
IMPROVED ALGORITHMS FOR CONSTRUCTING HYPERCUBE
SP-MULTICASTING TREES

Christopher C. Cipriano and Teofilo F. Gonzalez
Department of Computer Science

University California
Santa Barbara, CA, 93106, USA
email:{ccc,teo}@cs.ucsb.edu

ABSTRACT
Given a source nodes and a set of destinationsD in the
n-cube we study the problem of constructing near-optimal
sp-multicast trees. In other words, construct a near-optimal
Steiner tree for{s} ∪ D in which all paths froms to the
destination nodes are shortest paths in then-cube. We
discuss known algorithms (Greedy, NGrouping, and
Clustering) for the sp-multicast tree problem and iden-
tify problem instances for which they perform poorly. We
introduce three new algorithms (MOverlap,BEstimate
andBUp) that identify structural similarities between the
message destinations and avoid the pitfalls of the previ-
ously known algorithms. We present an experimental eval-
uation of all the algorithms over a wide range of problem
instances. Our experimentation shows that the new algo-
rithm BUp outperforms all the other methods.

KEY WORDS
Heuristics, n-cube, sp-multicasting trees, multicasting,
Steiner Trees.

1 Introduction

Multicasting is a communication primitive that allows a
node in a network to send a message to multiple destina-
tion nodes. There are many ways to implement multicas-
ting. For example, when an e-mail is sent tok destina-
tions, e-mailing systems makek copies of the message and
send each copy separately to the destinations (k unicast-
ing operations). This implementation is fine when send-
ing a message to local neighbors or when the messages are
small. But when all the destinations are far away from the
source and the messages are very large, the above imple-
mentation is not an efficient one. In this scenario, sending
the message to one of the destinations and then forward-
ing it from there to the remainingk− 1 destinations would
be a more efficient solution. The communication in this
case is modeled by atree. A tree connects (directly or in-
directly) the source node to all the destination nodes, and
may include other nodes in the network. There are many
possible multicasting trees and objective functions. In this
paper we consider the multicast tree problem defined over
the n-cube network. The problem of generating a multi-
cast tree with the fewest edges is known as theminimum

Steiner tree (MST) problem1. Another type of multicast
tree involves a dual objective function where we minimize
link usage provided that every path from the source node to
each destination node is a shortest path in the original net-
work (i.e. minimize link usage provided the message delay
time is minimum). We refer to this problem as theshortest
path multicast(sp-multicast) problem.

These problems are formally defined below. The
Steiner tree (ST) problem is given an undirected graphG =
(V, E), a subset of vertices, andD = {u0, u1, . . . , uk} ⊆
V , find a subtreeT = (VT , ET) of G (i.e., VT ⊆ V
andET ⊆ E) with the least number of edges such that
D ⊆ VT .

The sp-multicast tree problem is the Steiner tree de-
cision problem with the added constraintdT (u0, ui) =
dG(u0, ui) for 1 ≤ i ≤ k, wheredT (a, b) anddG(a, b)
is the number of edges in a shortest path froma to b in T
andG, respectively.

Graham and Foulds [7] studied the MST problem for
the n-cube in order to determine the possibility of com-
puting specific biological sciences problems in reasonable
time. Their work resulted in a complex proof for the NP-
Completeness of the decision version of the Steiner tree
problem for then-cube. Later on, a complex transforma-
tion and proof was used to establish that the sp-multicast
problem for then-cube is NP-Complete [2, 3]. Recently,
Cipriano and Gonzalez [4] presentedsimple transforma-
tions and proofs that establish the NP-Completeness of
these two problems, and extended these results for the
Chord and binomial graph networks.

Formally, ann-cube (hypercube) consists of2n nodes
or processors. Every node in then-cube is represented by
ann-bit string and there is an edge between two nodes if
their bit representation disagrees in exactly one bit. Two
adjacent nodes in then-cube are said to beneighbors. The
hypercube is a subnetwork of the Chord and the binomial
graph network [1].

For the n-cube graph we refer to the above prob-
lems as then-cube Steiner tree problem and then-cube
sp-multicast tree problem. Without loss of generality we
assume that the source nodes is always node0 (represented

1Traditionally Steiner tree problems are defined for weighted graphs
with the objective being to minimize the total weight of the edges in the
tree.

by n 0-bits). There is a trivial algorithm to implement opti-
mum unicasting in then-cube, when there is only one des-
tination.

Since any sp-multicast tree is a Steiner tree we know
that an optimumn-cube sp-multicast tree has at least as
many edges as an optimumn-cube Steiner tree. For most
problem instances it has more. There are well known ap-
proximation algorithms for the Steiner tree problems [8, 5]
for arbitrary graphs (including then-cube). The simplest
approximation algorithm begins by constructing a com-
plete graphG′ over the set of destination nodes and the
source node. The weight of an edge joining verticesi andj
is equal to the number of edges in a shortest path from node
i to nodej in the original graph. Then a minimum cost
spanning tree is constructed over the complete graphG′.
The edges in the spanning tree are translated back to short-
est paths in the original graph and if the resulting struc-
ture is not a tree, superfluous edges are eliminated. The
resulting tree has a number of edges that is not more than
twice the number of edges in an optimum Steiner tree for
the original graph. Therefore, the number of edges in the
suboptimal Steiner tree constructed by the above procedure
divided by two is a lower bound for the number of edges in
an optimum sp-multicast tree. We will refer to this algo-
rithm as the min-cost spanning tree algorithm (MCST).

2 Previous Heuristics

In this section we discuss previous algorithms
(Oblivious, Greedy, NGrouping and
Clustering) for the n-cube sp-multicasting prob-
lem. We discuss problem instances for which all of
these algorithms generate sp-multicast trees that are far
from optimum. Then we identify all the minimization
opportunities that these algorithms ignore, and present in
the next section, new algorithm that avoid these pitfalls. In
Section 4 we present the results of our empirical evaluation
of the solutions generated by all the algorithms discussed
in this paper.

To simplify the presentation we discuss the algo-
rithms in terms of constructing an sp-multicasting tree
for the n-cube, rather than as an algorithm that prepro-
cesses the input and then performs the routing as in Refs.
[6, 12, 10, 11]. This simplifies the exposition. There is no
loss of generality, since it is possible to transform our of-
fline algorithms to algorithms that preprocess the input and
then perform the routing top down.

The simplest algorithm, referred to as the
Oblivious algorithm by Fujita [6], constructs the
tree from the source nodes. Let D be the set of all the
destinations. The tree constructed is stored in the global
structureT consisting of nodes and edges. The structure
T is initialized to ∅ and a call is made to procedure
Oblivious(s,D). The procedure,Oblivious(r, S),
below specifies the details of the tree construction process.

Algorithm Oblivious(r, S);
// Source node:r, Set of destinations:S
T ← T ∪ {r};
S = S \ {r};
if S is emptythen return T ;
Let r1, r2, . . . , rk be any minimal set2 of neighbors ofr

such that every destinationd ∈ S has a shortest path
to noder that visits at least one of the nodesri;

Assign each destinationd to setSi, wherei is the
smallest integer such that destinationd has a shortest
path tor going through noderi;

Add edge{r, si} to T for 1 ≤ i ≤ k;
Invoke algorithmOblivious(ri, Si), for 1 ≤ i ≤ k;

end of algorithm Oblivious;

The Oblivious algorithm generates trees with at
most(n − 1) ∗ |D| + 1 edges, since every destination can
have at mostn − 1 1-bits, except for one which may have
n 1-bits. One can prove sharper upper bounds, but for our
purpose this bound suffices. A lower bound for an optimum
tree is|D|, as every destination requires at least one edge in
the tree. It follows that the ratio of̂f/f∗ ≤ n− 1 + 1/|D|,
where f̂ is the number of edges in the tree generated by
theOblivious algorithm andf∗ is the number of edges
in an optimum tree. Though, one cannot find examples for
which the bound is tight.

Lan, Esfahanian, and Ni [9] developed an improved
version of theOblivious algorithm that has been re-
ferred to as algorithmLEN, but which we refer to in
this paper as algorithmGreedy. In practice Algorithm
Greedy generates sp-multicast trees that in general have
a near-optimal number of edges, but for many prob-
lem instances the trees generated are far from optimal
[6]. The difference between algorithmGreedy and the
Oblivious algorithm is that from all the possible choices
for (r1, r2, . . . , rk) one selects the one that results in set
S1 having the largest number of destinations, thenS2 has
the largest number of remaining destinations and so on. In
other words, the first branch taken is along one of the most
popular bits. Note that if two or more bits are among the
most popular, then one can select either of the most popu-
lar bits to branch off. One can easily show that algorithm
Greedy can be implemented to takeO(n2d) time, where
n is the number of dimensions in the hypercube andd is
the number of destinations.

Algorithm Greedy has the same upper and lower
bounds as the ones for theOblivious algorithm, but in
practice it behaves much better. Fujita [6] constructed a set
of problem instances for whicĥf/f∗ = n/2− o(n). Thus,
for some problem instances the worst case bound is not too
different from the one for theOblivious algorithm.

Sheu and Yang [12] modified algorithmGreedy.
The algorithm, which we refer to as algorithm
NGrouping (Neighbor Grouping), tends to generate
better solutions than algorithmGreedy. The idea is to

2Note that the set is not necessarily the set with the least number of
nodes.

group together destinations that are neighbors of each
other. So instead of having a set of destinations, we have a
set of trees of destinationsD = (T1, T2, . . .), where each
node in each treeTi has one fewer 1-bit than its children
and each node is a neighbor of each of its children (in the
n-cube). Then one applies algorithmGreedy to the root
nodes of all the trees. When one reaches the root of a tree
in an invocation (i.e.,r is the root of one of the trees in
S), one replaces such tree inS by the set of trees rooted
at the root’s children. It is important to clarify that when
selecting the most popular bit, one selects it by considering
only the roots of the trees inS. The preprocessing can be
implemented to takeO(nd2) time. Therefore the overall
time complexity for the algorithm isO(n2d + nd2) time.

The motivation behind this algorithm is that if we con-
struct a pathP from s to the root of treeTi, one can just
append the treeTi to the pathP and that will be the best
possible tree for the set of destinations inTi given the path
P . This is because the number of edges added toP is equal
to the number of destinations in the tree minus one.

As pointed out in Ref. [10] the above procedure does
not always generate a tree! It generates tree-like structures,
but some nodes may end up with more than one parent.
Though, these structures are easy to transform into trees
via a simple post processing procedure.

Algorithm Clustering introduced by Lu, Fan,
Dou, and Yang [10, 11] is an extension of algorithm
NGrouping. One constructs trees as in the algorithm
NGrouping, but the trees are more general. A destina-
tion d can be made the child of destinationa if there is a
shortest pathP from s to d that visits destinationa, and the
pathP from a to d does not include another destination in
D. The resulting trees depend on the node ordering used
to construct the trees. The way we apply this procedure is
as follows. At each step we consider one destination at a
time in non-increasing order of their shortest distance to the
sources. I.e., from farthest to closest tos. When consid-
ering destinationd, if there are several nodes that could be
considered as destinationa, we select the one that is clos-
est tod and in case of ties we pick any of the closest ones.
The resulting forest of destinations tend to include fewer
trees than those produced by algorithmNGrouping. Then
we apply algorithmGreedy in the same way as we did in
algorithmNGrouping, but using “weighted popularity”.
I.e., the contribution of the bits of the root of each treeTi

are weighted by the number of destinations in the treeTi.
As you can see in Figure??, the algorithm generates a tree
for the example given in Figure??. In fact Lu, Fan, Dou,
and Yang [10] have shown that algorithmClustering
always generates a tree. The preprocessing can be imple-
mented to takeO(nd2) time. Therefore the overall time
complexity for the algorithm isO(n2d + nd2) time.

A careful analysis of one of Fujita’s [6] instances, that
makes algorithmGreedy perform poorly, shows that algo-
rithmNGrouping generates trees with a number of edges
that is about(0.4n−o(n))∗f∗. This instance can be easily
modified so that algorithmClustering generates trees

1000 1000 1000 0100 1000 0010 1000 0001

1100 1000 1100 0100 1100 0010 1100 0001

1110 1000 1110 0100 1110 0010 1110 0001

1111 1000 1111 0100 1111 0010 1111 0001

0000 1000

0000 0000

0000 0100 0000 00010000 0010

(c)

0000 1000 0000 0100 0000 0010 0000 0001 1111 1000 1111 0100 1111 0010 1111 0001
(a)

0000 1000 0000 0100 0000 0010 0000 0001

1111 00011111 00101111 1000 1111 0100

0000 0000

1000 0000

1100 0000

1110 0000

1111 0000

1111 1000 1111 0100 1111 0010 1111 0001

(b)

(d)

Figure 1. (a) Set of destinationsD. (b) Trees generated by
algorithmClustering. (c) Sp-multicast tree generated
by algorithmClustering. (d) Optimal sp-multicast tree.

with a number of edges that is just about(0.4n−o(n))∗f∗.
In Figure 1 we present a simple problem instance that when
extended to then-cube makes algorithmClustering
generate sp-multicast trees with about0.16n ∗ f∗ edges.

Figure 1 will helps us identify important optimization
opportunities that algorithmClusteringmisses to catch
and therefore it cannot generate near-optimal solutions all
of the time. All of the above three algorithms suffer from
the same type of problems. Instances like the one in Fig-
ure 1 have subsets of destinations with very similar bit pat-
terns. When algorithms do not identify these large patterns,
individual trees for each of these destinations may be gen-
erated, rather than just generating a tree for the nodes with
similar bit patterns. The algorithms in the next section iden-
tify, up to a certain extent, and exploit this information to
generate near-optimal sp-multicast trees.

3 New Algorithms

In this section we discuss our algorithms (MOverlap,
BEstimate and BUp) for the n-cube sp-multicasting
problem. Our algorithms try to avoid the pitfalls of the
previously known algorithms. In the next section we com-
pare the performance of all the algorithms discussed in this
paper.

Algorithm MOverlap(r, S) is like algorithm
Oblivious(r, S) except that the pairs
(r1, S1), (r2, S2), . . . are selected differently. First we
find a pair of nodesP in S with the Maximum bit-pattern
Overlap (i.e., the pair of nodes with the largest number
of identical bits). Then we add to setP one by one the
destinations inS − P with the largest number of bits
identical to all the current destinations inP . Then we
select a 1-bit that is common to all the destinations inP
but is a 0-bit inr. We definer1 as the neighbor ofr that
differs fromr in the bit just identified, and we letS1 be set
P . We apply the above procedure toS − S1 to generate
the pair(r2, S2) and continue until all the destinations inS
have been partitioned into the setsS1, S2, . . . Sk, for some

integerk. One can easily show that the this algorithm can
be implemented to takeO(n2d2) time.

AlgorithmBEstimate(r, S) is a more elaborate ver-
sion of algorithmMOverlap(r, S). The idea behind the
algorithmBEstimate is to consider each pair of destina-
tions in S at a time and find the bits in common between
them. Then we select a subset of destinations,S′ ⊆ S,
on which one can transition on a permutation of the bits
in common. We then estimate, by procedures defined be-
low, the cost of the tree that includes the transition on a
permutation of the bits in common. We then select the pair
that we estimate will produce the best tree. For that pair,
the first bit in the transition is used to determine the node
r1. The set of destinations is now partitioned into two sets
which we callS1 (this is simplyS′ for the pair selected) and
S − S1. Similarly we identifyr2 andS2, r3 andS3, and so
forth. Then we apply the algorithm recursively to each of
these pairs. Below you will find a more concrete descrip-
tion of the algorithm. The sp-multicast tree constructed by
the algorithm will be represented by the setT (of nodes and
edges). InitiallyT is empty.

Algorithm BEstimate(r, S);
// r is the source node andS is the set of destinations;
T ← T ∪ {r};
S = S \ {r};
k = 0
while S 6= ∅ do

k = k + 1;
for every pairp of destinations inS do

Define the set of nodesP as all the destinations that
are “similar” to the nodes inp;

The structure in common between the destinations
in p andP partitions the set of destinations
into equivalence classes.

Estimate the number of edges in the trees for each
equivalence class, and use that as estimate the
cost of the resulting tree.

endfor
Select the pair of destinationsp that has the best

estimate on the resulting tree and letP be the
set of nodes “similar” top;

Let ri be a node that is neighbor ofr and all the 1-bits
in ri are 1-bits inp andP ;

Assignp andP to setSi

Delete all elements inSi from setS;
endwhile
Add edge{r, ri} to T for 1 ≤ i ≤ k;
Invoke algorithmBEstimate(ri, Si), for 1 ≤ i ≤ k;

end of algorithm BEstimate;

One of the steps that has been left open in our algo-
rithm is how to estimate the number of edges in an sp-
multicast tree for a source node and a set of destinations.
There are many ways we can do this. The first one is by
using any of procedures defined before, e.g.,Greedy,
NGrouping, Clustering, and MOverlap. An-

other is by running two or more of these algorithm and
using the best of the best of these solutions. In the next
section we discuss the quality of the solutions generated by
these different possibilities. The time complexity for al-
gorithmBEstimate is O(n2d2 + nd3c), wherec is the
time complexity of the algorithm used to provide the es-
timate. AlgorithmBEstimate with the best solution of
Greedy andMOverlap (which we will refer to as algo-
rithmBEstimate(Best ofGreedy andMOverlap), has
overall time complexityO(n3d5).

Before we present our next algorithm, we introduce
the following notation and convention. For any noded in
the n-cube which may or may not be a destination inD,
definedist(d) as the length of a shortest path froms to
d. For this algorithm we define the setS to contain all the
destinationsD plus the source nodes.

The above algorithms generate the sp-multicast tree
top-down, i.e., from nodes to all the destinations. Algo-
rithm BUp constructs the tree Bottom-Up. First we find a
nodex ∈ S with largestdist(x) value. Then we find a des-
tination node,y, in S closest tox. If y is at a distance one
from x we just add the edge{y, x} to the tree and delete
nodex from S. Otherwise we add the edge(x, x′) that
takesx closer toy in the direction ofs to the tree, delete
nodex from S, and add the new nodex′ to S. If dist(y) is
equal todist(x) we add the edge(y, y′) that takesy closer
to x in the direction tos to the tree and delete nodey from
S. If nodex′ is different from nodey′ we add nodey′ to S.
The specific details are given below.

Algorithm BUp (s, D)
S ← D ∪ {s};
T ← {S};
loop

Let x be a node whosedist(x) value is maximum
amongst all nodes inS;

if dist(x) == 0then break
Find the nodey ∈ S − {x} closest tox;
if (dist(y) == dist(x)− 1) then {deletex from S;

add edge{y, x} to T ; }
else
{Let b be a position such thatx has a 1-bit and

y has a 0-bit;
Let x′ bex and set thebth bit of x′ to zero;
Add the nodex′ and edge{x′, x} to T ;
S ← (S − {x}) ∪ {x′};
if (dist(y) equalsdist(x)) then
{Let c be a position such thaty has a 1-bit and

x has a 0-bit
Let y′ bey and set thecth bit of y′ to zero;
Add edge{y′, y} to T and deletey from S;
if (x′ != y′) then {Add the nodey′ to T ;

S ← S ∪ {y′}; }
}

forever
End of Algorithm BUp

When we apply algorithmBUp to the instance given
in Figure 1(a), it generates the best possible tree (Figure
1(d)). One can easily show that the time complexity for this
algorithm isO(n2d2). With respect to the time complexity
bound, all the algorithms take about the same amount time.
The only exception is algorithmBEstimate, which is the
slowest.

4 Experimental results

The quality of the solutions generated by all the algorithms
was evaluated, except for algorithmOblivious which
is clearly inferior. For comparison purposes we also eval-
uated the performance of algorithmMCST. Note that this
procedure generates a Steiner tree that may or may not be
an sp-multicast tree. But the Steiner tree that it generates
has a number of edges that is at most twice of those in
an optimum Steiner tree. We know that an optimum sp-
multicast tree has at least as many edges as an optimum
Steiner tree. Therefore, we know the best possible sp-
multicast tree has at least as many edges as half the number
of edges in the Steiner tree generated by theMCST.

In the first round of experiments we com-
pared the performance of algorithmsBUp, MCST,
Greedy, NGrouping, Clustering, MOverlap and
BEstimate. Algorithm BEstimate was run with
several estimators. The estimators used were algorithms
Greedy, NGrouping, Clustering, MOverlap,
as well as combinations of two or more of these meth-
ods. In this first round we run each of our methods
on 10,000 randomly generated problem instances on
an n cube with d destination nodes. The value for
n ∈ {8, 9, 10, 12, 14, 16, 18, 20, 22} and the value for
d ∈ {25, 35, 45, 55, 65, 75, 85, 95}. Thus each method was
run about 720,000 times.

Figures 2a and 2b depict the results for the experimen-
tation in the 8-cube, and 22-cube, respectively. The graphs
depict the quality of the solutions generated by the meth-
ods relative to the BUp method. The x-axis represents the
quality of the solution generated by the BUp method. The
other curves depict the performance of the different meth-
ods. Lets consider the curve for theClusteringmethod
in Fig. 2a. For each experiment with 25 destinations we
computed the number of nodes,c, in the tree generated by
the Clustering method and the number of nodes,b, in the
tree generated by theBUp method. Then the relative per-
formance of the clustering method with respect to theBUp
method was computed as(c−b)/b. Leta be the average rel-
ative performance of the clustering method over all the ex-
periments. Then the point(25, a) is part of the curve repre-
senting the the performance of theClustering method.
In other words, thex-axis represents the number of des-
tinations and theY -axis is the relative performance of the
method with respect to theBUpmethod. Note that we mea-
sure performance with respect to the number of nodes in
the tree generated by the methods. A point above the the x-
axis means that theBUpmethod generates trees with fewer

0

5

10

15

MC

BE

CL

NG

-10

-5

0

5

10

15

25 35 45 55 65 75 85 95

MC

BE

CL

NG

GR

MO

8

10

12

14

16

18

20

MC

BE

CL

NG

GR

0

2

4

6

8

10

12

14

16

18

20

25 35 45 55 65 75 85 95

MC

BE

CL

NG

GR

MO

Figure 2. We use the following notation:MCST (MC),
BEstimate (BE), Clustering (CL), NGrouping
(NG), Greedy, (GR), andMOverlap (MO). Thex-axis
represents the number of destinations and they-axis is the
relative performance of the method. (a) Experiments for
the 8-cube (left). (b) Experiments for the 22-cube (right).

nodes and a point below means that theBUp method gen-
erates trees with more nodes.

The first observation is with respect toMOverlap
andGreedy (See Figure 2). The performance of these two
methods was about the same on the 8-cube, butMOverlap
was about 4% better on the 22-cube. However, it is impor-
tant to note that on a large range of problem instances each
of these two methods was about 13% better than the other.
I.e., on a large set of problem instancesMOverlap was
better thanGreedy by about 13%, and on another large set
of problem instancesGreedy was better thanMOverlap
by about 13%.

When we runBEstimate(Best of Greedy and
MOverlap) it outperformed bothBEstimate(Greedy)
andBEstimate(MOverlap) by about 4% to 5%. The
observations given in the previous paragraph justify this re-
sult. BEstimate(Best ofNGrouping andMOverlap)
andBEstimate(Best ofClustering andMOverlap)
were slightly worse thanBEstimate(Best of Greedy
and MOverlap), with no significant difference on the
22-cube. BEstimate (Best of BUp and MOverlap)
was about 2% worse thatBEstimate(Best ofGreedy
andMOverlap). In order to simplify Figure 2 we only
show the results forBEstimate(Best of Greedy and
MOverlap) as the representative of theBEstimate
method.

In the 8-cube (Fig. 2a) one can see that
Clustering outperformsNGrouping which outper-
forms Greedy. In the 22-cube (Fig. 2c)NGrouping
andGreedy are indistinguishable and slightly worse than
Clustering. The reason for this is that fewer desti-
nations can be grouped together as we increase the num-
ber of nodes in the hypercube while keeping the the
number of destination nodes fixed. The performance of
BEstimate(Best of NGrouping and MOverlap) is
better in the 22-cube than in the 8-cube. TheMCSTmethod
is the best one in the 8-cube and it is actually better than the

0.00

5.00

10.00

15.00

20.00

2
5

7
5

1
2
5

1
7
5

2
2
5

2
7
5

3
2
5

3
7
5

4
2
5

4
7
5

5
2
5

5
7
5

6
2
5

6
7
5

7
2
5

7
7
5

8
2
5

8
7
5

9
2
5

9
7
5

MC

CL

NG

GR

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

20.00

2
5

7
5

1
2
5

1
7
5

2
2
5

2
7
5

3
2
5

3
7
5

4
2
5

4
7
5

5
2
5

5
7
5

6
2
5

6
7
5

7
2
5

7
7
5

8
2
5

8
7
5

9
2
5

9
7
5

MC

CL

NG

GR

MO

10.00

15.00

20.00

25.00

30.00

MC

CL

NG

GR

0.00

5.00

10.00

15.00

20.00

25.00

30.00

2
5

7
5

1
2
5

1
7
5

2
2
5

2
7
5

3
2
5

3
7
5

4
2
5

4
7
5

5
2
5

5
7
5

6
2
5

6
7
5

7
2
5

7
7
5

8
2
5

8
7
5

9
2
5

9
7
5

MC

CL

NG

GR

MO

Figure 3. We use the following notation:MCST (MC),
Clustering (CL), NGrouping (NG), Greedy, (GR),
andMOverlap (MO). Thex-axis represents the number
of destinations and they-axis is the relative performance
of the method. (a) Experiments for the 10-cube (left). (b)
Experiments for the 20-cube (right).

BUpmethod. However in the 22-cube it is outperformed by
the BEstimate(Best ofNGrouping andMOverlap)
andBUp methods.

In the second round of experiments we compared
the performance ofBUp, MCST, Greedy, NGrouping,
Clustering, andMOverlap. Note that since theBUp
method was better in the first set of experiments than the
BEstimatemethod, and theBEstimatemethod is sig-
nificantly slower than all the other methods, we decided
not to evaluate its performance in the second round. We
run each of our methods on 10,000 randomly generated
problem instances on ann cube withd destination nodes.
The value forn ∈ {10, 12, 14, 16, 18, 20} and the value
for d ∈ {25, 50, 75, 100, . . . , 950, 975}. Thus each method
was run about 3,200,000 times.

The same observations that we made for Fig. 2 can
be made for the Fig. 3. In Fig. 3(a) we observe that as
the number of destinations becomes large compared to the
nodes in then-cube, all the methods perform equally and
generate near optimum solutions. When the number of des-
tinations is small, is when one can observe the greatest dif-
ferences between the performance of the methods. Algo-
rithm BUp outperforms theClustering method by less
than 5% in the 8-cube. However this increases to about
16% in the 20-cube. On largern-cubes one observes larger
differences. In a wide range of applications the number
of destinations is small and that is where our methods are
significantly better than the previous methods. The figures
show that on average theBUp method is always better than
the previous methods. However, one can also say that for
almost all problems instances it outperforms all the other
methods. There are very few cases when it generates a so-
lution that is worse than the one generated by some of the
other methods, but when that occurs the difference is mini-
mal.

5 Conclusions

We introduce three new algorithm to construct near-optimal
sp-multicast trees. We demonstrate experimentally that our

methods outperform previous algorithms for this problem.
In particular, the fastest of our methods (algorithmBUp)
outperforms all other methods. It is not known whether
or not algorithmBUp is a constant ratio approximation al-
gorithm. This is the most important open problem in this
research area.

References

[1] Angkun, T., Bosilca, G., Vander Zanden, B., and Don-
garra, J., “Optimal Routing in Binomial Graph Net-
works,” PDCAT’07, 363 –369, 2007.

[2] Choi, H.-A., and Esfahanian, A. H., “On Complex-
ity of a Message-Routing Strategy for Multicomputer
Systems,”LNCS, 484, 170 – 181, Springer-Verlag,
1991.

[3] Choi, H.-A., Esfahanian, A. H., and Houck, B., “Op-
timal Communication Trees with Application to Hy-
percube Multiprocessors,”Graph Theory, Combina-
torics, and Applications, 1, 245 – 264, 1991.

[4] Cipriano, C.C., and Gonzalez, T. F., Multicasting
in the Hypercube, Chord and Binomial Graphs, TR
2009-09, UCSB, May 2009.

[5] Du, D.-Z., and Wu, W., Approximations for Steiner
Minimum Trees, inHandbook of Approx. Alg. and
Metaheuristicts, ed. T. Gonzalez, Chapter 42, Chap-
man and Hall/CRC, 2007.

[6] Fujita, S., A Note on the Size of a Multicast Tree in
Hypercubes,IPL, Vol 54, pp. 223 – 227, 1995.

[7] Graham, R. L., and Foulds, L. R., “Unlikelihood
that Minimal Phylogenies for a Realistic Biological
Study can be Constructed in Reasonable Computation
Time”, Math. Biosciences, 60, 133 – 142, 1982.

[8] Hwang, F. K., Richards, D. S., and Winter, P.,The
Steiner Tree Problem North-Holland, 1992.

[9] Lan, Y., Esfahanian, A. H., and Ni, L. M., Multicast
in Hypercube Multiprocessors,J. of Par. and Dist.
Comp., Vol 8, pp. 30 – 41, 1990.

[10] Lu, S., Fan, BH, Dou, Y., and Yang, XD, Cluster-
ing Multicast on Hypercube Network, HPCC-2006,
LNCS, 4208, pp. 61 – 70, 2006.

[11] Lu, SL and Yang, XD, A Clustering Model for Multi-
cast on Hypercube Network, GPC-2008,LNCS, 5036,
pp. 211 – 221, 2008.

[12] Sheu, S.-H. and Yang, C.-B., Multicast Algorithms
for Hypercube Multiprocessors,J. of Par. and Dist.
Comp., 61, pp. 137 – 149, 2001.

