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ABSTRACT
We study the problem of constructing a shortest path mul-
ticast (sp-multicast) tree for transmitting a message from a
node,s, to a set of destinations,D, in 2d-grid networks.
We show that the performance analysis of the previous
2-approximation algorithms is best possible. Given any
half-integral optimal solution, we present a global rounding
scheme that generates solutions that are within 1.5 times
the optimal solution value. Our algorithm is different from
previous ones in the sense that it is not based on simple
heuristics or brute force approaches, it is based on a global
rounding strategy. Our analysis uses a sharper lower bound.

KEY WORDS
Approximation algorithms,2d-grid network, sp-multicast
trees, multicast, rectilinear Steiner tree arborescence.

1 Introduction

Multicast is a basic operation used by systems and algo-
rithms to disseminate information from a source node (s) to
a set of destination nodes (D) through a given communica-
tion networks. The simplest way to implement a multicast
operation is by sending individual messages from nodes
to each of the destination nodes. However, when the mes-
sages are long, there are many destinations, or the network
destinations are far from the source node, we need to imple-
ment the multicast operation efficiently so as to minimize
the total number of communication links transporting the
message. For an efficient implementation, one constructs
a communication tree, rooted at nodes, consisting of net-
work links and including all the destination nodes. We say
that the multicast tree is ansp-multicast tree if, every path
from the source nodes to every destinationd ∈ D in the
multicast tree has a number of links which is equal to the
number of links in a shortest path froms to d in the (whole)
communication network. Our problem is to construct an
sp-multicast tree with the fewest number of links. This
objective function minimizes the network resources (links)
being used to transmit the message, while delivering the
message to all its destinations via a shortest possible route.
In other words, it is a dual objective function where we op-
timize the length of every communication path, while using
the fewest total number of communication links. In this pa-
per, we restrict our attention to the2d-grid communication

network. Our objective is to find good approximation algo-
rithms for this problem, which could be extended to other
architectures, like then-cube,n-Chord and binomial net-
works. There are no known constant ratio approximation
algorithms for these more general problems. Forc > 1 we
say that an algorithm is ac-approximation algorithm for
a problemP , if for every instance, I, ofP , the algorithm
generates a solution with objective function value that is
at mostc times the objective function value of an optimal
solution. We also say that theapproximation ratio of the
algorithm isc.

Assign to each nodex in a 2d-grid a value equal to
the number of links in a shortest path fromx to s. We
call this valuebx for nodex. One can easily show that
every link joins two nodes that differ inb values by exactly
one. Therefore, we can direct every link from the node with
larger value to the one with smaller value. The2d-grid is
now a directed graph and our sp-multicasting tree problem
corresponds to finding an arborescence, rooted ats, with
the fewest number of links. This problem has been referred
to as theRectilinear Steiner Arborescence (RSA) problem.

The rectilinear Steiner arborescence problem was ini-
tially studied by Ladeira de Matos [1] back in 1979. His
Ph.D. Dissertation includes dynamic programming algo-
rithms to solve this problem. These algorithms have ex-
ponential time complexity, and thus impractical even for
small problem instances. Nastansky, Selkow and Stew-
art [2] developed integer programming formulations for
the RSA problem when generalized tod-dimensions. But
since integer programing is an NP-hard problem, the fastest
known algorithms to solve ILP problems take exponential
time. Trubin [3] claimed to have developed a polynomial
time algorithm to solve the 2d-grid RSA problem. How-
ever, the algorithm was shown to generate non-optimal so-
lutions by Rao, Sadayappan, Hwang and Shor [4]. Trubin’s
algorithm is rather complicated to follow. Initially an in-
teger programming problem is formulated. Then its dual
relaxation problem is solved via linear programming. The
claim is that every instance of the dual relaxation problem
has at least one optimal solution that is an integral solution.
Unfortunately, as shown in Ref. [4], there are problem in-
stances for which this is not true.

Since the RSA for planar graphs was shown to be NP-
hard [16], it was conjectured that the RSA for2d-graphs
was also NP-hard. Shi and Su [5] settled this issue by show-
ing that this problem is an NP-hard problem (and the deci-
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sion version is NP-Complete). The problem is intractable
even if all the destinations are in the first quadrant and the
source is the origin (point(0, 0)). Rao,et. al presents a
simple approximation algorithm for the RSA problem for
2d-grid networks that generates solutions that are within
100% of optimal (approximation ratio is 2). The algorithm
is based on a simple greedy strategy, but the proof that the
approximation ratio is2 is not that simple. In this paper,
we give a problem instance for which the approximation
ratio is asymptotic to 2. This establishes that the approx-
imation ratio for the algorithm is best possible. The al-
gorithm is based on a greedy bottom-up approach which
constructs the tree from the destination nodes to the source
node (root), but it is a greedy method in the sense that it
considers the destination nodes furthest from the source
node first.

Ramnath [6] presents atop-down O(n log n) time 2-
approximation algorithm for the RSA problem for2d-grid
networks. The algorithm is not restricted, as the previous
ones, to all nodes being on the first quadrant and the source
located in the origin(0, 0). The algorithm has also been
adapted to the case when there are isothetric obstacles. The
algorithm is based on a top-down approach as it constructs
the arborescence from the source nodes towards the leaves.
The algorithm is greedy in the sense that it will cover first
the destination nodes closest to the root. We show that this
algorithm behaves exactly as the the one in Ref. [4] in the
sense that the approximation ratio of 2 is asymptotically
best possible. To establish this result we present a problem
instance for which the approximation ratio is asymptotic to
two.

It is interesting to note that our problem instance
that makes the bottom-up algorithm behave poorly can be
solved to optimality via the top-down algorithm. Simi-
larly, the instance that makes the top-down algorithm be-
have poorly can be solved to optimality via the bottom-up
approach. This suggests that a better algorithm is just one
that generates as its solution the best of the top-down and
bottom-up solutions. Both of the above instances can be
placed inside a square of sizer by r. Now place one of
those instances with the origin at point(0, r) and the other
with origin at point(r, 0). One can show that for this prob-
lem instance the combined algorithm has an approxima-
tion ratio asymptotic to 1.5. There are other more com-
plex instances such that this combined algorithm behave
as bad as either of the algorithms. I.e., there are problem
instances for which the solutions asymptotic to 2 times op-
timal. On average the approximation ratio of the combined
algorithm is better than that of the individual algorithms.
We experimented with algorithms that use a different strat-
egy at different levels in the process of constructing the sp-
multicasting tree, but those algorithms also have the same
performance issues.

Lu and Ruan [7] developed a polynomial time approx-
imation scheme for the 2d-grid RSA problem. I.e., they
developed a randomized algorithm, that when derandom-
ized, generates a solution such that for every fixed constant

c > 1, the solution generated uses a number of links that
is at most(1 + 1/c) times the number of links in a opti-
mal solution. The time complexity isO(nO(c) log n). At
first glance this seems to be the best possible approxima-
tion algorithm for the problem. Unfortunately, this is only
true theoretically, as the constants associated with the time
complexity bound are enormous and thus the approxima-
tion scheme is of no practical significance.

We present in this paper a polynomial time rounding
scheme that given a half-integral optimal solution it gen-
erates a solution within 1.5 times the value of an optimal
solution. Given any instance of the 2d-grid RSA problem
we first formulate it as an integer linear programming prob-
lem. Then we solve the relaxed linear programming prob-
lem and apply our rounding scheme. Our algorithm can be
applied to any half-integral optimal solution obtained by
any procedure. Our rounding procedure is simple and can
be implemented efficiently. We will briefly discuss the inte-
ger linear programming formulation and the corresponding
relaxed LP problem.

Approximation algorithms for the sp-multicast prob-
lem for general and planar graphs have been studied in the
past. However, none of the algorithms that take polyno-
mial time generate solutions that are within a fixed percent-
age of the optimal solution value. This is in sharp contrast
to the approximation algorithms for the Steiner tree ver-
sion of the problem for arbitrarily weighted graphs. In the
Steiner tree version one constructs a multicast tree with the
fewest links, but the paths from the source to each desti-
nation are not necessarily shortest paths in the input graph.
For this problem there are well-known polynomial time 2-
approximation algorithms.

A problem, closely related to our problem, is the sp-
multicast problem defined over then-cube (also called the
hypercube). There have been many heuristics developed
for this version of the problem, but so far the problem
does not seem to have a polynomial time constant ratio
approximation algorithm. It is important to note that NP-
Completeness results for one of these problems does not
translate to an NP-Completeness result of the other. Simi-
lar observations can be made for approximation algorithms.
However, the techniques behind an approximation algo-
rithm for the sp-multicast problem for2d-grids may be ap-
plicable to then-cube problem. Since the problem defined
over2d-grids appears to be simpler, it is important to study
it, as the algorithms developed may shed some light for
solving more complex versions of the problem.

In Refs. [8, 9, 10] it was established that the decision
version of the sp-multicast problem for then-cube is NP-
Complete. These results were extended to establish that
the problem over the Chord and the binomial graph net-
work is also NP-Complete [10]. These generalizations have
applications to peer-to-peer networks. Numerous heuris-
tics that most of the time generate near-optimum solutions
have been developed. However, almost all of these heuris-
tics have been shown to generate arbitrary bad solutions
for large sets of problem instances. Because of the similar-
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ities to our problem, in what follows we will briefly discuss
them.

The simplest top-down algorithm, referred to as the
Oblivious algorithm by Fujita [11], constructs the tree
from the source nodes by selecting a minimal subset of
intermediate (next) nodes in such a way that all the des-
tinations nodes have a shortest path froms that visits at
least one of these intermediate nodes. The process con-
tinues from the selected nodes until the sp-multicast tree
constructed reaches all the destination nodes.

Lan, Esfahanian, and Ni [12] developed an improved
version of theOblivious algorithm that has been re-
ferred to as algorithmLEN or Greedy. The difference
between the two algorithms is in the way one selects the
intermediary nodes. One selects first an intermediate node
from which the maximum number of destination nodes can
be reached via a shortest path. AlgorithmGreedy gener-
ates better solutions than theOblivious Algorithm, but
there are problem instances for which both of these algo-
rithms generate solutions that are arbitrarily far from opti-
mal [11, 10].

Sheu and Yang [13] modified algorithmGreedy.
Their algorithm, which we refer to as algorithm
NGrouping, generates better solutions than algorithm
Greedy. Their idea is to group together destinations that
are neighbors of each other. So instead of having a set of
destinations, we have a set of trees of destinations where
neighbors nodes are at a distance one from each other. Then
one applies algorithmGreedy to the root nodes of all the
trees.

The Cluster algorithm introduced by Lu, Fan,
Dou, and Yang [15, 14] is an extension of algorithm
NGrouping. Again one constructs trees as in the algo-
rithmNGrouping, but the trees are more general. A care-
ful analysis of one of Fujita’s [11] instances, that makes
algorithmGreedy perform poorly, can be used to show
that algorithmsNGrouping andCluster generate trees
with a number of edges that is arbitrarily large.

Cipriano and Gonzalez [10] present algorithms
(MOverlap, BEstimate andBUp) for the n-cube sp-
multicasting problem. These algorithms try to avoid the
pitfalls of the previously known algorithms. Algorithms
MOverlap andBEstimate, are top-down and estimate
the cost of tree before making decisions. AlgorithmBUp
uses the bottom-up approach. All these algorithms take
polynomial time, but it is not know whether or not they
are constant-ratio approximation algorithms.

In the next section we review two 2-approximation
algorithms for the sp-multicast problem. These algorithms
correspond to the bottom-up and the top-down algorithms
previously developed for the hypercube. Since these algo-
rithms have been shown to generate arbitrarily bad solu-
tions for the hypercube instances, we need to find an alter-
nate approach. One such approach is discussed in Section
3.

2 Tight Approximation Ratios and Experi-
mentation

We begin this section by reviewing the greedy and the
bottom-up approximation algorithms presented in Refs.
[4, 6] for the 2d-grid problem. As stated before, we are
concentrating on the sp-multicast problem in the2d-grid
where all the destination nodes are on the first quadrant and
the sources is the node with coordinates(0, 0).

Define the diagonalk, for k ≥ 1, to be the set of
all the grid nodes that are at a distance exactlyk from the
sources. The greedy algorithm, given in Ref. [6] considers
all the nodes in diagonal 1, then diagonal 2, and so forth
till the last diagonal. When considering diagonali, a tree
has been constructed froms to a subset of the grid nodes
in diagonali − 1 in such a way that for every destination
d ∈ D there is a shortest path froms to d that includes a
path in the tree so far constructed froms to diagonali − 1.
The tree is now extended to diagonali by adding a set of
edges in such a way that the previous invariant holds for the
tree froms to diagonali. The nodes included from diagonal
i are a minimal number of additional nodes and edges.

Figure 1(A) gives an instance for the2d-grid and an
optimal solution for it. The source node is depicted by a
(non-filled) circle and the destination nodes are the smaller
(filled) black circles. Figure 1(B) gives the solution gener-
ated by the greedy algorithm. One can show that as the set
of points increases following the pattern as in Figure 1(A),
the approximation ratio is asymptotic to two. This shows
that one cannot prove any constant approximation ratio less
than two for the greedy method. It is clear for this example,
that in order to beat the approximation ratio of 2 one needs
to make global decisions, rather than just local ones.

The bottom-up algorithm considers all the nodes in
the last diagonal first, then last - 1st diagonal, and so forth
till diagonal 1. When considering diagonali, a forest of
trees has been constructed from diagonali + 1 to all the
destination nodes above diagonali such that for every des-
tinationd ∈ D above diagonali there is a shortest path that
includes a path in the tree so far constructed from diagonal
i + 1 to the destination nodes above diagonali. The forest
is now extended to diagonali in such a way that the previ-
ous invariant holds for the forest above diagonali− 1. The
nodes included from diagonali are a minimal number of
additional nodes and edges.

Figure 2(A) depicts a2d-grid problem instance and
an optimal solution for it. the notation is identical to the
one for the previous figure. Figure 2(B) gives the solution
generated by the bottom-up algorithm. As the set of points
increases following the same pattern as in Figure 2(A), the
approximation ratio for the instance grows asymptotic to 2.
This shows that one cannot establish any constant approx-
imation ratio less than two for the bottom-up method. It is
clear for this example, that in order to beat the approxima-
tion ratio of two one needs to make global decisions, rather
than just local ones.

We experimented with the above two algorithms, as
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(B)

(A)

Figure 1. (A) Problem instance and optimal solution. (B)
Solution generated by the (greedy) top-down algorithm.

well as with other algorithms, on random problem in-
stances. Table 1 shows the average and worst case approx-
imations for the Bottom-Up, Top-Down, and Hybrid meth-
ods. The Hybrid method uses the Bottom-Up approach
until the median diagonal and then uses the top down ap-
proach. By ”Best” we mean the best of the solutions gen-
erated by the three algorithms. We use as a lower bound
the one presented in [4] that computes the fewest number
of points needed in each diagonal by any multicasting tree.
The results of the experimentation are clear. As the num-
ber of points increases, the average approximation ratio de-
creases, but the worst approximation ratio increases. This
is consistent with the worst case examples discussed in this
section.

In the next section we discuss a rounding procedure
for a relaxation method that incorporates global informa-
tion.

3 Rounding Approach

We are concentrating on the sp-multicast problem over the
2d-grid where all the destination nodes are on the first
quadrant and the sources is the node with coordinates
(0, 0). In this section we present a global rounding tech-
nique that given any half-integral optimal solutions, the al-
gorithm generates a solution with an approximation ratio of
at most 1.5. A half-integral optimal solution can be obtain
by formulating the problem as an ILP problem and then

(B)

(A)

Figure 2. (A) Problem instance and optima solution. (B)
Solution generated by the Bottom-Up Algorithm.
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Table 1. Experimentation (50000 experiments for eachn).

n = 10 n = 30
Method Worst Average Worst Average
Bottom-Up 14.35 0.85 15.20 2.76
Top-Down 23.10 1.54 21.54 3.91
Hybrid 16.97 0.96 16.81 3.18
Best 9.39 0.58 11.15 2.21

n = 50 n = 100
Method Worst Average Worst Average
Bottom-Up 12.41 3.43 13.19 4.19
Top-Down 17.45 4.73 13.85 5.57
Hybrid 17.26 3.96 13.51 4.82
Best 10.56 2.98 13.96 3.90

relaxing the integer constraints to obtain a linear program-
ming problem. The LP problem is solved via any of the
standards methods. Our LP relaxation is different from the
one in [3]. In what follows we will briefly discuss it.

The idea is to define for each destination nodeD
and each grid edge (in the2d-grid) a variable to represent
whether or not the path connectings to d goes through that
edge. In the ILP formulation the variable will be assigned
the value of one or zero. It is one then the path goes through
the edge. We also introduce a set of constraints to estab-
lish shortest path connectivity to the source node for every
destination node. The objective is to add up the maximum
value of any of the variables along each edge. In the LP for-
mulation, the values of the variables can be any real number
between 0 and 1.

Before we define our ILP formally, we introduce ad-
ditional notation. The2d-grid consists of all the grid points
(i, j) for 0 ≤ i ≤ m and0 ≤ j ≤ m, for some positive
integerm. The grid edge immediately to left of grid point
(i, j) is calledhorizontal grid edge (i, j) and the one im-
mediately below grid point(i, j) is calledvertical grid edge
(i, j). We define variableXi,j for each horizontal grid edge
(i, j), and variableYi,j for each horizontal grid edge(i, j).
We define theregion for every destination noded ∈ D
as the set of all the grid nodes and edges of the rectangle
formed by usings andd as its opposite corners. For each
destination noded ∈ D we define the variableyd,{i,j}, for
every vertical grid edge{i, j} in the region for noded and
the variablexd,{i,j}, for every horizontal grid edge{i, j}
in the region for noded. All of our variables are restricted
to have the value of zero or one.

For each noded located at grid point(k, l), we add
the following constraint.

xd,{k,l} + yd,{k,l} = 1.

For each destination noder located at grid point(i, j)
in the region for noded, andd 6= r, we add the following
contraints

Table 2. Problem instance (15 destinations).

Index 1 2 3 4 5

x 0 25 40 87 93
y 341 197 178 335 261

Index 6 7 8 9 10

x 95 119 143 179 178
y 155 167 235 33 192

Index 11 12 13 14 15

x 180 264 294 294 328
y 143 112 51 84 0

xd,{i,j} = yd,{i,j} = 0.

For each grid point(i, j) in the region for noded that
is not a source or destination node, we add the following
contraint

xd,{i,j} + yd,{i,j} = xd,{i,j+1} + yd,{i+1,j}.

We defineDi,j as the set of all the destination nodes
whose region includes grid point(i, j). For each grid point
(i, j) other than the source node we add the following con-
straints:

Xi,j ≥ Max{xd,{i,j}|d ∈ Di,j}

Yi,j ≥ Max{yd,{i,j}|d ∈ Di,j}.

The objective function value is to minimize

∑

(i,j)

Xi,j + Yi,j . (1)

In the LP relaxation all the variables are restricted to
have a real value between zero and one.

In order to illustrate our algorithm we will be using an
example. The example is given in Table 2 and includes 15
destination nodes. Figure 3 shows a half-integral optimal
solution to our example obtaining through our LP formu-
lation. Note that the scale of the figure has been changed
in order to see clearly all the steps of our rounding proce-
dure. The small circles are the destination nodesD, and
the source is the bottommost point (the large circle). Each
thick edge represents a sequence of grid edges for which
the optimal half-integral optimal solution to the LP prob-
lem assigns the value of 1 to every variable associated with
the grid edges (Xi,j or Yi,j ), and the thin ones represent the
ones with value12 (variablesXi,j or Yi,j ). Now lets view
Figure 3 as an undirected graphG where the set of vertices
represent the source node, the destination nodes plus the
Steiner points (points that are not destination nodes where
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Figure 3. GraphG.

three or more line segments intersect). For graphG these
vertices are calledsource, destination, andSteiner vertices.
Every edgee has a weightwe that is a one if it is a thick
edge in the graph and12 , otherwise. Every edgee has a
length, denoted byle, which corresponds to the length of
the edge it represents (the length of the edge in Figure 3).
A Steiner vertexx is called atransition vertex if vertexx
has degree four inG or if there is a path from source vertex
s to a destination vertexy in G that transitions at vertexx
from an edge with a weight of 1 to one with with weight1

2 ,
or vice-versa. Figure 4 shows all the transition vertices in
G marked with a× symbol. Later on we explain why some
edges are represented by dashed or dash-dotted lines.

Since we begin with a optimal half-integral solution
know thatf∗(I) ≥

∑
e∈G le ∗ we, wheref∗(I) is the op-

timal solution value for the instanceI of the sp-multicast
problem.

Now the problem is to select all the edges inG with
a weight of 1 and a subset of the edges with a weight of1

2
in such a way that for every destination vertexd there is at
least one path with total lengthbd from s to d. Remember
that bd is the length of a shortest path in the2d-grid from
source nodes to destination noded. Let G1 be theG after
deleting all the edges that were not selected. Now letG2 be
G1 after deleting a subset of (superfluous) edges such that
in G2 there is exactly one path froms to each destination
noded ∈ D with total lengthbd. GraphG2 is a tree and
will have all edges with a weight of1. It is the solution we
generate to the instance of the2d-grid sp-multicast prob-
lem, i.e., it is the multicast tree we generate. This solution
has total edge length (or objective function value) equal to
f̂(I) =

∑
e∈G2

le.
Before we present our rounding algorithm to generate

the graphG2 such thatf̂(I) ≤ 1
2f∗(I), we need to intro-
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Figure 4. Transition Nodes and Chunks.

duce additional notation. We partition the set of edges with
weight 1

2 in G into chunks. Achunk is a maximal set of
nodes and edges with weight1

2 in G such that all of its des-
tination vertices and transition vertices are its leaf vertices,
and all its leaves are destination or transition vertices. Fig-
ure 4 shows the different chunks. Each chunk is identified
by a different letter and represents a set of adjacent edges
drawn using the same type of lines (continuous, dashed, or
dash-dotted). The bottommost left vertex of each chunk is
called theroot of the chunk, and the remaining leaves are
called theend vertices of the chunk.

It is easy to see that each end vertex is the end vertex
of exactly two chunks. The edges of two different chunks
overlap only at root or end vertices. Therefore it is pos-
sible two draw a closed and continuous curve around the
root and end vertices of each chunk in such a way that no
two curves of two different chunks overlap at a point dif-
ferent from a root or end vertex. Now construct the graph
H as follows. Each chunk is represented by a vertices in
H (in our example the vertex corresponding to chunkc is
assigned the letter associated with the chunkc) and there
is an edge between two vertices inH , if the corresponding
chunks include the same end node. Since the chunks only
overlap at destination nodes and transition nodes, it then
follows that graphH is a planar graph. Figure 5 shows
the graphH constructed for the chunks given in Figure 4.
Thecost, denoted bycv, of vertexv in H is the sum of the
length of the edges in the chunk corresponding to vertexv
in graphH .

A coloring for a planar graph is an assignment of a
color to each vertex in such a way that no two adjacent ver-
tices are assigned the same color. It is well known (see for
example Ref. [16]) that every planar can be colored with at
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Figure 5. GraphH for the graph in Figure 4.

most four colors. Furthermore, there are well known linear
time algorithms to construct a four coloring of any given
planar graph. Applying the algorithm to graphH results
in the set of vertices partitioned into four setsS1, S2, S3,
andS4, whereSi consists of all the vertices assigned color
i. Now definesi as the sum of the cost of the nodes in set
Si, i.e.,si =

∑
j∈Si

cj . Assume without loss of generality
thats1 ≤ s2 ≤ s3 ≤ s4. Now the edges selected inG to
form G2 are all the edges in the chunks represented by the
vertices in the setsS1, S2, andS3 plus all the edges with
weight 1 inG. Let T be the set of edges with weight1 in
G andt denotes the sum of the length of the edges inT .

SinceG is an optimal relaxed solution for the inte-
ger linear programming solving the sp-multicast problem,
it follows that

f∗(I) ≥ t +
1

2
(s1 + s2 + s3 + s4). (2)

Now, the solution we generate is such that

f̂(I) ≤ t + s1 + s2 + s3.

This is equivalent to

f̂(I) ≤ t +
3

4
(s1 + s2 + s3) +

1

4
(s1 + s2 + s3) (3)

Sinces1 ≤ s2 ≤ s3 ≤ s4, we know that

s4 ≥
1

3
(s1 + s2 + s3).

Substituting in Equation 2 we know that

f̂(I) ≤ t +
3

4
(s + 1 + s2 + s3 + s4). (4)
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Figure 6. Solid edges represent a final sp-multicat tree for
our example.

Combining Equations 4 and 2, we know that we know that

f̂(I) ≤ 1.5f∗(I). (5)

We summarize our result in the following theorem.
Theorem 1: Given any half-integral optimal solution

to the sp-multicast tree problem one can round it and gen-
erate an sp-multicast tree with objective function value that
is at most1.5 times the optimal solution value. The algo-
rithm takes polynomial time with respect to the number of
destination nodes.

The proof for the approximation ratio follows the
above arguments. For brevity the proof for the time com-
plexity bound is omitted.

Now, for some problem instances one may be able to
color graphH with two or three colors. In the former case
one can construct an optimal solution to the sp-multicast
problem. For the case of three colors, we use a similar
approach and obtain a better approximation ratio,f̂(I) ≤
4
3f∗(I).

In our example it is possible to color with three col-
ors the graphH . One such coloring is given in Figure 4
by interpreting the solid, dashed, dash-dotted lines for the
chunks as their colors. Figure 6 shows the case when the
dash-dotted lines are eliminated from Figure 4. The dashed
lines in Figure 6 do not correspond to to the dashed lines
in Figure 4. The dashed lines in Figure 6 form a subset
of superfluous edges which can be eliminated. Therefore
the solid lines (thick and thin) form the sp-multicast tree
generated by our rounding algorithm. Figure 7 shows the
case when the solid (thin) lines are eliminated from Figure
4. The dashed lines in Figure 7 do not correspond to to

276



A

B

D

F

G

O

M

K

I

H

Figure 7. Solid edges represent a final sp-multicat tree for
our example.

the dashed lines in Figure 4. The dashed lines in Figure
7 form a subset of superfluous edges which can be elimi-
nated. Therefore the solid lines (thick and thin) form the
sp-multicast tree generated by our rounding algorithm.

4 Conclusion

The most interesting open problem is to show that every
2d-grid sp-multicast tree problem allows a half-integral op-
timal solution. Our experimental evaluation confirms this
fact, but we have not been able to prove it. Another in-
teresting open problem is to slightly perturb the destina-
tion nodes to obtain an integer solution which can then be
transformed to a solution to the original problem. We have
shown, through extensive experimentation, that the solu-
tions produced by our rounding technique are for the most
part optimal or near optimal as the graphH is normally ei-
ther empty or it is a bipartite graph for which our rounding
generates an optimal solution.
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