Proceedings of the IASTED International Cenference

PARALLEL AND DISTRIBUTED COMPUTING AND SYSTEMS

November 6-9, 2000, Las Vegas, Nevada, USA

Gossiping with Multicasting Communication Primitives

TEOFILO F. GONZALEZ

Department of Computer Science
University of California
Santa Barbara, CA 93106, USA
te6@cs.ucsb.edu

Abstract

The gossiping problem consists of an n processor com-
munication network, IV, in which every processor has to
broadcast a single message. We present an efficient al-
gorithm to generate a communication schedule with total
communication time at most n + 3r — 1, where r is the
radius of the network. Our algorithm begins by construct-
ing a spanning tree (or tree network T°) with least possi-
ble radius. In the second step all the communications are
carried out in the tree network as follows: Each proces-
sorg waits its turn to transmit consecutively to its parent
and children zll the messages in its subtree. Before and
after these communications, each processor must transmit
to its children all the messages emanating elsewhere in the
network. We briefly discuss an algorithm that generates a
communication schedule with total communication time at
mostn + 7 + 1.

Key Words: Approximation Algorithms, Gossiping,
Multicasting, Scheduling.

1 Introduction » ,

1.1 The Problem

Let N be any n processor (or node or vertex) commu-
nication network (or graph). The broadcasting problem
defined over IV consists of sending a message from one
processor in the network to all the remaining processors.
The gossiping problem over N consists of broadcasting n
messages each originating at a different processor. Gos-
siping problems have been studied under many different
objective functions and communication models. Our com-
munication mode] allows each processor to multicast one
message to any subset of its adjacent processors, but no
processor may receive more than one message at a time.
Our objective is to determine when each of these messages
is to be transmitted so that all the communications can be
carried in the least total amount of time. As we shall see
later on, multicasting is a powerful communication prim-
itive that allows for the communications to be performed
much faster than when restricting to the telephone (or uni-

321-110

casting) communication model (a procéssor may transmit
a message to just one of its adjacent processors at a time)
or broadcasting communication model (a processor may
transmit a message to all the adjacent processors) commu-
nication primitives.

Figure 1: Network (IV;) with a Hamiltonian circuit.

Example 1. There are nine processors (n = 9) in network
N; (Figure 1). The first communication in an optimal
schedule for this problem instance is for each proces-
sor to send to its right hand side neighbor the message
it holds, and then it the next 7 iteration every proces-
sor transmits to its right hand side neighbor the mes-
sage it just received on its left hand side link (edge).
In this case it is simple to verify that all the commu-
nications can be carried out in n — 1 steps, which is
best possible under our communication model.

Let us formally define our problem. Initially each pro-
cessor P; holds one message in its hold set h; and needs
to receive the remaining n — 1 messages. The communi-
cations allowed in our network must satisfy the following
two restrictions.

/
/
{

1.- During each time unit each processor P; may trans-
mit one of the messages it holds (i.e., a2 message in
its hold set h; at the beginning of the time unit), but
such message can be multicasted to a set of proces-
sors adjacent to P;. The message will also remain in
the hold set h;.

2.- During each time unit each processor may receive at
most one message provided such message was sent

during the previous time unit. The message that pro-
cessor P; receives (if any) is added to its hold set A; at
the beginning of the time unit when it was received.

The communication process ends when each processor has
the n messages. The above communication rules define a
communication mode (or step) for a communication sched-
ule as follows. A communication mode C is a set of tu-
ples of the form (m,l, D), where [is a processor index
(1 <1 < n), and message m € h; is to be multicasted
from processor F, to the set of processors with indices in
D. In addition the set of tuples in a communication mode
C must obey the following communications rules imposed
by our network:

1.- All the indices [in C are distinct, i.e., each processor
sends at most one message; and

2.- Every pair of D sets in C are disjoint, i.e., every pro-
cessor receives at most one message.

A communication schedule S for a problem instance 1
is a sequence of communication modes such that after per-
forming all of these communications every processor will
hold the n messages. The fotal communication time is the
number of communication modes in schedule S, which is
identical to the latest time there is a communication. Our
problem consists of constructing a communication sched-
ule with least total communication time. From the com-
munication rules we know that in every problem instance
every processor needs to receive n — 1 messages and since
NO Processor may receive two or more messages simulta-
neously, it follows the n — 1 is a trivial lower bound on the
total communication time. Therefore the schedule we con-
structed for network IV} in Example 1 is an optimal one.

In this paper we are mainly concerned with the off-line
gossiping problem, i.e., the schedule is constructed by a
processor that knows all the information about the problem
ahead of time. ’

Example 1 suggests a method for solving the gossip-
ing problem. The idea is to first construct a Hamiltonian
circuit and then use that circuit as in Example 1 to trans-
mit all the messages in n — 1 time units. As it is well
know, the Hamiltonian circuit problem is an NP-complete
problem and it is conjecture that there is no efficient algo-
rithm for its solution. Fortunately, it is not sufficient for a
network to have a Hamiltonian circuit in order for the gos-
siping problem be solvable in n — 1 steps. There are net-
works that do not have a Hamiltonian circuit, but in which
gossiping can be performed in n — 1 communication steps
even under the telephone communication model. Example
2 gives a network that does not have a Hamiltonian circuit,
but in which gossiping can be performed in n—1 communi-
cation steps under the multicasting communication model
but not under the telephone communication model. Since
the telephone communication model is a restricted version
of the multicasting communication model, the example es-
tablishes that multicasting is much more efficient way to

769

communicate.

Figure 2: Network (IVs).

Example 2. There are six processors (n = 6) in network
Ny (Figure 3). A communication schedule with to-
tal communication time 5 is given in Table 1. Ev-
ery communication schedule with total communica-
tion time n — 1 has at each time unit each of the 5
processors receiving a message. But in network Ny
processor 2, 3, 4 and 5 can only send a message to
processors 1 and 6. Therefore under the telephone
communication model it is impossible to send 5 mes-
sages to five destinations at time 0 and there does not
exist a communication schedule with total communi-
cation time n — 1 = 5 for Ny under the telephone
communication model.

Table 1: Optimal Gossiping (with multicasting).

Time | Message | From Processor — To Proc.
M, Py — {P,, P, P4, Ps}
To M2 P2 - {Ps}
Ms PG 4 {Pl}
Ms P, — {P;, P;, Py, Ps}
T1 M3 P3 - {Pe}
M2 Ps e {Pl}
M, Py — {P3, Py, P}
Tz M4 P4 - {Pe}
Ms Ps = {P, B}
M3 Pl - {P47 P5}
T3 M5 P5 b d {Pe}
My Ps — {P,, P, P;}
My Py, — {Ps}
Ty M, P — {P5}
M; Ps = {P1, P, Ps, P4}

/

The above examples suggest that it is always possible
to perform gossiping in our communication model inn — 1
steps. However, that is not the case. Consider the straight
line network. In this line network it is impossible to deliver
a new message to each end of the line during each time
period, though it is possible to deliver it to only one of its
end points.

1.2 Previous Work, New Results, and Applica-
tions

The broadcasting and gossiping problems are not new, these
problems have been studied for the past three decades [11].
However, most of the work is for the telephone type of
communication, i.e., at every step each processor may send
at most one message to at most one processor and no pro-
cessor may receive more than one message at a time. Also,
most of the previous work allows for up to n messages to
be transmitted over a single link at a time. In other words,
the transmission packets must be of size Q(n). This im-
plies that such algorithms are not scalable. Under the tra-
ditional communication model these problems are compu-
tationally difficult, i.,e., NP-hard. But there are efficient
algorithms to construct optimal communication schedules
for restricted networks under some communication models
[3, 6, 15]. Up to now there is no known polynomial time
approximation algorithm with fixed approximation ratio
for the broadcasting problem defined over arbitrary graphs,
i.e., there is no known efficient approximation algorithm A4

such that f (I)/ f*(I) < ¢ for every problem instance I,
where f (I) is the total communication time for the sched-
ule constructed by algorithm A for problem instance I,
F*(I) is the total communication time of an optimal sched-
ule for problem instance I, and ¢ is a constant. Determin-
ing whether or not such algorithm exists has been an in-
triguing open problem for more than two decades. The
best known approximation algorithms appear in [12, 15],
and a randomized algorithm is presented in [4].

Broadcasting under our communication model is triv-
ial to solve. At time zero, the processor that has the mes-
sage broadcasts it to all its neighbors. Then at each itera-
tion, each processor that just received a message will plan
to multicast it to all its neighbors that do not have the mes-
sage. But, if there are two or more processors currently
planning to send a processor the message, then only one of
them will actually send it. Once the round of communi-
cations is completed, we start with the next iteration. It is
simple to see that every processor i receives a message at
time j if, and only if, the shortest path (remember that all
edges have weight one) from the broadcasting node to ver-
tex ¢ has j edges. Clearly, the total communication time in
the communication schedule generated by the above pro-
cedure is equal to the maximum length of a shortest path
from the broadcasting node to any vertex in the graph. The
above algorithm is clearly off-line.

A variation of the gossiping problem in which there
are costs associated with the edges and there is a bound
on the maximum number of packets that can be transmit-
ted through a link at each time unit has been studied in
[5]. Approximation algorithms for several versions of this
problem are givenin {3, 1, 7].

Routing under the multicasting communication model
has been considered in [14, 8, 10, 9]. But they study the
multimessage multicasting problem. In this problem each

770

processor needs to transmit a set of messages, but each
message is to be received by its own subset of processors.
Shen [14] studied the problem for hypercube connected
processors, and Gonzalez [8, 10, 9] considered the problem
for fully connected processors and also for processors in-
terconnected via a multistage interconnection network that
satisfies some simple properties (e.g. the MEIKO CS-2
parallel computer system).

In this paper we study the gossiping problem under
the multicasting communication model. Qur main moti-
vation is that this communication model has been avail-
able for many years and allow us to generate solutions
with fewer communication steps than the telephone com-
munication model. Gossiping arises in many application
[2, 13], that include sorting, matrix multiplication, Discrete
Fourier Transform, solving linear equations, etc.

2 Algorithms

We discuss in this section our algorithm to generate a com-
munication schedule with total communication time at most
n + 3r — 1, where r is the network radius. The radius of a
network is the least integer r such that every vertex v in the
network has a path from v to each vertex in the graph with
at most r edges. Our procedure consists of two steps. First
we build a special tree network (subsection 2.1) and then
we perform all the communications in that tree network
(subsection 2.2).

2.1 Constructing the Tree Network

As we mention in the previous section the first step of the
algorithm is to construct a spanning tree of minimum ra-
dius. To do this we begin by finding the length of the
shortest path between all pairs of vertices. Then we select
a processor in the network such that the maximum length
of a shortest path for it to all vertices in the network is least
possible and construct a tree rooted at that node in which
all the paths to the other vertices are shortest paths in the
original network. Then we perform all the communications
in that tree network.

Figure 3: Network.

Applying this procedure to the network in Figure 3 re-

sults in the network given in Figure 4. In the next subsec-
tion we present several algorithms for gossiping in trees.

Figure 4: Tree Network generated from the Graph in Fig-
ure 3.

2.2 Gossiping in Tree Networks

The problem of gossiping in an arbitrary network has been
reduced to gossiping in a tree with height r. Our algorithm
for gossiping in trees is a little bit complex, so before we
discuss it we introduce increasingly more complex proce-
dures. Lets begin by defining some terms. The topmost
vertex is called the root of the tree. The level of every ver-
tex in the tree network is defined as follows: the level of
root is zero, the level of the children of the root is equal
to one, the grandchildren are at level 2, and so forth. For
every vertex we sort its subtrees from left to right. Our
algorithm proceeds by labeling the nodes in the tree as fol-
lows.

Initially count =0.
Call to Label-it(root);

Label-it (t)
label vertex t with count
count++
for every child r of t
from left to right do
Label-it(r);
endfor
End Label-it

Applying the algorithm to the problem tree in Figure 4
we obtain the labels that appear to the right of the vertices.

We begin by discussing the first algorithm (Simple)
to perform the gossiping in 2n + r time units. This pro-
cedure has been used to solve other message routing prob-
lems. The idea is to send up all the messages to the root
first so that message ¢ is received by the root at time 4. The
message labeled ¢ at level k is transmitted to its parent (if
any) at time ¢ — k, to its grandparent (if any) form its parent
attime ¢ — k + 1, and so on. Clearly, there are no conflicts
and at time n all the messages are received by the root.
Clearly this process takes n communication steps. Now all

the messages need to be propagated downwards. At time
n message 1 is sent from the root to all its children, at time
n + 1 message 2 is sent from the root to all its children and
so on. Note that during all this process when a non-root
vertex receives a message from its parent it immediately
sends it to all its children. It is simple to verify that by time
2n + r all nodes will receive all the messages. The main
advantage of procedure Simple is that it is quite simple,
but on the other hand the total communication time is not
so small.

Theorem 2.1: The communication schedule generated by
procedure Simple has total communication time 2n + r
for any tree with n nodes and height r.

Proof. The proof follows from the above discussion. []
Our next procedure (UpDown), is more complex, but

‘the communication schedule it generates has smaller total

communication time. The approach is similar to proce-
dure Simple, except at the same time the algorithm sends
messages up and down throughout the tree. The procedure
consists of two phases. In the first phase, like in the al-
gorithm Simple, all the messages are propagated to the
root, but at the same time it begins the process of propa-
gating messages to other parts of the tree. In the second
phase the algorithm just propagates down some messages
that got stuck in the network. The first and second phase
take n + r and 2(r — 1) + 1 steps, respectively.

In the first phase we propagate all messages to the root
and at the same time we propagate most of them through-
out the network. Let us now introduce additional notation.
Consider vertex v at level £ < 1. Vertex v has message
i initially and the subtree rooted at v includes messages i
up to message j initially. The parent of vertex v, which
we refer to as v/, has message i’ initially and the subtree
rooted at vertex v’ includes messages 7' up to message j'
initially. The level of vertex v’ is ¥’ = k — 1. To simplify
the notation we say that the root of the tree has a (virtual)
parent called v’ with i = 0 and j' = n.

The messages in every non-root vertex v are labeled as fol-
lows:

e messages 1,2, ...,7 — 1 are called the front messages
or f-messages.

e messages i,% + 1, ..., j are called the body messages
or b-messages. The b-messages are partitioned with
respect to vertex v as follows:

- .. /
— message 4 is called the original message or o-
message.

— message ¢ + 1,if ¢ + 1 < 7, is called the looka-
head messages or I-message.

— messages ¢ + 2, ..., (if any) are called the re-
maining Messages or r-message.

The b-messages are also partitioned with respect to
vertex v/, (the parent of vertex v) as follows:

- message %, if 1 = i’ + 1, is the lookahead in
parent (lip) message or lip-message.

— messages maz{t, i +2}, ..., j, if any, are the re-

maining in parent (rip) messages o1 rip-message.

e messages j+1, ..., n are the end messages or e-message.

e At each vertex no more than 2 f-messages (or the
o-message in the root vertex) will also be labeled
delayed-messages (d-messages). Note that if an f-
message is labeled as a d-message in a vertex, then
in another sibling vertex it might not be labeled as a
d-message.

Note that the root of the tree ends up labeled as fol-
lows: message 7 = 0 is the o-message and all the messages
1..n are called r-messages. There are no l-messages and
message 0 is a d-message.

First we establish that a set of messages will be sent to
the root as specified by algorithm Up and then we show
that algorithm Down propagates all messages to all the
vertices. Both of these algorithms will end up operating
concurrently. Algorithm Up will guarantee that all the b-
messages of each vertex v will be available by time j — % at
v. This implies that the root of the tree will receive all the
messages by time n. When 2all the communications of Al-
gorithm Down finish every vertex v will have all the mes-
sages except for all the d-messages in the predecessors of
v. To complete the dissemination of information one needs
to transmit all the d-messages at every vertex to all its de-
scendants. In order for these two algorithms to deliver all
the messages to all the vertices quickly, the algorithms are
interleaved.

Algorithm Up (v)

1. {Time 1} At time 1 vertex v receives from a child its
l-message (if any). Specifically, ifi + 1 € j (visnot
a leaf vertex), then vertex v receives message ¢ + 1 at
time 1.

2. {Time ¢ — k + 2..j — k} Starting at time ¢ — k + 2
vertex v receives sequentially from its children all its
r-messages. This is equivalent to saying, if message
1+ « is an r-message, it will be received by v at time
i+a—k, simply because the first r-message, if any, is
message i+ 2 and it is received at time ¢ — k + 2, then
the remaining r-messages are received sequentially in
order.

3. {Time 0} If v is not the root of the tree, then at time
0 vertex v sends to its parent its lip-message.

4. {Time i—k+w..j —k} If v is not the root of the tree,
then starting at time ¢ — k£ + w send sequentially to
its parent all its rip-messages, where w is the number
of lip-messages at v. This is equivalent to saying that
if message 7’ + « is a rip-message at v then it will be
sent at time ¢’ + a — k to its parent, simply because

772

each of these messages is sent k units ahead of time.
The first of these messages is labeled ¢ + w and it is
sent at time ¢ - k4w and the remaining rip-messages
will be sent sequentially in order.

End of Algorithm Propagate-Up

Lemma 2.1: Algorithm Propagate-Up is feasible, i.e., ev-
ery vertex v in the tree receives the messages in steps (1)
- (2) as specified, and every non-root vertex v in the tree
sends the messages in steps (3) - (4) as specified.

Proof. The proof is by induction on the height of the sub-
tree rooted at v. For brevity the proof is omitted. 0

Algorithm Propagate-Down (V)

If vertex v is the root of the tree then perform (1), else
perform operations (2) - (5) and if v is not a leaf-node then
also perform operations (6) - (10).

1. {Time 1..n} The root of the tree propagates its infor-
mation down as follows: fortime ¢t = 1,2,...,n send
to all its children message i (except for the child that
already has the message). Message 0 will be labeled
as d-message.

2. {Time k + 1..{ — k + 1} Starting at time k + 1 vertex
v receives from its parent all its f-messages except
for no more than 2(k — 1) + 1 of them which have
been labeled d-messages at predecessor vertices of v
These messages are not necessarily received one after
the other.

3. {Time j + k + 2..n + k} Starting at time j + k + 2
vertex v receives from its parent all the e-messages.
These messages are not necessarily received one after
the other.

4. {Time k + 1..i — k — 1} Starting at time &k + 1 ver-
tex v sends sequentially to its children the f~messages
that are not d-messages in predecessors of v. The f-
messages received at time ¢ — k — 2 and ¢ — k — 1 (if
any) will be called d-messages at d-messages for v.

5. {Time ¢ — k..j — k} Starting at time ¢ — k vertex
v sends sequentially to its children (except for the
children that already have them) all its b-messages.

6. {Time j+k-+2..n+k} Starting at time j+k+2 vertex
v sends the e-messages it receives to all its children.

End of Algorithm Propagate—Do‘/ﬂn

Lemma 2.2: If Algorithm Propagate-Down is feasible then
Algorithm Propagate-Up is feasible, i.e., the root of the
tree propagates the messages as in (1) and for the remain-
ing vertices the messages are received as specified by steps
(2) - (3), and the messages in steps (4) - (6) will be sent as
indicated.

Proof. The proof is by induction on the level of v. For
brevity the proof is omitted. i

The second phase in procedure UpDown is simple. We
just propagate downwards all the d-messages. There are at
most two d-messages in each vertex v that need to be prop-
agated to all descendants of v. This operation is performed
by each processor sending to all its children (if any) start-
ing at time 0 the d-message it holds which are originally
at that vertex or which have been received at this phase.
Clearly this process takes 2(r —1)+1 communication steps
since each vertex has at most two d-messages and the root
of the tree has only one such message.

Theorem 2.2: The communication schedule generated by
procedure UpDown takes n -+ 3r — 1 for any tree with n
nodes and height r.

Proof. The proofis based on the above discussion. 0

The third algorithm, FastUpDown, is the most com-
plex one and it is based on the observation that all the op-
erations can be carried out in phase two of the previous al-
gorithm except for the propagation of the message labeled
zero. The total communication time for this algorithm is
n + r + 1 steps. We will present this new algorithm in a
subsequent paper.

3 Conclusion

We have presented algorithms to construct communication
schedules with total communication time at most n+3r—1,
where 7 is the radius of the graph, and discussed a way to
decrease this bound by 27 — 2. The algorithms are efficient
and generate near optimal solutions, With a little bit of
preprocessing our algorithm can be made on-line provided
there is a general synchronization process. For brevity we
cannot elaborate on this extension. The most time con-
suming part of the algorithm is solving the all pair shortest
paths problem. This information is needed to compute the
radius of the network and then building a tree network with
least height. All the other steps of the algorithm take O(n)
time.

References

[1] J. C. Bermond, L. Gargano, C. C. Rescigno and U,
Vaccaro, “Fast Gossiping by Short Messages,” SIAM
Journal on Computing Vol. 27, No 4, (1998), pp. 917
—-941.

[2] D. P. Bertsekas and J. N. Tsitsiklis, “Parallel
and Distributed Computation: Numerical Methods,”
Prentice-Hall, Englewood Cliffs, NJ, 1989.

[3] S. Even and B. Monien, “On the Number of Rounds
Necessary to disseminate Information,” Proc. 1st
ACM Symp. on Parallel Algorithms and Architec-
tures, Santa Fe, NM, 1989, pp. 318 - 327.

[4] U. Feige, D. Peleg, P Raghavan and E. Upfal, “Ran-
domized Broadcast in Networks,” International Sym-

posium SIGAL ' 90, Lecture Notes in Computer Sci-
ence, Springer-Verlang, Berlin, 1990, pp. 128 - 137.

[5] P. Fraigniaud and S. Vial, “Approximation Algo-
rithms for Broadcasting and Gossiping,” Journal of
Farallel and Distributed Computing, Vol. 43, (1997),
pp. 47 -55.

[6] S. Fujita and M. Yamashita, “Optimal Group Gossip-
ing in Hypercube under Circuit Switching Model,”
SIAM Journal on Computing Vol. 25, No 5, (1996),
pp. 1045 -1060.

[7] L. Gargano, A. A. Rescigno and U. Vaccaro, “Com-
munication Complexity of Gossiping by Packets,”
Journal of Parallel and Distributed Computing, Vol.
45,(1997), pp. 73 —81.

[8] T.F. Gonzalez, “Complexity and Approximations for
MultiMessage Multicasting,” Journal of Parallel and
Distributed Computing, 55, (1998), 215 —235.

[9] T. F. Gonzalez, “ Simple Algorithms for MultiMes-
sage Multicasting with Forwarding,” 4lgorithmica, to
appear.

[10] T. F. Gonzalez, “Improved Approximation Algo-
rithms for MultiMessage Multicasting.” Nordic Jour-
nal on Computing, Vol. 5, 1998, 196 — 213.

[11] S. Hedetniemi, S. Hedetniemi and Liestman, “A Sur-
vey of Gossiping and Broadcasting in Communica-
tion Networks,” NETWORKS, 18 (1988), pp. 129 ~
134,

[12] J. Hromkovic, R. Klasing, B. Monien and R. Peine,
“Dissemination of Information in Interconnection
Networks (Broadcasting and Gossiping),” InD. Z. Du
and D. F. Hsu (Eds.). Kluwer Academic, 1995, pp.
273 -282.

[13] D. W. Krumme, K. N. Venkataraman and G. Cy-
benko, “Gossiping in Minimal Time,” SIAM Journal
on Computing Vol. 21, No 2,(1992), pp. 111 -139.

[14] H. Shen, “Efficient Multiple Multicasting in Hyper-
cubes,” Journal of Systems Architecture, Vol. 43, No.
9, Aug. 1997.

[15] R. Ravi, “Rapid Rumor Ramification,” Proc. 35th
Annual Symp. on Foundations of Computer Science,
1994, pp. 202 ~213.

773

