge and can be
used by the nodex1 to recover from the failure ofx.

Note that edges like{ra, rb} and{bv, gp} with both
end points within the subtree of the same child ofx do not
help any of the nodes inCx to find a recovery path from the
failure of nodex. We do not consider suchred edges in the
computation of recovery paths, even though they may pro-
vide a shorter recovery path for some nodes (e.g.{bv, gp}
may offer a shorter recovery path toxi). The reason for this
is that routing protocols would need to be quite complex in
order to use this information. As we describe later in the
paper, we carefully organize thegreen andblue edges in a
way that allows us to retain only these edges and eliminate
useless (red) ones efficiently.

We now describe the construction of a new graphRx,
called therecovery graph of x, which will be used to com-
pute recovery paths for the elements ofCx when the node
x fails. A single source shortest paths computation on
this graph suffices to compute the recovery paths for all
xi ∈ Cx.

The graphRx haskx + 1 nodes, wherekx = |Cx|.
A special node,sx, represents inRx, the nodes in the
original graphG = (V, E). Apart fromsx, we have one
node, denoted byyi, for eachxi ∈ Cx. We add all the
green and blue edges defined earlier to the graphRx as
follows. A green edge with an end point in the subtree
of xi (by definition, green edges have the other end point
outside the subtree ofx) translates to an edge betweenyi

andsx. A blue edge with an end point in the subtree of
xi and the other in the subtree ofxj translates to an edge
between nodesyi andyj.

Note that the weight of the edges added toRx need
not be the same as the weight of the corresponding green
or blue edges inG = (V, E). The weights assigned to
the edges inRx should take into account the weight of the
actual subpath inG corresponding to the edge inRx. As
long as the weights of edges inRx don’t change withx, or
can be determined locally by the node, they can be directly
used in our algorithm. The candidate recovery path ofxj

that uses the green edgee = {u, v} has total cost given by:

greenWeight(e) = dG(xj , u) + cost(u, v) + dG(v, s)
(1)

This weight captures the weight of the actual subpath
in G corresponding to the edge added toRx. However,
since the weight given by equation (1) for an edge depends
on the nodexj whose recovery path is being computed, it
will typically be different in eachRx in which e appears
as a green edge. The following weight function is more
efficient since it remains constant across allRx graphs that
e is part of.

greenWeight(e)

= dG(s, xj) + dG(xj , u) + cost(u, v) + dG(v, s)

= dG(s, u) + cost(u, v) + dG(v, s) (2)

Note that the correct weight (as defined by equation
(1)) to be used for anRx can be derived by the node
x from the weight function defined above by subtracting
dG(s, xj) = dG(s, x) + cost(x, xj). Also, the green edge
with an end point in the subtree ofxj with the minimum
greenWeight remains the same, immaterial of the green-
Weight function (equations (1) or (2)) used since equation
(2) basically adds the valuedG(s, xj) to all such edges.

As discussed earlier, a blue edge provides a path con-
necting two siblings ofx, sayxi andxj . Once the path
reachesxj , the remaining part of the recovery path ofxi

coincides with that ofxj . If b = {p, q} is the blue edge
connecting the subtrees ofxi andxj the length of the sub-
path fromxi to xj is:

blueWeight(b) = dG(xi, p)+cost(p, q)+dG(q, xj) (3)

We assign this weight to the edge corresponding to
the blue edge{p, q} that is added inRx betweenyi andyj.

Note that ifw is the nearest common ancestor of the
two end pointsu andv of and edgee = (u, v), e is a green
edge in theR graphs for all nodes on path betweenw and
u, andw andv (excludingu, v andw: it is a blue edge
in Rw, and is unusable inRu andRv since a nodez is
deemed to have failed while constructingRz). Assuming
that a node can determine whether an edge is blue or green
in its recovery graph (we discuss this in detail in the next
section), it is easy to see that it can derive the edge’s blue
weight from its green weight:

blueWeight(e) = greenWeight(e)−

(2 · dG(s, w) + cost(w, wu) + cost(w, wv)) (4)

wherewu and wv are respectively the child nodes ofw

whose subtrees contain the nodesu and v. Information
about all terms being subtracted is available locally atw,
and consequently, the greenWeight and blueWeight values
for an edge can be computed/derived using information lo-
cal to the nodew.

If there are multiple green edges with an end point in
Vxj

, the subtree ofxj , we choose the one which offers the
shortest recovery path foryj (with ties being broken arbi-
trarily) and ignore the rest. Similarly, if there are multiple
edges between the subtrees of two siblingsxi andxj , we
retain the one which offers the cheapest alternate path.

The construction of our graphRx is now complete.
Computing the shortest paths tree ofsx in Rx provides
enough information to compute the recovery paths for all
nodesxi ∈ Cx whenx fails.

Note that any edgee = (u, v) acts as a blue edge in
at most oneRx: that of the nearest-common-ancestor of
u and v. Also, any nodec ∈ G(V) belongs to exactly
oneRx: that of its parent inTs. As we discuss later, the
space requirement at any node is linearly proportional to
the number of children and the number of siblings that it
has.

Figure 1 illustrates the construction ofRx used to
compute the recovery paths from the nodexi ∈ Cx to
the nodes when the nodex has failed. In this simple
example, the path fromyi to sx is yi ; yj ; sx.
The corresponding recovery path forxi is pG(xi, bu) ;

{bu, bv} ; pG(bv, xj), followed by the recovery path of
xj : pG(xj , gp) ; {gp, gq} ; pG(gq, s).

3 A Distributed Algorithm for Computing
the Alternate Paths

In this section, we use the basic principles of the alternate
paths described earlier to design an efficient distributed al-
gorithm for computing the alternate paths.

3.1 Computing the DFS Labels

Our distributed algorithm requires that each node in
the shortest paths treeTs maintain itsdfsStart(·) and
dfsEnd(·) labels in accordance with how a depth-first-
search (dfs) traversal ofTs starts or ends at the node. Ref.
[5] reports efficient distributed algorithms for this particu-
lar problem (of assigning labels to the nodes in a tree as
dictated by a dfs traversal of the tree). The basic algorithm
reported in Ref. [5], namedWake & LabelA, assigns
dfs labels to the nodes in the range[1, n] in asymptotically
optimal time and requires3n messages to be exchanged
between the nodes. We sketch the basic algorithm below.

The Wake & LabelA algorithm runs in three
phases: wakeup, count, and allocation. In the first
(wakeup) phase, which is a top-down phase, the root node
sends a message to all of its child nodes asking them to re-
port the number of nodes in their subtree (including them-
selves). The child nodes recursively pass on the message
to their children. In the second (count) phase, which is a
bottom-up phase, each node reports the size of its subtree
to its parent node. The variants of theWake & Label
algorithms differ in the last phase (allocation) which deals
with assigning the labels to the nodes of the tree. In the sim-

plest version, once the root node knows the value ofn (the
total number of nodes in the tree), knowing the size of the
subtrees of each child node, it can split the range[1, n] dis-
jointly among its children, and each child node recursively
assigns a sub-range to its children (a child withc nodes in
its subtree is assigned a range containingc values).

The reader is referred to Ref. [5] for the detailed
description and analysis of theWake & LabelA algo-
rithm and its variants. For computing thedfsStart(·) and
dfsEnd(·) labels required by our algorithm, the total range
of these labels across all the nodes inTs is [1, 2n], and
a child with c children is assigned a range of2c values.
All other aspects of any of the dfs label assignment al-
gorithms reported in Ref. [5] can be used as appropri-
ate. Note that even though it is not explicitly mentioned in
Ref. [5], theWake & LabelA algorithm (including our
modifications) can be implemented on a request-response
model, without the need of any global clock for coordina-
tion across the nodes.

3.2 Collecting the Green and Blue Edges

Our algorithm requires that each node in the network main-
tains the following data-structures:

1. ParentBlueEdges List: The list of edges
in the network graph which have one end point within the
subtree of the node, and the other end point in the subtree
of a sibling node. I.e. all edges from the node’s subtree that
areblue in the recovery graphR of the node’s parent.

2. ChildrenGreenEdges Map: A map that
stores for each child node, the cheapest green edge with
an end point in the child node’s subtree. Recollect that a
green edge of a node has the other end point outside the
subtree of the node’s parent.

We now discuss the details of this part of the
algorithm for building the ParentBlueEdges and
ChildrenGreenEdges data-structures. A procedure,
CollectNonTreeEdges, triggers a protocol where
each node recursively asks each of its children to forward it
the non-tree edges that have an end point in the child’s sub-
tree. Each node processes all its own non-tree edges, and
those forwarded by a child node. For processing a non-tree
edge, a node uses thedfsStart(·) anddfsEnd(·) labels
of the edge’s two end points to decide whether the edge
should be added to itsParentBlueEdges list or the
ChildrenGreenEdges map. For an edge to be added
to theParentBlueEdges list, the edge should have ex-
actly one end point in the node’s subtree, while the other
end point still be within the parent’s subtree (but outside
this node’s subtree). For each edge that is forwarded by
a child, the node updates the corresponding entry for the
child in theChildrenGreenEdges map if the newly
forwarded edge is cheaper than the edge currently stored
for the child. Finally, if at least one of the two end points
of the edge lies outside this node’s subtree, it forwards the
information of the edge to the parent after updating its lo-
cal data-structures. Otherwise, it simply discards the edge

and does not forward it to its parent. The reason for this is
that edges whose both end points belong to a node’s sub-
tree cannot serve as a blue or green edge in the recovery
graph of the node’s parent, and informing the parent about
such an edge does not serve any purpose (if this node is the
nearest-common-ancestor of the edge’s two end points, the
edge would be stored in theParentBlueEdges lists at
the two child nodes whose subtrees contain the edge’s end
points).

A child node invokes the procedure
RecordNonTreeEdge defined below on its parent,
with a messageM containing the following information
associated with a non-tree edgee:

• e = (p1, p2): The non-tree edge, withp1 andp2 as the
end points.

• weight(e): Weight of the edgee.

• senderId: Id of this child node sending the message
to the parent node.

Procedure RecordNonTreeEdge(M)
if (isMyDescendant(M.p1) AND
isMyDescendant(M.p2)) do:
// both end points in my
// subtree: ignore
return;
fi
// retrieve the current green
// edge for this sender from
// the ChildrenGreenEdges map
Edge existing =
CGE.get(M.senderId);
Edge edge = M.edge;
if (existing == null OR
edge.weight < existing.weight), do:
// if new or cheaper edge,
// update our data-structure
CGE.put(M.senderId, edge);
fi
if (edgeIsBlueForParent(edge)), do:
ParentBlueEdges.add(edge);
fi
// Reset the senderId,
// and forward edge to parent
M.senderId = self.id;
parent.RecordNonTreeEdge(M);

End RecordNonTreeEdge

TheedgeIsBlueForParent method used above
determines whether or not an edge is blue for this
node’s parent. This can be determined easily if the
node knows its parent’sdfsStart(·) and dfsEnd(·) la-
bels. For efficiency, after the dfs label computation phase
(AssignDfsLabels) is over, each node can query its
parent for its labels, and store these locally. In some cases,
these values can just be queried from the parent node as and
when needed.

3.3 Computing the Alternate Paths to Recover from a
Node’s Failure

Once the edge propagation phase is over, part of the infor-
mation required to constructRx, the recovery graph ofx, is
available at the nodex, and the remaining is available at the
children ofx. In particular,x has the information about the
nodes ofRx and the green edges ofRx, while the children
of x have the information of the blue edges ofRx.

Conceptually,x can construct the entire graphRx lo-
cally, and compute the shortest paths tree ofsx. This pro-
cess would result in a space complexity ofO(mx + nx) at
nodex, wheremx andnx denote the number of edges and
nodes inRx respectively. Note thatmx can be as large as
O(n2

x) = O(|Cx|
2). In order to keep the space requirement

low, the shortest paths tree,Tsx
, of sx is built incremen-

tally, by looking at the edges ofRx only when they are
needed. Essentially, we use the edges exactly in the or-
der dictated by the Dijkstra’s shortest paths algorithm[3].
x initially builds Rx using the information it locally has:
the kx + 1 nodes, and the green edge fromyi to sx for
1 ≤ i ≤ kx (if the ChildrenGreenEdges map has
an entry forxi). x maintains a priority queue data struc-
ture,candidates, which initially has an entry for each
yi, with a priority2 equal to the weight of the edge between
sx andyi

3. The remaining steps of the algorithm are as
follows.

1. While there are more entries incandidates, exe-
cute steps 2 - 4.

2. Delete entry fromcandidates with highest prior-
ity.

3. Assign the priority value as the final distance (from
sx) for the nodeyp associated with the queue entry.

4. Fetch the blue edges from child nodexp. For each
blue edge thus retrieved, if it provides a shorter path
to its other end point, sayxq, update the priority of the
queue entry corresponding toyq with this value.

Note that the blue edges stored at a child nodexp are
retrieved only when they are needed by the algorithm, and
that each nodex needs space linearly proportional to its
number of children, and the number of its siblings. For
each sibling, a node needs to store at most one edge (which
has the smallest blue weight) with an end point in its own
subtree, and the other in the sibling’s subtree. These edges
are the blue edges that are added to the parent node’s recov-
ery graph. Using Fibonacci heaps[6] for the priority queue,
Tsx

can be computed inO(mx + nx log nx) time.

4 Concluding Remarks

In this paper we have presented an efficient distributed
algorithm for the computing alternate paths that avoid a

2lower value implies higher priority
3if no edge is present, a priority of∞ is assigned

failed node. To the best of our knowledge, this is the first
completely decentralized algorithm that computes such al-
ternate paths. Our algorithm can be generalized to solve
other similar problems.

The paths computed by our algorithm are required by
the single node failure recovery protocol of [2]. They also
qualify as thereverse paths required by the BRAP proto-
col of [11]. Our distributed algorithm computes the exact
same paths as those generated by the centralized algorithm
of [2], and even though not optimal alternate paths, they
are usually good - within15% of the optimal for randomly
generated graphs with100 to 1000 nodes, and with an av-
erage node degree of up to35. The reader is referred to [2]
for further details about the simulations.

References

[1] A. M. Bhosle and T. F. Gonzalez. Algorithms for
single link failure recovery and related problems.J.
Graph Algorithms Appl., 8(2):275–294, 2004.

[2] A. M. Bhosle and T. F. Gonzalez. Efficient algo-
rithms and routing protocols for handling transient
single node failures. In20th IASTED PDCS, 2008.

[3] E. W. Dijkstra. A note on two problems in connec-
tion with graphs. InNumerische Mathematik, pages
1:269-271, 1959.

[4] B. Dixon, M. Rauch, and R. E. Tarjan. Verification
and sensitivity analysis of minimum spanning trees in
linear time.SIAM Jr. C., 21(6):1184–1192, 1992.

[5] P. Fraigniaud, A. Pelc, D. Peleg, and S. Perennes. As-
signing labels in unknown anonymous networks (ex-
tended abstract). InPODC, 101–111, 2000.

[6] M. L. Fredman and R. E. Tarjan. Fibonacci heaps
and their uses in improved network optimization al-
gorithms.JACM, 34:596-615, 1987.

[7] S. Lee,et. al. Proactive vs reactive approaches to fail-
ure resilient routing.IEEE INFOCOM, 2004.

[8] A. Markopulu,et. al. Characterization of failures in
an ip backbone.In Proc. of IEEE INFOCOM, 2004.

[9] E. Nardelli, G. Proietti, and P. Widmayer. Finding
the detour-critical edge of a shortest path between two
nodes.Inf. Process. Lett., 67(1):51–54, 1998.

[10] R. Slosiar and D. Latin. A polynomial-time algorithm
for the establishment of primary and alternate paths in
atm networks. InIEEE INFOCOM, 509–518, 2000.

[11] F. Wang and L. Gao. A backup route aware routing
protocol - fast recovery from transient routing fail-
ures. InINFOCOM, 2008.

[12] Z. Zhong,et. al. Failure inferencing based fast rerout-
ing for handling transient link and node failures.IEEE
INFOCOM, 2859–2863, 2005.

