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ABSTRACT
The (Single-Edge) Replacement Pathsproblem is defined
as follows: Given a weighted graphG(V, E), two nodes
s and t, and the shortest pathPG(s, t) = {e1, e2, . . . , ep}
froms to t in G, compute the shortest path froms to t in the
graphG\ei for 1 ≤ i ≤ p. In other words, the single-edge
replacement paths problem studies how a givens-t shortest
path changes with the deletion of an edge lying on the path.
We study atwo-edgegeneralization of this problem fordi-
rectedgraphs, termed theEdge Pairs Replacement Paths
problem: GivenG, s, t, andPG(s, t) as defined above,
compute the shortest path froms to t when two edges of
PG(s, t) fail, for all the p2 pairs of edges ofPG(s, t). We
present anO(n3) algorithm for this problem, and establish
an Ω(mn) lower bound in thepath comparisonmodel for
shortest path algorithms which was introduced in[10].

Our algorithm is based on a new algorithm for the di-
rected version of the single-edge replacement paths prob-
lem which makes clever use of the information provided by
the all-pairs-shortest-paths computation on a modification
of the input graph and avoids extensive recomputations re-
quired by the naive algorithm.

1 Introduction

Shortest paths computation is one of the most fundamental
problems in graph theory. The huge interest in the problem
is mainly due to the wide spectrum of its applications, rang-
ing from routing in communication networks to robot mo-
tion planning, scheduling, sequence alignment in molec-
ular biology and length-limited Huffman coding, to name
only a very few.

In several scenarios, one needs to compute not only
the shortest path between two given nodes, but also several
others which satisfy certain additional criteria. Routing in
networks which are susceptible to link failures is one such
example. When some links of the network fail, routes need
to be found which do not use the failed link(s). Though,
single link failures has been widely studied, in certain sit-
uations, it becomes important to consider the failure of at
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least two links at the same time. As mentioned in [2], in
some cases, it takes a significant amount of time (anywhere
from a few hours to a few days) to repair a failed link, dur-
ing which another link of the network may fail. Another
scenario arises when two (or more) links of a network share
some portion in the physical design and a fault in the shared
region renders all the links involved as failed.

We study the following shortest paths problem,
termed theEdge Pairs Replacement Pathsproblem on di-
rected graphs: Given a directed weighted graphG(V,E),
two nodess and t, and the shortest pathPG(s, t) =
{e1, e2, . . . , ep} from s to t in G, compute the shortest path
from s to t when2 edges ofPG(s, t) fail, for all thep2 pairs
of edges ofPG(s, t). In essence, we study how a givens-
t shortest path changes with the failure of any two edges
of the path. This is atwo-edgegeneralization of the better
studied(single-edge) replacement pathsproblem discussed
later in Section 1.1.

Our solution to the edge pairs replacement path prob-
lem lends itself to a solution for determining the Two-Most-
Vital-Arcs of a shortest path. A pair of edges (arcs) lying on
ans-t shortest path is termed the two most vital arcs of the
path if the deletion of these two edges produces the largest
increase in thes-t shortest path distance as compared to
any other pair of edges lying on the path.

A naive algorithm for the Edge Pairs Replacement
Paths problem is based on recomputation: For every pair
of edges{e, f} ⊆ PG(s, t), compute the shortest path
from s to t in the graphG\{e, f}, whereG\{e, f} rep-
resents the graphG with the edgese andf removed. Since
PG(s, t) can have as many asO(n) edges, there can be as
many asO(n2) pairs of edges lying onPG(s, t). Thus,
the naive algorithm takesO(n2(m + n log n)) time using
the F-Heap[5] implementation of Dijkstra’s single source
shortest path algorithm[3].

1.1 Related Work

The (single-edge) replacement pathsproblem basically
studies how a givens-t shortest path changes if an edge of
the path fails. Formally, the problem is defined as follows:
Given a graphG(V, E), two nodess, t ∈ V , and a shortest
pathPG(s, t) = {e1, e2, . . . , ep} from s to t in G, compute
the shortest path froms to t in each of thep graphsG\ei



for 1 ≤ i ≤ p, whereG\ei represents the graphG with the
edgeei removed.

For undirectedgraphs, (near) optimal algorithms for
this problem have been around for a while. Malik, Mittal
and Gupta[11] presented anO(m+n log n) time algorithm
for finding the most-vital-arc with respect to ans-t shortest
path1.

The replacement paths problem was also proposed
later by Nisan and Ronen[12] in their work on Algorithmic
Mechanism Design. Hershberger and Suri[8] rediscovered
the algorithm of [11] in their work in the domain of algo-
rithmic mechanism design related to computing theVick-
rey paymentsfor the edges lying on ans-t shortest path.
Note that the undirected version can trivially be solved in
O(mn + n2 log n) time using known results for the single-
edge version of the problem.

The replacement paths problem ondirected graphs
was shown to admit a lower bound ofΩ(min(n2, m

√
n))

for a certain class of path-comparison based algorithms for
shortest paths by Hershberger, et. al.[9]. The path compar-
ison model for shortest path algorithms was introduced in
[10] and further explored in [9, 6]. It forms a natural class
for such algorithms. In this model, an algorithm determines
the shortest paths by comparing the lengths of two different
paths. Such an algorithm can perform all standard opera-
tions in unit time, but its access to edge weights is only
through the comparison of two paths. Most of the known
shortest paths algorithms fall into this category, including
those by Dijkstra, Floyd, Spira[13], Frieze-Grimmet and
the hidden paths algorithm of [10]. However, algorithms
using fast matrix multiplication like those of Fredman[4]
and Takaoka[14] do not fall into this category since they
also add up weights of edges that do not form a path. The
reader is referred to [10, 9] for further details of the model
of computation.

1.2 Main Results

We present anO(n3) algorithm for the Edge Pairs Replace-
ment Paths problem on directed graphs. We also establish
a lower bound ofΩ(mn) in the path-comparison model of
[10] for shortest paths algorithms.

Our algorithm for theEPRP problem is based on
a new algorithm for the replacement-paths-problem on di-
rected graphs. This algorithm makes clever use of the infor-
mation provided by anall-pair-shortest-pathscomputation
on amodificationof the input graphG and avoids theO(n)
single-source shortest paths computations employed by the
naive algorithm. Consequently, our replacement paths al-
gorithm performs favorably as compared to the naive al-
gorithm whenever the all-pair-shortest-paths (APSP) com-
putation is faster thann single-source shortest-paths com-
putations. Thus, while the naive algorithm requiresΘ(n3)
time in the worst case, our algorithm is the first subcubic
algorithm for this problem since the time required for an

1The algorithm presented in [11] had a minor flaw which was subse-
quently pointed out and corrected in [1]

all-pair-shortest-paths computation is subcubic in quite a
few situations, as will be discussed in Section 3.

2 Preliminaries

Our communication network is modeled by a weighted di-
rected graphG(V, E), with n = |V | andm = |E|. Each
edgee ∈ E has an associated cost,cost(e), which is a real
number. It is assumed that the shortest paths inG arewell
defined. That is, there are nonegative cyclesin G.

We usePG(x, y) to denote the shortest path from a
nodex ∈ G(V ) to a nodey ∈ G(V ), anddG(x, y) to
denote its weight. We drop the subscriptG when it is clear
the graph we refer to. Note thatPG(s, t) can equivalently
be represented as a sequence of edges or as a sequence of
vertices lying on it.|P| is used to denote the total weight
of a pathP in the graph.

Tapsp(m, n) represents the time required for an all-
pair-shortest-paths computation on a directed graph with
m edges andn vertices.

A cut in a graph is the partitioning of the set of ver-
ticesV into V1 andV2 and it is denoted by(V1, V2). The
set of edgesE(V1, V2) represents all the edges across the
cut (V1, V2). We useTs to denote the tree of shortest paths
from a nodes ∈ V to all other nodes inV . G\X denotes
the graphG with the elements in the setX removed from
G.

RG(s, t; e) is used to denote the replacement path for
the edgee, which is defined as the shortest path froms to
t in the graphG\e. WhenG, s and t are clear from the
context, we use onlyR(e) to denoteRG(s, t; e).

Finally, for simplicity we assume that the graph is
robust enough to tolerate the link failures. In our case,
this translates to the assumption that for any two edges
e, f ∈ PG(s, t), there exists a path froms to t in G\{e, f}.
Note that this assumption only makes the explanation sim-
pler and is not actually critical for the algorithms.

2.1 Organization of the Paper

We present theO(Tapsp(m,n)) time algorithm for the re-
placement paths problem on directed graphs in Section 3.
In Section 4.2, we present anO(n3) algorithm for the Edge
Pairs Replacement Paths problem, which borrows critical
observations and ideas from the replacement paths algo-
rithm. TheΩ(mn) lower bound (in the path-comparison
model for shortest paths algorithms) for the Edge-Pairs-
Replacement-Paths problem is presented in Section 4.1. Fi-
nally, we conclude the paper with some open problems in
Section 5.

3 Directed Replacement Paths

In this section we present an algorithm for the replace-
ment paths problem on directed graphs which requires
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O(Tapsp(m, n)) time. That is, the time required by this al-
gorithm is dominated by oneall-pairs-shortest-pathscom-
putation. This algorithm makes clever use of the infor-
mation provided by an all-pairs-shortest-paths computa-
tion on a modificationof the input graphG and avoids
the O(n) single-source-shortest-pathscomputations em-
ployed by the naive algorithm. Thus, this algorithm per-
forms favorably as compared to the naive algorithm when-
ever the all-pair-shortest-paths computation is faster than
O(n) single-source-shortest-paths computations, which
happens in quite a few cases: Takaoka[14] showed that
Tapsp(m,n) = O(n3

√
log log n/ log n). If edge weights

are integers, Zwick’s algorithm[15] for the APSP takes
O(C0.681n2.575) time, whereC is the heaviest edge of
the graph. The hidden paths algorithm of [10] takes
O(m∗n + n2 log n) time wherem∗ is the number of edges
participating in the shortest paths. As shown in [10],m∗

is likely to be small in practice, sincem∗ = O(n log n)
with high probability for many probability distributions on
edge weights. Spira’s[13] all pair shortest paths algorithm
takesO(n2 log2 n) average time. An appropriate APSP al-
gorithm can be chosen to improve upon the cubic naive
bound.

3.1 Description of the Algorithm

We start off by computing the shortest paths tree,Ts, of
s and the All Pairs Shortest Paths in the graphG′ =
G\PG(s, t) obtained fromG by deleting all the edges lying
onPG(s, t), the shortest path froms to t.

Note that deleting any edgeei onPG(s, t) splitsTs in
two components which induces a cut in the graphG. In this
cut, denote byVs|i the component containings. Consider
the case when an edgeei ∈ PG(s, t) is deleted (See Figure
1). The weight of the shortest path through a nodev ∈ Vs|i
which touches the spinePG(s, t) at a nodeu, and does not
pass through any other vertex ofVs|i is

dG′(s ; v ; u ; t) = dG(s, v) + dG′(v, u) + dG(u, t)
(1)

wheredG′(x, y) anddG(x, y) represent the weights of the
pathsPG′(x, y) andPG(x, y) respectively. The first and
third terms in the above expression are obtained fromTs

while the second one was computed in the APSP computa-
tion.

The following lemma captures critical properties of
Rei , the replacement path of the edgeei ∈ PG(s, t). For
brevity, we omit the proof.

Lemma 3.1 The replacement path for an edgeei ∈
PG(s, t), Rei , which is defined as the shortest path from
s to t in G\ei, follows the path inTs from s to some node
v ∈ Vs|i, uses exactly one edge across the cut (induced
in G by the two components of{Ts\ei}) to join the spine
PG(s, t) at some vertexu, and follows the spine all the way
uptot.

v

es tui

Vs|i

Figure 1. Candidates for the best replacement path through
a nodev ∈ Vs|i

If PG(s, t) = {s = u0, u1, . . . , uk = t}, the best
replacement path through a nodev ∈ Vs|i would be:

|Rv
ei

(s, t)| = MINk
j=i+1{dG(s, v)+dG′(v, uj)+dG(uj , t)}

whereei = (ui, ui+1) Note that the paths involved in the
above minimizationdo notuse the edgeei, owing to the
construction ofG′. Thus the pathRv

ei
(s, t) defined above

is a candidate for the replacement path forei. Finally, the
best replacement path for the edgeei would be the shortest
one among all such candidate replacement paths through
the nodes inVs|i. That is,

|R(ei)| = |PG\ei
(s, t)| = MINv∈Vs|i{|Rv

ei
(s, t)|} (2)

Note that the subpath(v ; t) ofRv
ei

(s, t) may not be
the shortest path fromv to t since for computingRv

ei
(s, t)

we only consider paths which do not use any other vertex
of Vs|i. However, this does not pose a problem since we it-
erate over all vertices ofVs|i for determining|Rei | and the
nodev ∈ Vs|i which minimizes the expression is indeed the
last vertex ofVs|i that lies on the path (Lemma 3.1). Note
that the equation (1) is pretty straight-forward and even re-
sembles the one used in [11, 8]. However, as shown in [7],
that equation alone does not suffice to solve the problem for
directed graphs, for which extensions to equation (2) were
necessary.

An arbitrary way of computing these values may not
result in much of an improvement. We start in an orderly
fashion: from the head,t, of PG(s, t), the reason being
that this allows updating the|Rv

ei
(s, t)| values efficiently.

When computing the replacement path for an edgeei =
(ui, ui+1), we update this value for allv ∈ Vs|i as

|Rv
ei

(s, t)| = MIN{|Rv
ei+1

(s, t)|,
dG(s, v) + dG′(v, ui+1) + dG(ui+1, t)} (3)

where the second term is the weight of the path(s ; v ;

ui+1 ; t).
We formally present the algorithmDirected(Single-

Edge) Replacement Pathsbelow.

Algorithm DSERP
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• Input: Directed weighted graphG(V, E), two speci-
fied nodess andt, and a shortest path froms to t in
G, PG(s, t) = {e1, e2, . . . , ep}.

• Initialization: Compute the shortest paths tree,Ts of s
and compute the all-pairs-shortest-paths in the graph
G′ which is obtained by deleting fromG, all the edges
of PG(s, t). ComputeVs|p as described above. Also,
for each nodev ∈ Vs|p, compute|Rv

ep
(s, t)|. Report

|R(ep)| = MINv{Rv
ep

(s, t)}.

• For i = p− 1 to 1,do:

– ComputeVs|i by a traversal ofTs\ei.

– For eachv ∈ Vs|i, update|Rv
ei

(s, t)| according
to equation (3).

– Report|R(ei)| = MINv{Rv
ei

(s, t)}.

The time complexity is straight forward:|Vs|i| is at
mostO(n) for any deleted edgeei ∈ PG(s, t). Also, the
setVs|i can be computed inO(n) time using any standard
traversal (breadth-first-traversal, depth-first-traversal, etc)
onTs\ei. Updating the|Rv

ei
(s, t)| values requires constant

time per nodev ∈ Vs|i, per deleted edgeei ∈ PG(s, t).
SincePG(s, t) can also haveO(n) edges, we arrive at a
time complexity ofO(n2) after the initial APSP computa-
tion. And since any APSP algorithm requiresΩ(n2) time,
the overall complexity of the algorithm remains dominated
by the APSP computation.

We have thus established the following theorem:

Theorem 3.1 Every instance of the directed version of the
(single-edge) replacement paths problem can be solved in
timeO(Tapsp(m,n)), whereTapsp(m,n) denotes the time
required to perform an all-pairs-shortest-paths computa-
tion on a graph.

Proof: The correctness of the algorithm DSERP and the
bound on its running time follow from the discussion im-
mediately preceding the algorithm. 2

4 Edge Pairs Replacement Paths in
Directed Graphs

In this section, we discuss the Edge Pairs Replacement
Paths problem on directed graphs. As mentioned earlier, a
naive algorithm for the problem takesO(n2(m + n log n))
time. In sub-section 4.1, we establish anΩ(mn) lower
bound for the problem in thepath-comparisonmodel for
shortest paths algorithms introduced by Karger, et. al.[10]
and further explored in [6, 9]. TheO(n3) algorithm for the
problem is presented in sub-section 4.2.

4.1 Lower Bound

The lower bound is basically a reduction of an instance of
the all pairs shortest paths (APSP) problem to an instance
of the Edge-Pairs-Replacement-Paths problem. The reduc-
tion can be performed in linear time by adding some nodes
and edges to the input graphH of the APSP instance. The
modified graph obtained fromH is calledG. As we shall
see later,G also containsO(n) vertices andO(m) edges,
wheren andm represent the number of vertices and edges
in H.

We use the lower bound ofΩ(mn) on the APSP
problem presented in [10]. This bound holds in the path-
comparison model for shortest path algorithms. The reader
is referred to [10, 9] for details of the model of computa-
tion. We briefly outline the APSP lower bound of [10] here.
The graphH used in the construction of [10] has a total of
mn directed paths from all the source vertices to all the
destination vertices. The basis of the lower bound proof is
that any algorithm must include all of thesemn paths in the
computation. If an algorithm fails to include any of these
paths, say(Si, Vk, Dj) in its computation, then the weights
of some of the edges ofH (the thicker ones in the figure)
can be modified such that:

(1) The ignored path,(Si, Vk, Dj), becomes the
shortest path fromSi to Dj .

(2) All other paths retain the same relative order of
weights as initially.
Thus, after the weight modification, the algorithm cannot

D
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H

k
V

m/2n
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1

V

V

V

2

i

n-1

n n

n-1

j

2

11

D

D

D

Figure 2. Construction for APSP Lower Bound used in [10]

output the correct answer for the(Si, Dj) distance since it
ignores the particular path and all other path comparisons
will yield the same information as earlier.

We use the same graph as used in [10] as our graph
H (see Figure 2).H is a tri-partite graph and hasn ver-
tices in the first and third column, andm/2n vertices in
the middle column. There arem/2 edges from vertices
of the first column to those of the second, andm/2 from
the vertices of the second column to those of the third.
Thus,H has3n vertices andm edges. As shown in [10],
any path comparison based shortest path algorithm must
spend at leastΩ(mn) time to compute the shortest paths
from all the vertices in the first column to all the vertices
in the third column. Let us denote then source vertices
in H by S1, S2, . . . , Sn and the destination vertices by
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D1, D2, . . . , Dn.
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Figure 3. Construction for Edge-Pairs-Replacement-Paths
Lower Bound

To reduce this problem to an instance of the Edge-
Pairs-Replacement-Paths problem, we create a spine of2n
vertices: P = {s1, s2, . . . , sn, dn, dn−1, . . . , d1}. Each
edge of the spine has weight0. We map all thesi’s to the
correspondingSi’s in H and all thedi’s to the correspond-
ingDi’s in H. Also, we choose a quantityW = 10·n·emax

whereemax is the weight of the heaviest edge ofH. Note
that this choice ofW makes it much more heavier than the
weight of any simple path inH since any simple path inH
can have weight at most(n− 1) · emax. Finally, we intro-
duce the following edges to connect the spineP to H:
(1) For 1 ≤ i ≤ n, an edge fromsi to Si of weight
(n− i)W .
(2) For 1 ≤ i ≤ n, an edge fromDi to di of weight
(n− i)W .
This entire graph is calledG. For thes and t vertices
in the Edge-Pairs-Replacement-Paths problem instance, we
chooses = s1 andt = d1. The setF contains the edges on
the spine. The paths froms to t in in this construction sat-
isfy the following property. Note that the formulae for the
edge weights are minor variants of those used in the lower
bound construction of [9].

Lemma 4.1 The shortest path froms to t when the edges
(si, si+1) and (dj+1, dj) are removed from the graphG,
has weight exactly equal to

dG\{(si,si+1),(dj+1,dj)}(s, t) = (2n−i−j)·W+dH(Si, Dj)

where dH(Si, Dj) represents the weight of the shortest
path fromSi to Dj in the graphH.

Proof: First note that the weight of the path that starts
from s, follows P to si, entersH at Si using the edge
(si, Si), takes the shortest path fromSi to Dj , returns to
P using the edge(Dj , dj), and follows the spine tot has
weight precisely given by the expression above. Let us call
this pathπ. We now show that any other path froms to t in
G\{(si, si+1), (dj+1, dj)} is heavier thanπ. Consider the
paths that leave the spine at a vertexsp and returns atdq

with eitherp < i or q < j. If p < i, this path has weight at
least(n−p)·W +(n−j)·W ≥ (2n−i−j)·W +W > |π|

sinceW > dH(x, y) for anyx, y ∈ H. Similarly, any path
with q < j is heavier thanπ. This completes the proof.2

The above lemma shows that a solution for the Edge-
Pairs-Replacement-Paths problem instance constructed
above provides enough information to quickly compute
the all pair shortest paths distances for the graphH. In
other words, anO(f(m,n)) time solution for the Edge-
Pairs-Replacement-Paths problem instanceG implies an
O(f(m,n)) time solution for the APSP problem instance
H. But, as seen from the APSP lower bound of [10], any
algorithm for the latter must spend at leastΩ(mn) time.
Thus, we conclude that any algorithm for the Edge-Pairs-
Replacement-Paths problem must spend at leastΩ(mn)
time. The formal argument is similar to the one in [10]:
to compute the shortest path froms to t when the edges
(si, si+1) and(dj+1, dj) are removed, the algorithm must
compare all them/2n paths betweenSi andDj in H. Oth-
erwise, we can modify the weights of some of the edges as
in [10] and force the algorithm to report an incorrect an-
swer. Thus, computing the shortest paths for all theO(n2)
edge-pairs deletions requires the algorithm to investigate a
total ofΘ(mn) paths.

4.2 Upper Bound

We now describe the algorithm for the Edge-Pairs-
Replacement-Paths problem. The algorithm is borrows
critical ideas from the algorithm presented in Section 3 for
the directed version of the (single-edge) replacement paths
problem.

4.2.1 Description of the Algorithm

We describe the procedure to compute the replacement
paths when all pairs of edges including a particular edge
ei ∈ PG(s, t) fail. This procedure takesO(n2) time.
The same procedure is then used for every edgee ∈
PG(s, t), thus solving the entire instance of the Edge-Pairs-
Replacement-Paths problem inO(n3) time. Apart from
this, an all-pair-shortest-path computation is performed on
G\PG(s, t) that does not affect the asymptotic worst case
time bound ofO(n3).

Let E(PG(s, t)) = {e1, e2, . . . , ep} and
V (PG(s, t)) = {s = u0, u1, . . . , up = t} be the
edge and vertex sets ofPG(s, t).

As the first step, we perform an APSP computation
on the graphG−PG(s,t) = G\E(PG(s, t)). Next, we con-
struct the shortest paths tree ofs in the graphG−i = G\ei.
Denote this tree byT i

s and the path froms to t in this tree
byPG−i(s, t). Let Fi = {f1, f2, . . . , fk} denote the set of
edges common inPG−i(s, t) andPG(s, t). Notice that if
the second edge inPG(s, t) which fails is not inFi, then the
shortest path froms to t remains as defined byT i

s . Thus, it
is only the edges ofFi which can further alter the shortest
path froms to t. Note that as shown in Figure 4,Fi con-
sists of edges from two subpaths ofPG(s, t): one starting
from s and the other ending att. Denote these subpaths by
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F s
i andF t

i respectively. We ignore the edges ofF s
i : the

case when the pair(ei, f) fails such thatf ∈ PG(s, t)∩F s
i

will be handled when the algorithm works to solve the pairs
includingf as one of the failed edges.

i

Detour

F
i

s
Fi

t

s t

eu v

 F   =   F
i i

s

U F i

t

x

Figure 4.Rei = PG\ei
(s, t) = (s ; u ; x ; v ; t)

andFi = PG(s, t) ∩Rei

The remaining job is very similar to the replacement
paths problem we discussed earlier. Consider the case
when (in addition toei) an edgef ∈ F t

i fails and we
need to compute thes-t shortest path inG\{ei, f}. We
first construct the cut inG induced by the two components
of T i

s \f . Denote byVs|{ei,f} the component containings.
For each nodev ∈ Vs|{ei,f}, we keep track of the shortest
path froms to t throughv which does not pass through any
other vertex ofVs|{ei,f}. In other words,v is the last vertex
of Vs|{ei,f} that this path touches. UsingRv

{ei,f}(s, t) to
denote this path, we have

|Rv
{ei,f}(s, t)| = MINp

k=j+1{
dG−i(s, v) + dG−PG(s,t)(v, uk) + dG−i(uk, t)} (4)

wheref = (uj , uj+1).
Note thatdG−i(s, v) = dG(s, v) anddG−i(uk, t) =

dG(uk, t) since they are all subpaths ofPG(s, t) not us-
ing the edgesei or f . SinceRv

{ei,f}(s, t) as defined above
does not use the edgesei or f , it is a valid candidate for
the replacement path for the edge pair{ei, f}. Finally, the
replacement path for the pair{ei, f} is chosen as the mini-
mum among all candidate replacement paths. That is,

|R(ei, f)| = MINv∈Vs|{ei,f}{|Rv
{ei,f}(s, t)|}

As in the algorithmDSERP, we start from the head,
t, of PG−i(s, t) to compute the replacement paths for the
pairs {ei, f}∀f ∈ F t

i . For the pair{ei, ej} with ej =
(uj , uj+1) the |Rv

{ei,ej}(s, t)| values are updated as fol-
lows:

|Rv
{ei,ej}(s, t)| = MIN{|Rv

ei,ej+1
(s, t)|,

dG−i(s, v) + dG−P(s,t)(v, uj+1) + dG−i(uj+1, t)} (5)

Also, we do not need to perform another APSP computa-
tion. The APSP computation performed in the initial step
provides enough information since we only need the can-
didate replacement path fromv to some nodeu ∈ PG(s, t)
which does not use the edgesei and(uj , uj+1).

We formally present our algorithmEPRP below.
The algorithm takes as input a directed weighted graph
G(V, E), and two specified nodess, t ∈ V . PG(s, t) can
be computed inO(m + n log n) time if not supplied as
part of the input. For simplicity, we assumePG(s, t) to be
part of input.

Algorithm EPRP

• Input: G(V,E), two special nodess, t ∈ V ,
and the shortest path froms to t in G, PG(s, t) =
{e1, e2, . . . , ep} = {s = u0, u1, . . . , up = t}.

• Initialization: Perform an APSP computation
on the graphG\E(PG(s, t)). Also, we compute the
shortest paths tree ofs in each of thep graphsG\ei

for 1 ≤ i ≤ p.

• For each edgeei ∈ PG(s, t), do:

– Construct the shortest paths treeT i
s of s in the

graphG−i = G\ei. Let PG−i
(s, t) denote the

path froms to t in T i
s (andG−i).

– List out the edges common inPG−i(s, t) and
PG(s, t) asFi = PG(s, t) ∩ PG−i(s, t) = F s

i ∪
F t

i

– Solve the instance of the replacement paths
problem only for the edges inF t

i as described
above.

TheO(n3) time complexity comes from the fact that
each instance of the replacement paths problem we solve
requiresO(n2) time. Over the entire course of the algo-
rithm, we invoke the replacement paths subroutinep times,
wherep = |F |. Sincep can be as high asO(n), the algo-
rithm takesO(n3) time. The APSP computation is required
only once in the beginning of the algorithm and can be per-
formed using any standard algorithm: Dijkstra’s algorithm
takesO(mn + n2 log n) time and Floyd’s algorithm takes
O(n3) time. Either can be used since it does not affect the
asymptotic time complexity of our algorithm.

We have thus established the following theorem about
the Edge-Pairs-Replacement-Paths problem.

Theorem 4.1 Every instance of the Edge-Pairs-
Replacement-Paths problem can be solved inO(n3)
time. If m = Θ(n2), this bound is tight for path-
comparison based algorithms as shown by theΩ(mn)
lower bound for the problem.

Proof: The correctness of the algorithmEPRPand
the claim on the time bound follow from the discussion on
the algorithmEPRP. 2

Corollary 4.1 Given a directed weighted graphG(V,E),
the two most vital arcs of a givens-t shortest pathPG(s, t),
defined as the two edges lying on the path whose deletion
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produces the largest increase in thes-t shortest path dis-
tance, can be found inO(n3) time.

Proof: Associate with the pair{ei, ej}, whereei, ej ∈
PG(s, t), D(ei, ej) = |PG\{ei,ej}(s, t)| − |PG(s, t)|.
The two most vital arcs are{e, f} such thatD(e, f) =
MAXei,ej

{D(ei, ej)}. After solving theEPRPinstance,
the remaining steps can be performed in constant time per
pair{ei, ej}, taking an additional total time ofO(n2). 2

5 Concluding Remarks

In this paper we have discussed some problems related
to computing shortest paths in networks susceptible to
link failures. The directed version of the replacement
paths problem is especially interesting since it finds ap-
plications in several network problems as well as those
related to algorithmic mechanism design[12]. Although
ourO(Tapsp(m,n)) replacement paths algorithm is an im-
provement over the naive algorithm for many practical
cases, there is a significant gap between the lower bound
of Ω(min(n2, m

√
n)) presented in [9] and our new up-

per bound. Note that our subcubicDSERP algorithm
is not a path comparison based algorithm since it uses
APSP algorithms based on fast-matrix-multiplication tech-
niques, whereas the lower bound of [9] holds only for
path-comparison based algorithms. Another point to be
noted for theEPRP lower bound presented in this paper
is that the construction employs an input graph which has
Θ(n) edges on thes-t shortest path. Using the same tech-
niques, problem instances can be constructed which have
only O(r) edges on thes-t shortest path and impose a
(weaker) lower bound ofΩ(mr) on theEPRP problem
for path-comparison based algorithms.

Another interesting open problem is to solve the di-
rectedEPRPinstances for whenanypair of edges from the
entire graph can fail, rather than only the edges lying on the
givens-t shortest path.

The EPRPalgorithm can be generalized to compute
the s-t shortest path when not just two, butk edges of
the original shortest path fail, for all such combinations
of edges lying on thes-t shortest path. The time com-
plexity of this algorithm would beO(nk+1), instead of
O(nk(m+n log n)) required by the naive algorithm based
on recomputation. The algorithm goes along the lines of
theEPRPalgorithm: After an initial APSP computation on
G\PG(s, t), for each setEk−1 ⊆ E of k − 1 edges of
PG(s, t), first construct the shortest paths treeT k−1

s of s in
the graphG−Ek−1 = G\Ek−1. Find the subpathF com-
mon toPG−Ek−1 (s, t) andPG(s, t) that ends att, and find

thes-t replacement paths for thek edgesEk−1∪f ∀f ∈ F .
Further, equations similar to (4), (5) can be established and
used in a similar way for thek-Edges Replacement Paths
problem. We omit further details from this abstract.
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