
Efficient Algorithms for Single Link Failure Recovery and Its
Application to ATM Networks

AMIT M. BHOSLE and TEOFILO F. GONZALEZ
Department of Computer Science

University of California
Santa Barbara, CA 93106fbhosle,teog@cs.ucsb.edu

ABSTRACT
We investigate the single link failure recovery problem and
its application to the alternate path routing problem for
ATM networks. Specifically, given a 2-connected graphG, a specified nodes, and a shortest paths treeTs = fe1;e2; : : : ; en�1g of s, where ei = (xi; yi) and xi =parentTs(yi), find a shortest path fromyi to s in the graphGnei for 1 � i � n � 1. We present anO(m + n logn)
time algorithm for this problem and a linear time algorithm
for the case when all weights are equal. When the edge
weights are integers, we present an algorithm that takesO(m+ Tsort(n)) time whereTsort(n) is the time required
to sortn integers. We show that any solution to the single
link recovery problem can adapted to solve the alternate
path routing problem in ATM networks.

KEY WORDS
Single Link Failure Recovery, ATM Networks, Efficient
Algorithms, Alternate Path Routing.

1 Introduction

The graphG represents a set of nodes in a network and the
weight of the link represent the cost (say time) for transmit-
ting a message through the link. The shortest path treeTs
specifies the best way of transmitting to nodes a message
originating at any given node in the graph. When the links
in the network have transient faults, we need to find a way
to recover from such faults. In this paper we consider the
case when there is only one link failure, the failure is tran-
sient, and information about the failure is not propagated
throughout the network. That is, a message originating at
nodex with destinations will be sent along the path spec-
ified by Ts until it reaches nodes or a link that failed. In
the latter case, we need to use a shortest recovery path tos
from that point. Since we assume single link faults and the
graph is 2-connected, such a path always exist. We call this
problem the Single Link Failure Recovery (SLFR) prob-
lem. As we show later on, this problem has applications to
the Alternate Path Routing (APR) problem for ATM net-
works. The SLFR problem has applications when there is
no global knowledge of a link failure, in which case the fail-
ure is discovered only when one is about to use the failed

link. In such cases the best option is to take a shortest path
from the point one discovers the failure to the destination
avoiding the failed link.

A naive algorithm for the SLFR problem is based on
recomputation. For every edgeei = (xi; yi) in the shortest
path treeTs, compute the shortest path fromyi to s in the
graphGnei. This algorithm requiresn � 1 invocations of
the single source shortest path algorithm. An implemen-
tation of Dijkstra's algorithm that uses Fredman and Tar-
jan's Fibonacci Heaps takesO(m + n logn) time, which
currently it is the fastest single source shortest paths algo-
rithm. The overall time complexity of the naive algorithm
is thusO(mn+n2 logn). This naive algorithm also works
for the directed version of the SLFR problem.

One of the main applications of our work is theal-
ternate path routing(APR) problem for ATM networks.
This problem arises when using the Interim Inter-switch
Signaling Protocol (IISP)[4]. This protocol has been im-
plemented by ATM equipment vendors as a simple interim
routing solution for the dynamic routing mechanism given
by the Private Network-Network Interface (PNNI)[3]. IISP
is sometimes referred to as PNNI(0) and provides the net-
work basic functionality for path selection at setup time.
Assuming correct primary routing tables, the protocol im-
plements a depth-first search mechanism using the alternate
paths when the primary path leads to dead-ends due to link
failure. Routes disconnected by a link failure can be re-
established along the alternate path.

IISP does not propagate link failure information.
Newer protocols, like PNNI, can find new paths and adapt
automatically when links fail. However that process is CPU
intensive and is not desirable when only transient failures
occur, which is the scenario that we consider in this paper.
Additional IISP details are given in [11].

A solution to the SLFR problem is not a solution to
the APR problem. However, we show how to obtain a so-
lution to the APR problem from any solution to the SLFR
problem. Configuring the primary and alternate path tables
should be in such a way that reachability under single link
failures is ensured while maintaining, to a limited extent,
shortest recovery paths. This is a non-trivial task and the
normal practice is to perform them manually. Slosiar and
Latin [11] studied this problem and presented anO(n3)

time algorithm. Since there can beO(n) destinations in
the network, their algorithm takesO(n4) time in the worst
case.

1.1 Main Results

Our main results are (near) optimal algorithms for single
link failure recovery (SLFR) problem, and (near) optimal
algorithms for the alternate path routing (APR) problem.
Specifically, we present anO(m+ n logn) time algorithm
for SLFR problem. We present anO(m + n) time algo-
rithm for the case when all the edge weights are same.
When the edge weights are integers, we present an algo-
rithm that takesO(m + Tsort(n)) time, whereTsort(n) is
the time required to sortn integers. Currently,Tsort(n) =O(n log logn) due to Han [8]. The computation of the
shortest path tree can also be included in all the above
bounds, but for simplicity we say the the shortest path tree
is part of the input to the problem. We show in Section 5
that all of the above algorithms can be adapted to the al-
ternate path routing (APR) problem within the same time
complexity bounds by showing that in linear time one may
transform any solution to the SLFR problem to the APR
problem.

1.2 Preliminaries

Our communication network is modeled by a weighted
undirected 2-connected graphG(V;E), with n = jV j andm = jEj. Each edgee 2 E has an associated cost,cost(e),
which is a non-negative real number. We usepathG(s; t)
to denote the shortest path betweens andt in graphG anddG(s; t) to denote its weight. A cut in a graph is the par-
titioning of the set of verticesV into V1 andV2 and it is
denoted by(V1; V2). The set of edgesE(V1; V2) represents
all the edges across the cut(V1; V2).

Finally, a shortest path treeTs for a nodes is a col-
lection ofn � 1 edges ofG such thatfe1; e2; : : : ; en�1g
whereei = (xi; yi); xi; yi 2 V , xi = parentTs(yi) and
the path from nodev to s in Ts is a shortest path fromv to s
in G. We remove the indexTs from parent when it is clear
the treeTs we mean. Note that under our notation a nodev 2 G is thexi component of as many tuples as the number
of its children inTs and it is theyi component in one tuple
(if v 6= s). Nevertheless, this notation facilitates an easier
formulation of the problem. Moreover, our algorithm does
not depend on this labeling.

2 A SimpleO(m logn) Algorithm

In this section we describe a simple algorithm for the SLFR
problem which runs inO(m logn) time and in Section 3
we use it to derive an algorithm that takesO(m + n logn)
time.

When the edgeei = (xi; yi) of the shortest path treeTs is deleted,Ts is split into two components. Let us denote

the component containings by Vsji and the other byVi.
Consider the cut (Vsji; Vi) in G. Among the edges cross-
ing this cut, only one belongs toTs, namelyei = (xi; yi).
SinceG is 2-connected, we know that there is at least one
non-tree edge inG that crosses the cut. Our algorithm is
based on the following lemma that establishes the existence
of a shortest path fromyi to s in the graphGnei that uses
exactly on edge of the cut (Vi; Vsji). For brevity we do not
include the proof.

Lemma 2.1 There exists a shortest path fromyi to s in the
graphGnfei = (xi; yi)g that uses exactly one edge of the
cut (Vi; Vsji) and its weight is equal todGnei(yi; s) = MIN(u;v)2E(Vi;Vsji)fweight(u; v)g (1)

where(u; v) 2 E(Vi; Vsji) signifies thatu 2 Vi andv 2Vsji and the weight associated with the edge (u; v) is given
byweight(u; v) = dG(yi; u) + cost(u; v) + dG(v; s) (2)

The above lemma immediately suggests an algorithm
for the SLFR problem. From each possible cut, select an
edge satisfying equation (1). An arbitrary way of doing this
may not yield any improvement over the naive algorithm
since there may be as many as
(m) edges across each of
the n � 1 cuts to be considered, leading to
(mn) time
complexity. However, an ordered way of computing the
recovery paths enables us to avoid this
(mn) bottleneck.

Our problem is reduced to mapping each edgeei 2 Ts
to an edgeai 2 GnTs such thatai is the edge with mini-
mum weight inE(Vi; Vsji). We callai theescape edgeforei and useA to denote this mapping function. We replace
equation (1) with the following equation to computeA(ei).A(ei) = ai () weight(ai) =MIN(v;u)2E(Vsji;Vi)fweight(u; v)g (3)

Once we have figured out the escape edgeai for eachei, we
have enough information to construct the required shortest
recovery path.

Theweightas specified in equation (2) for the edges
involved in the equation (3) depends on the deleted edgeei. This implies additional work for updating these val-
ues as we move from one cut to another, even if the edges
across the two cuts are the same. Interestingly, when in-
vestigating the edges across the cut (Vi; Vsji) for comput-
ing the escape edge for the edgeei = (xi; yi), if we add
the quantityd(s; yi) to all the terms involved in the min-
imization expression, the minimum weight edge retrieved
remains unchanged. However, we get an improved weight
function. The weight associated with an edge(u; v) across
the cut is now defined as:weight(u; v)= dG(s; yi) + dG(yi; u) + cost(u; v) + dG(v; s)= dG(s; u) + cost(u; v) + dG(v; s) (4)

Now the weight associated with an edge is independent of
the cut being considered and we just have to design an effi-
cient method to construct the setE(Vi; Vsji) for all i.
2.1 Description of the Algorithm

We employ a bottom-up strategy for computing the recov-
ery paths. None of the edges ofTs would appear as an
escape edge for any other tree edge because no edge ofTs
crosses the cut induced by the deletion of any other edge
of Ts. As the first step of the algorithm, we constructn
heaps, one for each node inG. The heaps contain elements
of the form< e;weight(e) > wheree is a non-tree edge
with weight(e) as specified by equation (4). The heaps are
maintained asmin heapsaccording to theweight(�) values
of the edges in it. Initially the heapHv corresponding to
the nodev contains an entry for each non-tree edge inG
adjacent tov. Whenv is a leaf inTs, Hv contains all the
edges crossing the cut induced by deleting the edge(u; v)
whereu = parentTs(v) is the parent ofv in Ts. Thus, the
recovery path for the leaf nodes can be easily computed at
this time by performing afindMin operation on the corre-
sponding heaps.

Let us now consider an internal nodev whose chil-
dren in Ts have had their recovery paths computed. Let
the children ofv be the nodesv1; v2; : : : ; vk. The heap for
nodev is updated as follows:Hv meld(Hv; Hv1 ; Hv2 ; : : : ; Hvk)

Now Hv contains all the edges crossing the cut in-
duced by deleting the edge (parentTs(v); v). But it also
contains other edges which are completely contained in-
side Vv which is the set of nodes in the subtree ofTs
rooted atv. However, if e is the edge retrieved by thefindMin(Hv) operation, after an initial linear time pre-
processing, we can determine in constant time whether or
not e is an edge across the cut. The preprocessing begins
with a DFS (depth first search) labeling of the treeTs.
Each nodev needs an additional integer field, which we
call min, to record the smallest DFS label for any node
in Vv . It follows from the property of dfs-labeling that an
edgee = (a; b) is not an edge crossing the cut if and only ifv:min < dfs(a) < dfs(v) andv:min < dfs(b) < dfs(v).
In casee happens to be aninvalid edge (i.e. an edge not
crossing the cut), we perform adeleteMin(Hv) operation.
We continue performing thefindMin(Hv) followed bydeleteMin(Hv) operations untilfindMin(Hv) returns a
valid edge.

The analysis of the above algorithm is straightforward
and its time complexity is dominated by the heap opera-
tions involved. Using F-Heaps, we can perform the oper-
ationsfindMin, insert andmeld in amortized constant
time, whiledeleteMin requiresO(logn) amortized time.
The overall time complexity of the algorithm can be shown
to beO(m logn). We have thus established the following
theorem whose proof is omitted for brevity.

Theorem 2.1 Given an undirected weighted graphG(V;E) and a specified nodes, the shortest and the
recovery paths from all nodes tos is computed by our
procedure inO(m logn) time.

3 A Near Optimal Algorithm

We now present a near optimal algorithm for the SLFR
problem which takesO(m + n logn) time to compute the
recovery paths tos from all the nodes ofG. The key idea
of the algorithm is based on the following observation: If
we can compute a setEA ofO(n) edges which includes all
those which can possibly figure as an escape edgeai for any
edgeei 2 Ts and then invoke the algorithm presented in
the previous section onG(V;EA), we can solve the entire
problem inO(Tp(m;n) + n logn) time, whereTp(m;n)
is the preprocessing time required to compute the setEA.
We now show thatEA can be computed inO(m+n logn)
time, thus solving the problem inO(m+ n logn) time.

Recall that to find the escape edge forei 2 Ts
we need to find the minimum weighted edge across the
induced cut(Vi; Vsji) where the weight of an edge is
as defined in equation (4). This objective reminds us
of minimum cost spanning treessince they contain the
lightest edge across any cut. The followingcycle property
about MSTs is folklore and we state it without proof:

Property [MST]: If the heaviest edge in any cycle in
a graphG is unique, it cannot be part of the minimum cost
spanning tree ofG.

Computation of EA is now intuitive. We con-
struct a weighted graphGA(V;EA) from the in-
put graph G(V;E) as follows: EA = EnE(Ts),
where E(Ts) are the edges ofTs, and the weight of
edge (u; v) 2 EA is defined as in Equation (4), i.e,weight(u; v) = dG(s; u) + cost(u; v) + dG(v; s).

Note that the graphGA(V;EA) may be disconnected
because we have deletedn�1 edges fromG. Next, we con-
struct a minimum cost spanning forest ofGA(V;EA). A
minimum cost spanning forest for a disconnected graph can
be constructed by finding a minimum cost spanning tree
for each component of the graph. The minimum cost span-
ning tree problem has been extensively studied and there
are well known efficient algorithms for it. Using F-Heaps,
Prim's algorithm can be implemented inO(m + n logn)
time for arbitrarily weighted graphs [6]. The problem also
admits linear time algorithms when edge weights are inte-
gers [5]. Improved algorithms are given in [10, 2, 6]. The
setEA contains precisely the edges present in the mini-
mum cost spanning forest (MSF) of GA. The following
lemma, which for brevity we omit its proof, establishes thatEA contains all the candidate escape edgesai.
Lemma 3.1 For any edgeei 2 Ts, if A(ei) is unique, it
has to be an edge of the minimum spanning forest ofGA. IfA(ei) is not unique, a minimum spanning forest edge offers

a recovery path of the same weight.

It follows from Lemma 3.1 that we need to investi-
gate only the edges present in the setEA as constructed
above. Also, sinceEA is the set of edges of the MSF, (1)jEAj � n � 1 and (2) for every cut(V; V 0) in G, there is
at least one edge inEA crossing this cut. We now invoke
the algorithm presented in Section 2 which requires onlyO((jEAj+n) logn) which isO(n logn) additional time to
compute all the required recovery paths. The overall com-
plexity of our algorithm is thusO(m+n logn) time which
is includes the constructions of the shortest paths tree ofs in G and the minimum spanning forest ofGA required
to computeEA. We have thus established the following
theorem.

Theorem 3.1 Given an undirected weighted graphG(V;E) and a specified nodes, the shortest and the
recovery paths from all nodes tos is computed by our
procedure inO(m+ n logn) time.

4 Unweighted Graphs

In this section we present a linear time algorithm for the
unweightedSLFR, thus improving theO(m + n logn) al-
gorithm of Section 3 for this special case. One may view an
unweighted graph as a weighted one with all edges having
unit cost. As in the arbitrarily weighted version, we assign
each non-tree edge a new weight as specified by equation
(4). The recovery paths are determined by considering the
non-tree edges from smallest to largest (according to their
new weight) and finding the nodes for which each of them
can be an escape edge. The algorithm,S-L, is given below.

Procedure S-L (v)
Sort the non-tree edges by their weight;
for each non-tree edgee = (u; v) in ascend orderdo

Letw be the nearest common ancestor ofu andv in Ts
The recovery path for all the nodes lying onpathTs(u;w) andpathTs(v; w) includingu andv,

but excludingw that have their recovery paths
undefined are set to use the escape edgee;

endfor
End Procedure S-L

The basis of the entire algorithm can be stated in the follow-
ing lemma. We omit the proof from this extended abstract.

Lemma 4.1 If e = (u; v) = deleteMin(L):edge, andw = nca(u; v) is thenearest common ancestorof u andv in Ts, the recovery paths for all the nodes lying onpathTs(u;w) andpathTs(v; w) includingu andv but ex-
cludingw, whose recovery paths have not yet been discov-
ered, use the escape edgee.
4.1 Implementation Issues

Since any simple path in the graph can have at mostn � 1
edges, the newly assigned weights of the non-tree edges

are integers in the range[1; 2n]. As the first step, we sort
these non-tree edges according to their weights in linear
time. Any standard algorithm for sorting integers in a small
range can be used for this purpose. E.g.Radix sortof n
integers in the range[1; k] takesO(n+k) time. The sorting
procedure takesO(m + n) time in this case. This set of
sorted edges is maintained as a linked list,L, supporting
deleteMinin O(1) time wheredeleteMin(L) returns and
deletes the smallest element present inL.

Linear time algorithms for thenearest common an-
cestorare given in [9, 1]. Using these algorithms, after a
linear time preprocessing, in constant time one can find the
nearest common ancestor of any two specified nodes in a
given tree.

Our algorithm uses efficientUnion-Find structures.
Several fast algorithms for the general union-find prob-
lem are known, the fastest among which runs inO(n +m�(m + n; n)) time andO(n) space for executing an in-
termixed sequence ofm union-find operations on ann-
element universe [12], where� is the functional inverse
of Ackermann's function. Although the general problem
has a super-linear lower bound [13], a special case of the
problem admits linear time algorithm [7]. The require-
ments for this special case are that the “union-tree” has to
be known in advance and the only union operations, which
are referred as “unite” operations, allowed are of the typeunite(parent(v); v) whereparent(v) is the parent ofv in
the “union-tree”. The reader is referred to [7] for the de-
tails of the algorithm and its analysis. As we shall see, the
union-find operations required by our algorithm fall into
the set of operations allowed in [7] and we use this linear
time union-find algorithm. With regard to the running time,
our algorithm involvesO(m) find(�) and�(n) union(�)
operations on ann- element universe, which takeO(m+n)
total time.

Our algorithm,All-S-L, is formally described below.

Procedure All-S-L
PreprocessTs using a linear time algorithm [1, 9] to

answer quickly the nearest common ancestor queries.
Initialize the union-find data-structure of [7].
Assign weights to the non-tree edges as specified by
equation (4) and sort them by these weights.
Store the sorted edges in a priority queue structureL,
supportingdeleteMin(L) in O(1) time.

Mark nodes and unmark all the remaining nodes.
while there is an unmarked vertexdofe = (u; v)g = deleteMin(L):edge;w = nca(u; v);
for x = u; v do
if x is markedthen x = find(x); endif

endfor
while (find(x) 6= find(w)) doA(parent(x); x) = e;union(find(parent(x)); find(x));

Mark x;x = parent(x);

endwhile
endwhile

End Procedure All-S-L

Correctness follows from the fact the that procedure
All-S-L just implements procedureS-L and Lemma 4.1
shows that the strategy followed by procedureS-L gen-
erates recovery paths for all the nodes in the graph. The
time complexity is linear, following the discussion before
the procedure. We have thus established the following the-
orem.

Theorem 4.1 Given an undirected unweighted graphG(V;E) and a specified nodes, the shortest and the recov-
ery paths from all nodes tos is computed by our procedure
in O(m + n) time.

5 Alternate Paths Routing for ATM Net-
works

Let us now discuss some details about the IISP protocol for
ATMs. Whenever a node receives a message it receives the
tuple [(s)(m)(l)]. wheres is the final destination for the
message,m is the message being sent andl is the last link
traversed. Each node has two tables: primary and alternate.
The primary table gives for every destination nodes the
next link to be taken. When a linkx fails, then the primary
table entries that containx as the next link are automati-
cally deleted and when the linkx becomes available all the
original entries in the table that contained that link are re-
stored. The alternate path table contains a link to be taken
when either there is no entry for the destinations, or when
the last link is the same as the link fors in the primary ta-
ble. The alternate table provides a mechanism to recover
from link failures.
For the purpose of this paper the ATM routing mechanism
operates as follows.

Routing Protocol(p)
Protocol is executed when nodep receives the tuple

[(s: destination) (m: message) (l: last link)]
if p = sthen nodes has received the message;exit;
endif
let q be the next link in the primary path fors (info taken

from the primary table)
case

: q is void orq = last link:
send (destination s) (message) through the link in the

alternate table for entry s;
: q 6= l: send (destination s) (message) through q

endcase
End Routing Protocol

The primary routing tables for each destination nodes is established by constructing a shortest path tree rooted
at s. For every nodex in the tree the path fromx to s is
a shortest path in the graph (or network). So the primary

routing table for nodex containsparenTs(x) in its entry
for s.

uv

s

z

w

i

i

a

b

x

y

w = nca(u,v)
z = nca(a,b)

c

Figure 1. Recovery paths in undirected unweighted graphs.

The alternate path routing problem for ATM networks
consists of generating the primary and alternate routing ta-
bles for each destinations. The primary routing table is de-
fined in the previous paragraph. The entries int the alternate
tables are defined for the alternate path routes. These paths
are defined as follows. Consider the edgeei = (xi; yi) andxi = parentTs(yi). The alternate path route for edgeei
is the escape edgee = (u; v) with v a descendent ofyi in
the treeTs if an ancestor ofyi in treeTs hase as its escape
edge. Otherwise, it is computed as in Equation (4). This
definition of the problem is given in [11].

In this section we describe a linear time post-
processing to generate, from a solution to the SLFR prob-
lem, a set of alternate paths which ensure loop-free connec-
tivity under single link failures in ATM networks. While
the set of alternate paths generated by the algorithm in
Section 3 ensure connectivity, they may introduce loops
since the IISP [4] mechanism does not have the informa-
tion about the failed edge, it cannot make decisions based
on the failed edge. Thus, we need to ensure that each router
has auniquealternate path entry in its table. For exam-
ple in Figure 2, it is possible thatA(w; xi) = (yi; a) andA(s; z) = (yi; c). Thus,yi needs to store two entries for
alternate paths depending on the failed edge. In this partic-
ular case,yi should preferably store the entry(yi; c) since
it provides loop-free connectivity even when(w; xi) fails
(though possibly sub-optimal). Contrary to what was stated
in [11], storing at most one alternate entry per node does
not ensure loop-free routing. E.g. IfA(w; xi) = (yi; a)
andA(s; z) = (xi; a), and(s; z) fails, xi routes the traf-
fic via a, instead of forwarding it toyi, thus creating a
loop. We need to ensure that for alle 2 pathTs(yi; s),A(e) = (yi; c). This is the key to the required post-
processing which retains the desirable set of alternate paths
from the set of paths generated so far. We formally describe
our post-processing algorithm below.

Algorithm Generate Loop-free Alternate Paths
(GLAP) takes as global parameters a shortest path treeTs
and the escape edge for each edge,e,A(e) and it generates
alternate path routes as defined above. The procedure has
as input a noder in Ts. Initially every node is unmarked

and procedureGLAP is invoked withGLAP(s).

Procedure GLAP(r)
for every nodez 2 Ts such thatz = childTs(s), andz is not markeddo(b; c) = A(r; z) such thatb 2 Vz (whereVz is the set

of vertices in the subtree ofTs
rooted atz)

while (b 6= z) doA(parentTs(b); b) = (b; c)
Mark b
GLAP(b)b = parentTs(b)

endwhile
endfor

End Procedure GLAP

TheO(n) time complexity comes from the fact that
any edge ofTs is investigated at most twice. Thewhile
loop takes care that all edges onpathTs(z; b) are assigned(b; c) as their alternate edge. The recursive calls up-
date the alternate edges of the edges that branch off frompathTs(z; b) while the mainfor loop makes sure that all
paths branching off from the source nodes are investigated.

Theorem 5.1 Given a solution to the SLFR problem for s
tree of shortest pathsTs, our procedure constructs a so-
lution to the alternate path routing problem for ATM net-
works inO(n) time.

6 Integer Edge Weights SLFR

If the edge weights are integers, linear time algorithms are
known for the shortest paths tree [14] and the minimum
cost spanning tree [5]. We can reduce the number of edges
to be sorted fromO(m) toO(n) using the technique of in-
vestigating only the MST edges. After sorting the edges inTsort(n) time, we use the algorithm for unweighted graphs
to solve the problem inO(n) additional time. CurrentlyTsort(n) = O(n log logn) due to Han [8]. We have thus
established the following theorem.

Theorem 6.1 Given an undirected graphG(V;E) with in-
teger edge weights, and a specified nodes, the shortest and
the recovery paths from all nodes tos can be computed by
our procedure inO(m+ Tsort(n)) time.

7 Concluding Remarks

In this paper we have presented near optimal algorithms
for the undirected version of the SLFR problem. Fordi-
rected acyclic graphs, the problem admits a linear time al-
gorithm. This is because in a DAG, a nodev cannothave
any edges directed towards any node in the subtree ofTs
rooted atv (since this would create a cycle). Thus, we
only need to minimize overfcost(v; u) + dG(u; s)g for all

(v; u) 2 E andu 6= parentTs(v), to compute the recov-
ery path fromv to s sincepathG(u; s) cannot contain the
failed edge(parentTs(v); v) and remains intact on its dele-
tion. We thus need only

Pv2V (out degree(v)) = O(m)
additions/comparisons to compute the recovery paths.

References

[1] A.L. Buchsbaum, H. Kaplan, A. Rogers, and J.R.
Westbrook. Linear-time pointer-machine algorithms
for least common ancestors, mst verification, and
dominators. InProc. 30th STOC, pages 279-288.
ACM Press, 1998.

[2] B. Chazelle. A minimum spanning tree algorithm
with inverse-ackermann type complexity.Journal of
the ACM, 47:1028-1047, 2000.

[3] ATM Forum. 94-0471r16.PNNI Routing Specifica-
tion.

[4] ATM Forum. af-pnni-0026.000.Interim Inter-switch
Signalling Protocol (IISP) Specification v1.0, 1996.

[5] M. L. Fredman and D. E. Willard. Trans-dichotomous
algorithms for minimum spanning trees and shortest
paths.JCSS, 48:533-551, 1994.

[6] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and
their uses in improved network optimization algo-
rithms. JACM, 34:596-615, 1987.

[7] H.N. Gabow and R.E. Tarjan. A linear-time algo-
rithm for a special case of disjoint set union.JCSS,
30(2):209-221, 1985.

[8] Y. Han. Deterministic sorting in O(n log logn) time
and linear space. InProc. 34th STOC, pages 602–608.
ACM Press, 2002.

[9] D. Harel and R. E. Tarjan. Fast algorithms for find-
ing nearest common ancestors.SICOMP, 13(2), pages
338-355, 1984.

[10] S. Pettie and V. Ramachandran. An optimal minimum
spanning tree algorithm. InAutomata, Languages and
Programming, pages 49-60, 2000.

[11] R. Slosiar and D. Latin. A polynomial-time algorithm
for the establishment of primary and al ternate paths
in atm networks. InProc. of IEEE INFOCOM, pages
509-518, 2000.

[12] R.E. Tarjan. Efficiency of a good but not linear set
union algorithm.JACM, 22(2):215-225, 1975.

[13] R.E. Tarjan. A class of algorithms which require non-
linear time to maintain disjoint sets.JCSS, 18(2):110-
127, 1979.

[14] M. Thorup. Undirected single source shortest path in
linear time. InFOCS, pages 12–21, 1997.

