Replacement Paths for Pairs of Shortest Path Edges in Directed
Graphs

AMIT M. BHOSLE*
YASU Technologies Pvt. Ltd.

1-10-98/16, Raj Plaza, Dwarkadas Colony

Begumpet, Hyderabad - 500 016, India
email: bhosle@cs.ucsb.edu

ABSTRACT

The (Single-Edge) Replacement Patm®blem is defined
as follows: Given a weighted grap(V, E), two nodes

s andt, and the shortest patRg (s, t) = {e1,e2,...,€p}
fromstotin G, compute the shortest path frano ¢ in the
graphG\e; for 1 < i < p. In other words, the single-edge
replacement paths problem studies how a giséshortest
path changes with the deletion of an edge lying on the path.
We study dwo-edgegeneralization of this problem fati-
rectedgraphs, termed th&dge Pairs Replacement Paths
problem: GivenG, s, t, and Ps(s,t) as defined above,
compute the shortest path fromto ¢ when two edges of
Pq (s, t) fail, for all the p? pairs of edges 0P (s,t). We
present arO(n?) algorithm for this problem, and establish
an Q(mn) lower bound in thepath comparisomodel for
shortest path algorithms which was introducedi6).

Our algorithm is based on a new algorithm for the di-
rected version of the single-edge replacement paths prob-
lem which makes clever use of the information provided by
the all-pairs-shortest-paths computation on a modification
of the input graph and avoids extensive recomputations re-
quired by the naive algorithm.

1 Introduction

Shortest paths computation is one of the most fundamental
problems in graph theory. The huge interest in the problem
is mainly due to the wide spectrum of its applications, rang-
ing from routing in communication networks to robot mo-
tion planning, scheduling, sequence alignment in molec-
ular biology and length-limited Huffman coding, to hame
only a very few.

In several scenarios, one needs to compute not only
the shortest path between two given nodes, but also several
others which satisfy certain additional criteria. Routing in
networks which are susceptible to link failures is one such
example. When some links of the network fail, routes need
to be found which do not use the failed link(s). Though,
singlelink failures has been widely studied, in certain sit-
uations, it becomes important to consider the failure of at

*This work was done while this author was at the Department of Com-
puter Science, University of California, Santa Barbara, CA - 93106.

TEOFILO F. GONZALEZ
Department of Computer Science
University of California
Santa Barbara, CA 93106, USA
email: teo@cs.ucsh.edu

least two links at the same time. As mentioned in [2], in
some cases, it takes a significant amount of time (anywhere
from a few hours to a few days) to repair a failed link, dur-
ing which another link of the network may fail. Another
scenario arises when two (or more) links of a network share
some portion in the physical design and a fault in the shared
region renders all the links involved as failed.

We study the following shortest paths problem,
termed theEdge Pairs Replacement Pathsoblem on di-
rected graphs: Given a directed weighted gréfifv, E),
two nodess and ¢, and the shortest pat®s(s,t) =
{e1,e2,...,¢,} fromstotin G, compute the shortest path
from s to ¢ when2 edges ofP (s, ¢) fail, for all thep? pairs
of edges ofP; (s, t). In essence, we study how a given
t shortest path changes with the failure of any two edges
of the path. This is &awvo-edgegeneralization of the better
studied(single-edggreplacement pathgroblem discussed
later in Section 1.1.

Our solution to the edge pairs replacement path prob-
lem lends itself to a solution for determining the Two-Most-
Vital-Arcs of a shortest path. A pair of edges (arcs) lying on
an s-t shortest path is termed the two most vital arcs of the
path if the deletion of these two edges produces the largest
increase in thes-t shortest path distance as compared to
any other pair of edges lying on the path.

A naive algorithm for the Edge Pairs Replacement
Paths problem is based on recomputation: For every pair
of edges{e, f} C Pg(s,t), compute the shortest path
from s to ¢ in the graphG\{e, f}, whereG\{e, f} rep-
resents the grapi with the edges and f removed. Since
Pa(s,t) can have as many &(n) edges, there can be as
many asO(n?) pairs of edges lying orP¢(s,t). Thus,
the naive algorithm take®(n?(m + nlogn)) time using
the F-Heap[5] implementation of Dijkstra’s single source
shortest path algorithm[3].

1.1 Related Work

The (single-edge replacement pathgroblem basically
studies how a given-t shortest path changes if an edge of
the path fails. Formally, the problem is defined as follows:
Given a graplG(V, E), two nodess, t € V, and a shortest
pathPg(s,t) = {e1,eq,...,ep} fromstotin G, compute
the shortest path from to ¢ in each of thep graphsG\e;

for 1 <i < p, whereG\e; represents the gragh with the
edgee; removed.

For undirectedgraphs, (near) optimal algorithms for
this problem have been around for a while. Malik, Mittal
and Gupta[11] presented é&{m+n logn) time algorithm
for finding the most-vital-arc with respect to a#t shortest
path?.

The replacement paths problem was also proposed
later by Nisan and Ronen[12] in their work on Algorithmic
Mechanism Design. Hershberger and Suri[8] rediscovered
the algorithm of [11] in their work in the domain of algo-
rithmic mechanism design related to computing Yhek-
rey paymentdor the edges lying on as-t shortest path.
Note that the undirected version can trivially be solved in
O(mn + n?logn) time using known results for the single-
edge version of the problem.

The replacement paths problem divected graphs
was shown to admit a lower bound G{min(n?, m+/n))
for a certain class of path-comparison based algorithms for
shortest paths by Hershberger, et. al.[9]. The path compar-
ison model for shortest path algorithms was introduced in
[10] and further explored in [9, 6]. It forms a natural class
for such algorithms. In this model, an algorithm determines
the shortest paths by comparing the lengths of two different
paths. Such an algorithm can perform all standard opera-
tions in unit time, but its access to edge weights is only
through the comparison of two paths. Most of the known
shortest paths algorithms fall into this category, including
those by Dijkstra, Floyd, Spira[13], Frieze-Grimmet and
the hidden paths algorithm of [10]. However, algorithms
using fast matrix multiplication like those of Fredman([4]
and Takaoka[14] do not fall into this category since they
also add up weights of edges that do not form a path. The
reader is referred to [10, 9] for further details of the model
of computation.

1.2 Main Results

We present aw(n?) algorithm for the Edge Pairs Replace-
ment Paths problem on directed graphs. We also establish
a lower bound of2(mn) in the path-comparison model of
[10] for shortest paths algorithms.

Our algorithm for theE PRP problem is based on
a new algorithm for the replacement-paths-problem on di-
rected graphs. This algorithm makes clever use of the infor-
mation provided by aall-pair-shortest-path€omputation
on amodificationof the input graplG and avoids thé&(n)
single-source shortest paths computations employed by the
naive algorithm. Consequently, our replacement paths al-
gorithm performs favorably as compared to the naive al-
gorithm whenever the all-pair-shortest-paths (APSP) com-
putation is faster than single-source shortest-paths com-
putations. Thus, while the naive algorithm requiegs:®)
time in the worst case, our algorithm is the first subcubic
algorithm for this problem since the time required for an

1The algorithm presented in [11] had a minor flaw which was subse-
quently pointed out and corrected in [1]

all-pair-shortest-paths computation is subcubic in quite a
few situations, as will be discussed in Section 3.

2 Preliminaries

Our communication network is modeled by a weighted di-
rected graptG(V, E), with n = |[V| andm = |E|. Each
edgee € E has an associated cosbst(e), which is a real
number. It is assumed that the shortest paths arewell
defined That is, there are noegative cycles G.

We usePq(z,y) to denote the shortest path from a
nodex € G(V) to a nodey € G(V), anddg(z,y) to
denote its weight. We drop the subscriptvhen it is clear
the graph we refer to. Note th&(s,t) can equivalently
be represented as a sequence of edges or as a sequence of
vertices lying on it.|P| is used to denote the total weight
of a pathP in the graph.

Tapsp(m,n) represents the time required for an all-
pair-shortest-paths computation on a directed graph with
m edges and vertices.

A cut in a graph is the partitioning of the set of ver-
ticesV into V; andV; and it is denoted byV;, V,). The
set of edges(V1, V) represents all the edges across the
cut (1, V). We useZ; to denote the tree of shortest paths
from a nodes € V to all other nodes iV. G\ X denotes
the graphG with the elements in the séf removed from
G.

Ra(s,t;e) is used to denote the replacement path for
the edgee, which is defined as the shortest path frero
t in the graphG\e. WhenG, s andt are clear from the
context, we use onlR (e) to denoteR (s, t; €).

Finally, for simplicity we assume that the graph is
robust enough to tolerate the link failures. In our case,
this translates to the assumption that for any two edges
e, f € Pa(s,t), there exists a path fromto ¢ in G\ {e, f}.
Note that this assumption only makes the explanation sim-
pler and is not actually critical for the algorithms.

2.1 Organization of the Paper

We present th@®(T,,,,(m, n)) time algorithm for the re-
placement paths problem on directed graphs in Section 3.
In Section 4.2, we present &(n?) algorithm for the Edge
Pairs Replacement Paths problem, which borrows critical
observations and ideas from the replacement paths algo-
rithm. TheQ(mn) lower bound (in the path-comparison
model for shortest paths algorithms) for the Edge-Pairs-
Replacement-Paths problem is presented in Section 4.1. Fi-
nally, we conclude the paper with some open problems in
Section 5.

3 Directed Replacement Paths

In this section we present an algorithm for the replace-
ment paths problem on directed graphs which requires

O(Typsp(m, n)) time. That is, the time required by this al-
gorithm is dominated by onall-pairs-shortest-pathsom-
putation. This algorithm makes clever use of the infor-
mation provided by an all-pairs-shortest-paths computa-
tion on amodificationof the input graphG' and avoids
the O(n) single-source-shortest-patlcomputations em-
ployed by the naive algorithm. Thus, this algorithm per-
forms favorably as compared to the naive algorithm when-
ever the all-pair-shortest-paths computation is faster than
O(n) single-source-shortest-paths computations, which
happens in quite a few cases: Takaoka[l14] showed that
Topsp(m,n) = O(n3y/loglogn/logn). If edge weights
are integers, Zwick’s algorithm[15] for the APSP takes
O(CY-681p2575) time, whereC is the heaviest edge of
the graph. The hidden paths algorithm of [10] takes
O(m*n + n?logn) time wherem* is the number of edges
participating in the shortest paths. As shown in [18];

is likely to be small in practice, since* = O(nlogn)
with high probability for many probability distributions on
edge weights. Spira’s[13] all pair shortest paths algorithm
takesO(n? log® n) average time. An appropriate APSP al-
gorithm can be chosen to improve upon the cubic naive
bound.

3.1 Description of the Algorithm

We start off by computing the shortest paths trég, of

s and the All Pairs Shortest Paths in the gragh =
G\P¢(s,t) obtained fron(G by deleting all the edges lying
onPa(s,t), the shortest path fromto ¢.

Note that deleting any edge onPs (s, t) splitsZ; in
two components which induces a cut in the gréptin this
cut, denote byV,; the component containing Consider
the case when an edgec Pq (s, t) is deleted (See Figure
1). The weight of the shortest path through a nedeV;
which touches the spirBs (s, t) at a noder, and does not
pass through any other vertexfj; is

de/ (s~ v~ u~t) =da(s,v) +de (v,u) + da(u, t)

1)
wheredg: (z,y) anddg(x, y) represent the weights of the
pathsP¢ (z,y) and Pg(z,y) respectively. The first and
third terms in the above expression are obtained flgm
while the second one was computed in the APSP computa-
tion.

The following lemma captures critical properties of
R.,, the replacement path of the edgec Ps(s,t). For
brevity, we omit the proof.

Lemma 3.1 The replacement path for an edgg €
Pa(s,t), Re,, which is defined as the shortest path from
stotin G\e;, follows the path irZ; from s to some node

v € Vg, uses exactly one edge across the cut (induced
in G by the two components ¢ \e; }) to join the spine
Pc(s, t) at some vertey, and follows the spine all the way
uptot.

Figure 1. Candidates for the best replacement path through
anodev € Vy;

If Pa(s,t) = {s = up,u,...,ux = t}, the best
replacement path through a node V;|; would be:

|Rzi (57 t)l = MINf:i+1{dG(S7 v)+dG’ (U’ uj)+dG (uj7 t)}

wheree; = (u;,u;+1) Note that the paths involved in the
above minimizatiordo notuse the edge;, owing to the
construction ofG’. Thus the pattRy. (s,t) defined above

is a candidate for the replacement pathdpr Finally, the

best replacement path for the edgavould be the shortest
one among all such candidate replacement paths through
the nodes iV/,;. That s,

[R(ei)] = [Pene, (s, 8)] = MINyev, {

Re(s, 0} ()

Note that the subpattv ~) of R} (s,t) may not be
the shortest path from to ¢ since for co'mputingzgi (s,t)
we only consider paths which do not use any other vertex
of V,|;. However, this does not pose a problem since we it-
erate over all vertices df;; for determining|R., | and the
nodev € V); which minimizes the expression is indeed the
last vertex ofV/,|; that lies on the path (Lemma 3.1). Note
that the equation (1) is pretty straight-forward and even re-
sembles the one used in [11, 8]. However, as shown in [7],
that equation alone does not suffice to solve the problem for
directed graphs, for which extensions to equation (2) were
necessary.

An arbitrary way of computing these values may not
result in much of an improvement. We start in an orderly
fashion: from the head;, of Pg(s,t), the reason being
that this allows updating thgr? (s, t)| values efficiently.
When computing the replacement path for an edge-

(ui, uiy1), we update this value for all € V;; as

IRe, (s, 1) = MIN{|R;,, (s, 1)],
da(s,v) +da (v, uiv1) + dg(uit1, 1)} (3)

where the second term is the weight of the path-> v ~
Ui41 ™~ t).

We formally present the algorithidirected (Single-
Edge Replacement Pathselow.

Algorithm DSERP

e Input: Directed weighted grap&(V, E), two speci-
fied nodess andt, and a shortest path fromto ¢ in
Gv PG(Sat) = {617 €2,. .., SP}.

e Initialization: Compute the shortest paths trégpf s
and compute the all-pairs-shortest-paths in the graph
G’ which is obtained by deleting frod, all the edges
of Pg(s,t). ComputeV, as described above. Also,
for each noder € V|, compute[R; (s,t)|. Report
[Re,)| = MIN{RY (s,1)}.

e For i=p—1to1,do:

— ComputeV;; by a traversal off \e;.

— For eachv € V;, updatgRY. (s, t)| according
to equation (3).

— Report|R(e;)| = MIN,{RY, (s,1)}.

The time complexity is straight forwardV;| is at
mostO(n) for any deleted edge; € Pg(s,t). Also, the
setV); can be computed i®(n) time using any standard
traversal (breadth-first-traversal, depth-first-traversal, etc)
on7;\e;. Updating thgRY (s,t)| values requires constant
time per nodev € Vj;, per deleted edge; € Pg(s,t).
Since’Pg(s,t) can also haved(n) edges, we arrive at a
time complexity ofO(n?) after the initial APSP computa-
tion. And since any APSP algorithm requir@én?) time,
the overall complexity of the algorithm remains dominated
by the APSP computation.

We have thus established the following theorem:

Theorem 3.1 Every instance of the directed version of the
(single-edge) replacement paths problem can be solved in
time O(Typsp(m, n)), whereT,,,,(m, n) denotes the time
required to perform an all-pairs-shortest-paths computa-
tion on a graph.

Proof: The correctness of the algorithm DSERP and the
bound on its running time follow from the discussion im-
mediately preceding the algorithm. O

4 Edge Pairs Replacement Paths in
Directed Graphs

In this section, we discuss the Edge Pairs Replacement
Paths problem on directed graphs. As mentioned earlier, a
naive algorithm for the problem takéxn?(m + nlogn))

time. In sub-section 4.1, we establish &mn) lower
bound for the problem in thpath-comparisormodel for
shortest paths algorithms introduced by Karger, et. al.[10]
and further explored in [6, 9]. Th@(n?) algorithm for the
problem is presented in sub-section 4.2.

4.1 Lower Bound

The lower bound is basically a reduction of an instance of
the all pairs shortest paths (APSP) problem to an instance
of the Edge-Pairs-Replacement-Paths problem. The reduc-
tion can be performed in linear time by adding some nodes
and edges to the input graph of the APSP instance. The
modified graph obtained frorH is calledG. As we shall

see later(G also containg)(n) vertices and)(m) edges,
wheren andm represent the number of vertices and edges
in H.

We use the lower bound dR(mn) on the APSP
problem presented in [10]. This bound holds in the path-
comparison model for shortest path algorithms. The reader
is referred to [10, 9] for details of the model of computa-
tion. We briefly outline the APSP lower bound of [10] here.
The graphH used in the construction of [10] has a total of
mn directed paths from all the source vertices to all the
destination vertices. The basis of the lower bound proof is
that any algorithm must include all of these: paths in the
computation. If an algorithm fails to include any of these
paths, sayS;, Vi, D;) in its computation, then the weights
of some of the edges df (the thicker ones in the figure)
can be modified such that:

(1) The ignored path,(S;, Vi, D,), becomes the
shortest path frons; to D;.

(2) All other paths retain the same relative order of
weights as initially.

Thus, after the weight modification, the algorithm cannot

H

\
NIRRT NS
X LA

L
Ve

Figure 2. Construction for APSP Lower Bound used in [10]

output the correct answer for ttis;, D;) distance since it
ignores the particular path and all other path comparisons
will yield the same information as earlier.

We use the same graph as used in [10] as our graph
H (see Figure 2).H is a tri-partite graph and has ver-
tices in the first and third column, and/2n vertices in
the middle column. There are/2 edges from vertices
of the first column to those of the second, ang2 from
the vertices of the second column to those of the third.
Thus, H has3n vertices andn edges. As shown in [10],
any path comparison based shortest path algorithm must
spend at leasf2(mn) time to compute the shortest paths
from all the vertices in the first column to all the vertices
in the third column. Let us denote thesource vertices
in H by S1,5.,...,5, and the destination vertices by

Dy, Do, ...

.D,..

Figure 3. Construction for Edge-Pairs-Replacement-Paths
Lower Bound

To reduce this problem to an instance of the Edge-
Pairs-Replacement-Paths problem, we create a spifwe of
vertices: P = {s1,82,...,8n,dn,dn_1,...,d1}. Each
edge of the spine has weight We map all thes;’s to the
correspondingp;’s in H and all thed;’s to the correspond-
ing D;’sin H. Also, we choose a quantitf’ = 10-n-e,,42
wheree,, .. is the weight of the heaviest edge Bt Note
that this choice of¥’ makes it much more heavier than the
weight of any simple path i&/ since any simple path i
can have weight at mo$t — 1) - e,,4... Finally, we intro-
duce the following edges to connect the spiheo H:

(1) For1 < i < n, an edge froms; to .S; of weight

(n—9)W.
(2) For1 < i < n, an edge fromD; to d; of weight
(n—i)W.

This entire graph is calleds. For thes andt vertices

in the Edge-Pairs-Replacement-Paths problem instance, we
chooses = s; andt = d;. The setf’ contains the edges on
the spine. The paths fromto ¢ in in this construction sat-

isfy the following property. Note that the formulae for the
edge weights are minor variants of those used in the lower
bound construction of [9].

Lemma 4.1 The shortest path from to ¢ when the edges
(si, si4+1) and (d;j41,d;) are removed from the grap@,
has weight exactly equal to

dG\{(SwSz:+1)7(dj+1ada’)}(s’t) = (Zn_i_j)'w+dH(Si’Dj)

where dy (S;, D;) represents the weight of the shortest
path fromsS; to D; in the graphH.

Proof: First note that the weight of the path that starts
from s, follows P to s;, entersH at S; using the edge
(si,Si), takes the shortest path frofy to D;, returns to
P using the edg¢D;,d;), and follows the spine té has
weight precisely given by the expression above. Let us call
this pathr. We now show that any other path fronto ¢ in
G\{(s, si+1), (d;+1,d;)} is heavier thanr. Consider the
paths that leave the spine at a vertgxand returns atl,
with eitherp < i orq < j. If p < i, this path has weight at
least(n—p)-W+(n—j)-W > 2n—i—j)-W+W > |r|

sinceW > dy(z,y) foranyz,y € H. Similarly, any path
with ¢ < j is heavier thamr. This completes the proofO

The above lemma shows that a solution for the Edge-
Pairs-Replacement-Paths problem instance constructed
above provides enough information to quickly compute
the all pair shortest paths distances for the graph In
other words, arO(f(m,n)) time solution for the Edge-
Pairs-Replacement-Paths problem instagtémplies an
O(f(m,n)) time solution for the APSP problem instance
H. But, as seen from the APSP lower bound of [10], any
algorithm for the latter must spend at le&¥tmnn) time.
Thus, we conclude that any algorithm for the Edge-Pairs-
Replacement-Paths problem must spend at 1@4stn)
time. The formal argument is similar to the one in [10]:
to compute the shortest path frosnto ¢ when the edges
(si, 8i+1) @and(d;j4+1,d;) are removed, the algorithm must
compare all then/2n paths betwees; andD, in H. Oth-
erwise, we can modify the weights of some of the edges as
in [10] and force the algorithm to report an incorrect an-
swer. Thus, computing the shortest paths for all@{e?)
edge-pairs deletions requires the algorithm to investigate a
total of ©(mn) paths.

4.2 Upper Bound

We now describe the algorithm for the Edge-Pairs-
Replacement-Paths problem. The algorithm is borrows
critical ideas from the algorithm presented in Section 3 for
the directed version of the (single-edge) replacement paths
problem.

4.2.1 Description of the Algorithm

We describe the procedure to compute the replacement
paths when all pairs of edges including a particular edge
e; € Pq(s,t) fail. This procedure take®(n?) time.
The same procedure is then used for every edge
Pa(s, t), thus solving the entire instance of the Edge-Pairs-
Replacement-Paths problem @(n?) time. Apart from
this, an all-pair-shortest-path computation is performed on
G\P¢(s,t) that does not affect the asymptotic worst case
time bound ofO(n?).

Let E(Pq(s,t)) = {e1,e2,...,e,} and
V(Pa(s,t) = {s = wuo,u1,...,u, = t} be the
edge and vertex sets 8% (s, t).

As the first step, we perform an APSP computation
on the graptG_p (s1) = G\E(Pg(s,t)). Next, we con-
struct the shortest paths treesdh the graphG_; = G\e;.
Denote this tree bf.* and the path frons to ¢ in this tree
by Pe_,(s,t). Let F; = {f1, fa, ..., fr} denote the set of
edges common ifPg_, (s,t) andPg(s,t). Notice that if
the second edge iR (s, t) which fails is not inF;, then the
shortest path frona to t remains as defined k. Thus, it
is only the edges of; which can further alter the shortest
path froms to ¢. Note that as shown in Figure &; con-
sists of edges from two subpaths®f (s, t): one starting
from s and the other ending &t Denote these subpaths by

F? and F! respectively. We ignore the edges Bf: the
case when the pafe;, f) fails such thaff € Pg(s,t)NF?

will be handled when the algorithm works to solve the pairs
including f as one of the failed edges.

X Detour

1]
—

Figure 4. R., = Pae,(5,1) = (s ~ u~ 2~ v~ 1)
andF; = Pg(s,t) N Re,

The remaining job is very similar to the replacement
paths problem we discussed earlier.
when (in addition toe;) an edgef € F! fails and we
need to compute the-t shortest path irG\{e;, f}. We
first construct the cut i induced by the two components
of 7.\ f. Denote by e., 7y the component containing
For each node € V¢, s}, We keep track of the shortest
path froms to ¢ throughwv which does not pass through any
other vertex ol (., r;. In other wordsy is the last vertex
of Vj{e,.sy that this path touches. Usin@”ei’f}(s,t) to
denote this path, we have

|Rvei,f}(5>t)‘ = MINI?:;‘+1{
dG*i(S7’U) +dG—PG(s,t) (U7uk) +dG—i(uk7t)} (4)

Wheref = (Uj7Uj+1).

Note thatdg_,(s,v) = dg(s,v) anddg_, (ug,t) =
de(ug,t) since they are all subpaths &%;(s,t) not us-
ing the edges,; or f. SinceR”ehf}(s, t) as defined above
does not use the edgesor f, it is a valid candidate for
the replacement path for the edge pair, /}. Finally, the
replacement path for the pdie;, f} is chosen as the mini-
mum among all candidate replacement paths. That is,

[Ries,)| = MIN,evy ..y AR 1y (5,01}

As in the algorithmDSERR we start from the head,
t, of Po_,(s,t) to compute the replacement paths for the
pairs {e;, f}Vf € F!. For the pair{e;,e;} with e; =
(uj,ujy1) the \R‘{’ei,ej}(s,t)\ values are updated as fol-
lows:

Rie, ey (s, t)] = MIN{|RE, .. (s,1)],
dG—q‘, (57 ’U) + dep(b,t) (U’ uj-‘rl) + dG—i(uj"Fl? t)} (%)

Also, we do not need to perform another APSP computa-
tion. The APSP computation performed in the initial step
provides enough information since we only need the can-
didate replacement path fromto some node: € Pg (s, t)
which does not use the edggsand(u;, uj41).

Consider the case

We formally present our algorithnEPRP below.
The algorithm takes as input a directed weighted graph
G(V, E), and two specified nodest € V. Pg(s,t) can
be computed iMO(m + nlogn) time if not supplied as
part of the input. For simplicity, we assurfig; (s, t) to be
part of input.

Algorithm EPRP

e Input: G(V,E), two special nodes,t € V,
and the shortest path fromto ¢ in G, Pg(s,t) =
{e1,€9,...,ep} ={s =wo,u1,...,up =t}.

e Initialization: Perform an APSP computation
on the graphG\ E(P¢s(s,t)). Also, we compute the
shortest paths tree afin each of thep graphsG\e;
for1 <i<np.

e For each edge; € Ps(s,t), do:

— Construct the shortest paths trég of s in the
graphG_; = G\e;. Let Po_,(s,t) denote the
path froms to ¢ in 7! (andG _;).

— List out the edges common iR¢_,(s,t) and
Pa(s,t) asF; = Pa(s,t) N Pa_,(s,t) = Ff U
F!

— Solve the instance of the replacement paths
problem only for the edges i’} as described
above.

The O(n?) time complexity comes from the fact that
each instance of the replacement paths problem we solve
requiresO(n?) time. Over the entire course of the algo-
rithm, we invoke the replacement paths subroutitienes,
wherep = |F'|. Sincep can be as high a9 (n), the algo-
rithm takesO(n?) time. The APSP computation is required
only once in the beginning of the algorithm and can be per-
formed using any standard algorithm: Dijkstra’s algorithm
takesO(mn + n? logn) time and Floyd's algorithm takes
O(n?3) time. Either can be used since it does not affect the
asymptotic time complexity of our algorithm.

We have thus established the following theorem about
the Edge-Pairs-Replacement-Paths problem.

Theorem 4.1 Every instance of the Edge-Pairs-
Replacement-Paths problem can be solved (iin?)
time. If m = ©(n?), this bound is tight for path-
comparison based algorithms as shown by fh@nn)
lower bound for the problem.

Proof: The correctness of the algorithEPRPand
the claim on the time bound follow from the discussion on
the algorithmEPRRP |

Corollary 4.1 Given a directed weighted graph(V, E),
the two most vital arcs of a givent shortest pattPg (s,),
defined as the two edges lying on the path whose deletion

produces the largest increase in the shortest path dis-
tance, can be found i@(n?) time.

Proof: Associate with the paife;,e;}, wheree;,e; €
Pa(s,t), Dleie;) = |Pa\feie;1(s,t)] — [Pals,t)l.

The two most vital arcs arée, f} such thatD(e, f) =
MAX., ., {D(ei,e;j)}. After solving theEPRPinstance,

the remaining steps can be performed in constant time per
pair {e;, e; }, taking an additional total time @b(n?). O

5 Concluding Remarks

In this paper we have discussed some problems related
to computing shortest paths in networks susceptible to
link failures. The directed version of the replacement
paths problem is especially interesting since it finds ap-
plications in several network problems as well as those
related to algorithmic mechanism design[12]. Although
our O(T,psp(m, n)) replacement paths algorithm is an im-
provement over the naive algorithm for many practical
cases, there is a significant gap between the lower bound
of Q(min(n?,m+/n)) presented in [9] and our new up-
per bound. Note that our subcubigSERP algorithm

is not a path comparison based algorithm since it uses
APSP algorithms based on fast-matrix-multiplication tech-
nigues, whereas the lower bound of [9] holds only for
path-comparison based algorithms. Another point to be
noted for theE’ PR P lower bound presented in this paper

is that the construction employs an input graph which has
O(n) edges on the-t shortest path. Using the same tech-
nigues, problem instances can be constructed which have
only O(r) edges on thes-t shortest path and impose a
(weaker) lower bound of2(mr) on the EPRP problem

for path-comparison based algorithms.

Another interesting open problem is to solve the di-
rectedEPRPinstances for wheanypair of edges from the
entire graph can fail, rather than only the edges lying on the
given s-t shortest path.

The EPRPalgorithm can be generalized to compute
the s-t shortest path when not just two, bktedges of
the original shortest path fail, for all such combinations
of edges lying on the-t shortest path. The time com-
plexity of this algorithm would beD(n**1), instead of
O(n*(m +nlogn)) required by the naive algorithm based
on recomputation. The algorithm goes along the lines of
theEPRPalgorithm: After an initial APSP computation on
G\Pg(s,t), for each setF*~1 C F of k — 1 edges of
Pa(s,t), first construct the shortest paths tEe& ! of s in
the graphG_gr—1 = G\E*~1. Find the subpatt# com-
mon toPe__, , (s,t) andPg(s,t) that ends at, and find
thes-t replacement paths for tieedgesE*~'Uf Vf € F.
Further, equations similar to (4), (5) can be established and
used in a similar way for thé-Edges Replacement Paths
problem. We omit further details from this abstract.

Acknowledgements

The first author thanks Subhash Suri for important discus-
sions during the preliminary stages of this work.

References

[1] A. BarNoy, S. Khuller, and B. Schieber. The complexity of
finding most vital arcs and node$echnical Report CS-TR-
3539, University of Maryland, Institute for Advanced Com-
puter Studies, MD1995.

[2] H. Choi, S. Subramaniam, and H.-Ah. Choi. On double-
link failure recovery in WDM optical networks. [HEEE
INFOCOM, 2002.

[3] E.W. Dijkstra. A note on two problems in connection with
graphs. I'Numerische Mathematikbages 1:269-271, 1959.

[4] M.L. Fredman. New bounds on the complexity of the short-
est path problem. 18IAM J. of Computingpages 5:83-89,
1976.

[5] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithndeurnal
of the ACM 34:596-615, 1987.

[6] Roch Gurin and Ariel Orda. Computing shortest paths for
any number of hopslEEE/ACM Transactions on Network-
ing (TON) 10(5):613-620, 2002.

[7] J. E. Hershberger and S. Suri. Erratum to “vickrey pricing
and shortest paths: What is an edge worth?'lEHBE Symp.
Found. of Comp. Scf8], pages 809-809.

[8] J. E. Hershberger and S. Suri. Vickrey prices and shortest
paths: What is an edge worth? IBEE Symp. Found. of
Comp. Sci.pages 252-259, 2001.

[9] J. E. Hershberger, S. Suri, and A. M. Bhosle. On the dif-
ficulty of some shortest paths problems. Rroceedings of
STACS '032003.

D.R. Karger, D. Koller, and S.J. Phillips. Finding the hid-
den path: Time bounds for all-pairs shortest pathdEBE
Symp. Found. Comp. Sghages 560-568, 1991.

K. Malik, A.K. Mittal, and S.K. Gupta. Thé& most vital arcs
in the shortest path problem. [per. Res. Lettergages
8:223-227, 1989.

N. Nisan and A. Ronen. Algorithmic mechanism design.
In Proc. 31st Annu. ACM Sym. Theory of Comppages
129-140, 1999.

P.M. Spira. A new algorithm for finding all shortest paths
in a graph of positive arcs in average tid¢n? log? n). In
SIAM J. Comput.pages 2:28-32, 1973.

T. Takaoka. A new upperbound on the complexity of the
all pairs shortest path problem. Information Processing
Letters 43 pages 195-199, 1992.

U. Zwick. All pairs shortest paths in weighted directed
graphs exact and almost exact algorithms.|HREE Symp.
Found. of Comp. Scipages 310-319, 1998.

[10]

[11]

[12]

[13]

[14]

[15]

