Proceedings of the IASTED International Conference
Parallel and Distributed Computing and Systems (PDCS ‘99)
November 3-6, 1999, Cambridge, Massachusetts - USA

Multimessage Multicasting with Bounded Number of Destinations

Teofilo F. Gonzalez

teo@cs.ucsh.edu
Department of Computer Science
University of California
Santa Barbara, CA 93106

Abstract

We consider Multimessage Multicasting over the n pro-
cessor complete static network when forwarding of mes-
sages is allowed. We present an efficient algorithm to
generate a communication schedule with total commu-
nication time at most |(2 — })d] + 1, for problem in-
stances where each processor needs to send messages
to at most Id destinations for some 2 <1< d, and d is
the maximum number of messages that each processor
may send (or receive). Qur algorithm consists of two
phases. First a set of communications are scheduled to
be carried out in such a way that the resulting problem
is a multimessage unicasting problem of degree d. Then
we generate a communication schedule for the result-
ing problem instance. We also discuss multimessage
multicasting for dynamic networks.

Key Words: Approximation Algorithms, Multi-
message Multicasting, Dynamic Networks, Forwarding,
Iterative Methods, Communication Schedules.

1 Introduction

The Multimessage Multicasting problem over the n pro-
cessor complete (or fully connected) static network,

M Mc, consists of constructing a communication sched-
ule with least total communication time for multicas-
ting (transmitting) any given set of messages. There
are n processors, P = {Py, P,,..., P}, executing pro-
cesses, and these processes are exchanging messages
that must be routed through the links of the network.
Our objective is to determine when each of these mes-
sages is to be transmitted so that all the communi-
cations can be carried in the least total amount of
time. Forwarding, which means that messages may
be sent through indirect paths even though a single
link paths exist, allows communication schedules with
significantly smaller total communication time. This
version of the multicasting problem is referred to as
the M M F¢ problem, and the objective is to determine
when each of these messages is to be transmitted so

that all the communications can be carried in the least
total amount of time. We define the | — MM Fg, for
2 <1 <d, as the MM F¢ in which each processor has
at most /d edges emanating from it. Our introduction
is a condensed version of the one in [6] which includes
a complete justification for the multimessage multicas-
ting problem as well as motivations, applications, and
examples.

Routing in the complete static network is the sim-
plest and most flexible when compared to other static
and dynamic networks. Dynamic networks (or mul-
tistage interconnection networks) that can realize all
Permutations (each in one communication phase) and
Replicate data (e.g., n by n Benes network based on 2
by 2 switches that can also act as data replicators) will
be referred to as pr-dynamic networks. Multimessage
Multicasting for pr-dynamic and complete networks is
not too different, in the sense that any communica-
tion schedule for a complete network can be translated
automatically into an equivalent communication sched-
ule for any pr-dynamic network. This is accomplished
by translating each communication phase for the com-
plete network into no more than two communication
phases for pr-dynamic networks. The first phase repli-
cates data and transmits it to other processors, and
the second phase distributes data to the appropriate
processors [11, 14]. The IBM GF11 machine [1], and
the Meiko CS-2 machine use Benes networks for pro-
cessor interconnection. The two stage translation pro-
cess can also be used in the Meiko CS-2 computer sys-
tem, and any multimessage multicasting schedule can
be realized by using basic synchronization primitives.
This two step translation process can be reduced to one
step by increasing the number of network switches by
about 50% [11, 14]. In what follows we concentrate
on the multimessage multicasting problem over com-
plete networks because it has a simple structure, and,
as mentioned above, results for this network can be
easily translated to pr-dynamic networks.

Let us formally define our problem. Each processor
P; holds the set of messages h; and needs to receive the
set of messages n;. We assume that {Jh; = (Jn;, and

- 495 -

that each message is initially in exactly one set h;. We
define the degree of a problem instance as d = max{|
hi |,| i |}, i-e., the maximum number of messages that
any processor sends or receives. Consider the following
example.

Example 1. Processors P;, Ps, and P3 send messages,
and the remaining six processors receive messages 1.
The hold vector is: hy = {a,b},ha = {c,d}, hs =
{e,f},h4 - h5 = hs = h7 = hg - h9 = (0, and the
need vector is: n; = ng = nz =0, ny = {a,c,e},n5 =
{a,d, f},ng ={b,c,e},ny = {b,d, f},ng = {c,d, e}, ng =
{c,d, f}. The density dis 3, and n = 9.

One may visualize problem instances by directed
multigraphs. Each processor P; is represented by the
vertex labeled 4, and there is a directed edge (or branch)
from vertex ¢ to vertex j for each message that proces-
sor P; needs to transmit to processor P;. The set of
directed edges or branches associated with each mes-
sage are bundled together. The problem instance given
in Example 1 is depicted in Figure 1 as a directed multi-
graph with additional thick lines that identify all edges
or branches in each bundle.

Figure 1: Directed Multigraph Representation for Ex-
ample 1.

The communications allowed in our complete net-
work must satisfy the following two restrictions.

1.- During each time unit each processor P; may trans-
mit one of the messages in its hold set h; to any
subset of processors. The message also remains in
its hold set.

2.- During each time unit each processor may receive
at most one message. The message that processor
P; receives (if any) is added to its hold set at the
end of the time unit.

The communication process ends when each pro-
cessor holds all the messages it needs, ie., n; C h;.
Our communication model allows us to transmit any of
the messages in one or more stages. This reduces the
total communication time and further reductions are
possible by allowing forwarding [5].

INote that in general processors may send and receive messages.

A communication mode C is a set of tuples of the
form (m, 1, D), where [is a processor index (1 <1 < n),
and mesgsage m € h; is to be multicasted from proces--
sor P, to the set of processors with indices in D. In
addition the set of tuples in a communication mode C
must obey the following communications rules imposed
by our network:

1.- All the indices I in C are distinct, i.e., each proces-
sor sends at most one message; and

2.- Every pair of D sets in C are disjoint, i.e., every
processor receives at most one message.

A communication schedule S for a problem instance
I is a sequence of communication modes such that after
performing all of these communications every processor
holds all the messages it needs. The total communica-
tion time is the number of communication modes in
schedule S, which is identical to the latest time there is
a communication. Our problem consists of constructing
a communication schedule with least total communica-
tion time. From the communication rules we know that
every degree d problem instance has at least one pro-
cessor that requires d time units to send, and/or receive
all its messages. Therefore, d is a trivial lower bound
for the total communication time.

1.1 Previous Work

The basic multicasting problem, BMe, consists of all
the degree d = 1 M My problem instances, and can be
trivially solved by sending all the messages at time zero.
When the processors are connected via a pr-dynamic
network a communication mode can be performed in
two stages: the data replication step followed by the
data distribution step [11, 14]. This two stage pro-
cess can be used in the MEIKO CS-2 machine [6]. An
important subproblem is when every message it to be
sent to adjacent numbered processors. This restricted
multicast operation can be performed in one step in
pr-dynamic networks [?], and in the MEIKO CS-2 ma-
chine. This is important to note since all the multicas-
ting operations performed by our algorithms have this
characteristic.

Gonzalez [6] also considered the case when each
message has fixed fan-out k (maximum number of pro-
cessors that may receive a given message). When k = 1
(multimessage unicasting problem MUg), the problem
reduces to coloring the edges of a directed bipartite
multigraph so that no two edges incident upon the same
vertex, and not two edges incident from the same ver-
tex are assigned the same color. It is well known that
this problem can be solved in polynomial time and that
it can be colored with d colors, where d is the degree of
the graph. Currently, the fastest way to solve this prob-
lem is to reduce it to the Makespan Openshop Preemp-
tive Scheduling problem [8], which is a generalization of

- 496 -

this multigraph coloring problem. Every degree d mul-
timessage unicasting problem instance has a communi-
cation schedule with total communication time equal
to d. The interesting point is that each communica-
tion mode translates into a single communication step
for processors interconnected via permutation networks
(e.g., Benes Network, Meiko CS-2, etc.), because in
these networks all possible one-to-one communications
can be performed in a single communication step.

It is not surprising that several authors have stud-
ied the MU¢ problem as well as several interesting vari-
ations for which NP-completeness has been established,
subproblems have been shown to be polynomially solv-
able, and approximation algorithms and heuristics have
been developed [2, 3, 10, 9, 12]. With the exception of
the work in [4, 5, 6, 7, 13], research has been limited
to unicasting, and all known results about multicasting
are limited to single messages. Shen [13] studied multi-
message multicasting for hypercube connected proces-
sors. Since hypercubes are fixed static networks, there
is no direct comparison to our work. The M M prob-
lem involves multicasting of any number of messages,
and its communication model is similar in nature to
the one in the Meiko CS-2 machine, after solving some
basic synchronization problems.

The M M problem is significantly harder than the
MUg. Gonzalez [6] showed that even when k = 2 the
decision version of the M M¢ problem is NP-complete.
Gonzalez [4] developed an efficient algorithm to con-
struct for any degree d problem instance a communica-~
tion schedule with total communication time at most
d?, and presented problem instances for which this up-
per bound on the communication time is best possible.
The lower bound holds when there is a huge number
of processors and the fan-out is also huge. Since this
situation is not likely to arise in the near future, Gonza-
lez [4, 6, 5] developed several fast approximation algo-
rithms for problems instances with any arbitrary degree
d, but small fan-out.

It is simple to show that the NP-completeness re-
duction for the M Mo problem given in [6] can be eas-
ily modified to establish the NP-completeness for the
MM Fg problem. All the approximation results for
the M Mg problem also hold for the MM Fy prob-
lem. However, Gonzalez [5] developed an efficient algo-
rithm that generates schedules with total communica-
tion time at most 2d for the M M Fo problem.

In this paper we present an efficient algorithm to
construct for every degree d problem instance a com-
munication schedule with total communication time at
most [(2— $)d| +1 for the I — MM F¢ problem, where
d is the maximum number of messages that each pro-
cessor may send (or receive). Note that when [= 2 the
approximation algorithm is about 25% better than the
one for the algorithm given in [5].

2 Approximation Algorithm

We present in this section our algorithm to generate
a communication schedule with total communication
time at most |(2 —)d] + 1 for the I — MM Fg prob-
lem, for 2 < I < d. Our procedure consists of two
steps. The first step is procedure I-FORWARD, where
only those processors that initially had more than d
edges may forward messages, and a subset of proces-
sors, including those with at most d+1 outgoing edges,
will receive messages to be forwarded. After this for-
warding operation we have reduced our problem to a
multimessage unicasting problem which is reduced to
the openshop problem and then solved by a well-known
algorithm that generates a schedule with total commu-
nication time at most d. The forwarding portion has
a total communication time at most d — |4] + 1, and
therefore the resulting schedule has total communica-
tion time at most |(2 — $)d] + 1. It is important to
point out we do not allow processors to forward only
one edge, because the forwarding would be impossible
within the above communication time bound when we
have d of these processors and only one processor re-
ceiving all the forwarded messages.

Procedure I-FORWARD first figures out the num-
ber of edges to be forwarded by each processors F; and
the maximum number of edges that can be forwarded
to it r;. This computation is carried out as follows.
The first step is to transform the problem so that if the
number of bundles emanating out of each processor is
less than d, then all the bundles have at most one edge.
This transformation is performed by transforming an
edge of a multi-edge bundles into a single-edge bundle
whenever the processor has fewer than d bundles and it
has at least one multi-edge bundle. We define G; as the
number of edges emanating out of P;. Now we define a
tentative number of edges to be forwarded by each pro-
cessor, F;,aszero if G; < d;2if G;isd+1; and G; ~d
otherwise. Then we traverse the bundles emanating our
of each processor in nondecreasing order order with re-
spect to the number of edges in it and mark the first F;
edges that one encounters. Then we mark all the bun-
dles with at least one marked edge. The total number
of edges to be forwarder from P; is the total number of
edges in marked bundles emanating out of P;. Then r;
is defined as d — (G; — ﬁ‘z) This guarantees that in the
resulting problem at most d single-edges will emanate
out of each processor.

Procedure I-FORWARD figures next the time ¢(3)
when each bundle B; is to be forwarded. It also com-
putes the set of processors that will receive each for-
warded message. The last step is to split every multi-
edge bundle into single-edge bundles. Later on we show
that the transformation generates an instance of the
multimessage unicasting problem of degree d.

- 497 -

Procedure I-FORWARD (I,G) in G message Bj;

/* Remember that 2 <1 <d*/ Add the edge from P,y to P, in G, where q is
for i=1 to n do the processor where edge e; ends in G;

while P; has fewer than d bundles and at least one endfor

multi-edge bundle do endfor
delete an edge from a multi-edge bundle and add endfor L
it as a single-edge bundle; Split every multi-edge bundle in (I, G) into

endwhile single-edge bundles;

endfor end of Procedure

Let G; be the number of edges leaving P; in G;
Tentative number of edges forwarded from P; is

0 ifG; <d
F;, = 2 G =d+1
Gi—d ifG;>d+2

Traverse the bundles emanating out of F; in non-
decreasing order with respect to the number of
edges in the bundle, and visit all the edges in
each bundle in any order.

Mark the first F; edges emanating out of P; visited
during the above traversal, and also mark all the
bundles emanating out of P; with at least one

Figure 2: | — M M¢ problem instance (I, G).

marked edge.

Now traverse all the marked bundles and visit ALL
their edges in the same order they were visited We now apply our algorithm to the problem in Fig—
by the above traversal. The bundles visited are ure 2. The first loop transforms it to the problem in
labeled By, B, ..., and the edges are labeled Figure 3. The bundles that are split are the ones ema-
e1, e, ... nating out of processors P, Pg, and Py.

The number of edges to be forwarded from P; is
F}; = the total number of edges in
marked bundles emanating out of P;;
Define the function (i) as
(i—1)mod (d—|2]+1)+1;
/* The message associated with bundle B; will be
forwarded at time (7). */
Let r, =d— (G; — ﬁ‘i), the maximum number of
edges that may be forwarded to P;;
Define R; = 23;11 T5;
for i=1 to n do
if R;_1 # R; then define g(h) =i for each edge

labeled ey, and Ry + 1 < h < Ry; Figure 3: (I, G) after the first loop transformation.
endfor .
/* Edge e; will be forwarded to processor g(i) */ . In Figure 4 we show all the labelings performed
(I,@) + (I,G) minus all the edges in marked by procedure [-FORWARD. The F; and r; values com-
bundles of G; puted by the procedure are the numbers that appear
/* The edges in G will be added to reflect the on top of the vertices in Figure 4. The top number just
forwarding operation. */ below each of the vertices is the index of B;, the next
for every processor P; in G do line shows the message name, and then the value ¢(z).
for every marked bundle B; out of P; in G do The line just above the bottom one has the e; index,

Let S = {g(I)|e; € B; (note that each edge e; and the bottom number is the processor index to where

is in a marked bundle)}; that edge is to be forwarded.

Schedule in X at time ¢(3) the multicasting of the The forwarding is: message a is multicasted to pro-
message associated with bundle B; cessors P53 and Fs; message ¢ is unicasted to processor
from processor P; to the set of processors S Fs; message e is unicasted to processors P; and Pig;
(if | S| = 1, the operation is unicasting); and message f is unicasted to processor P;;. The re-

for every edge ¢; € B; in a marked bundle do sulting problem, (f , G) is given in Figure 5. The differ-

Add to the hold set of processor g(1) (i.e., H(g(l)), ence now is that message a is to be transmitted form

- 498 -

an 2/0 6/1 0/2 0/1 0/o 0/0 0/2 0/2 ©O/1
3 4
jﬁﬁ\? ﬁl 1 T
1 2
567 8 9
7 1010 1111

2/0 2/0
1 2
affb cfrd
1 2
12 34
35 68

Figure 4: Labels generated by I-FORWARD.

processor P3 to P, and from P; to Pr; message ¢ is to
be multicasted from FPg to Py and Pjp; message e is to
be unicasted from Pr to P and multicasted from Pjg to
Py; and Pi5; and message f is to be multicasted from
Pi; to P, and P;. In the final transformation all the
multi-edge bundles are replaced by single-edge bundles.
In our examples the bundles for messages b, ¢, e, f, and
g are replaced by two edge single-edge bundles.

We should point out that all the ¢() values could be
set to one in the above example and there would not be
any conflicts and the total communication time needed
by I-FORWARD would be decreased from two to one.
In general this is not always possible. For example if
processor Pjg had one edge emanation out of it then
processor P; would only forward one edge there and
the other one would be forwarded to processor Pii.
Processor Py would also need to forward an edge to
Py1. Therefore, the two messages to be received by Py
would need to be sent at different times, so the above
reduction in total communication time is not possible
in this other problem instance.

Figure 5: Resulting problem instance (I, G) just before
last transformation (last line).

Theorem 2.1. Problem instance (I,) is an instance
of the MU¢ problem and schedule X with total com-
munication time d — L%J + 1 constructed by proce-
dure I-FORWARD plus any communication schedule
for (I, @) is a communication schedule for (I,G).

Proof. First we show that schedule X is a feasible
schedule. From the definition of F; and ﬁ‘i we know
that only those processors with more than d edges will
be forwarding edges to other processors, and the ten-
tative number of such edges is G; — d. Since the edges
to be forwarded are the ones from the bundles with
the largest number of edges, it then follows that all
the edges to be forwarded belong to at most d — | 4]

of the bundles emanating out of the processor. From
the definition of #() we know that these messages will
be multicasted at different times. Let o be the total
number of edges emanating out of processor P; and let
k be the number of single-edge bundles emanating out
of P;. The total number of edges in multi-edge bundles
is o — k, and this value is greater than or equal to a—d
(the tentative number of edges to be forwarded) since
k < d. This together with the way we define E; implies
that all the edges to be forwarded belong to multi-edge
bundles and all the edges in these multi-edge bundles
will be forwarded. From the g() labels and procedure I-
FORWARD we know that each processor will receive at
most d edges to be forwarded. Since the messages for-
warded consist of at least two edges, except possibly for
the one forwarded to the previous and to the next pro-
cessor, it follows that at most [g] + 1 messages will be
received by each processor. Since [§]+1 < d—|4]+1,
these messages are labeled sequentially. Therefore, all
of these messages arrive at different times and there are
no conflicts. Note that because of this last discussion
the total communication time is one unit more than
what was expected.

From the function g() and procedure -FORWARD
we note that each message is forwarded to the appropri-
ate processor so that if we carry out all the communi-
cations given by the resulting problem instance (f , G‘),
we also solve problem instance (I,&). Furthermore,
the resulting problem is of degree d. Therefore, sched-
ule X plus any communication schedule for (I,G) is a
communication schedule for (I, G).

Lemma 2.1: The time complexity for procedure I-
FORWARD is O(n + e), where e is the total number of
edges in (I,G).

Proof. The steps before the nested for-loops and the
last step take O(n + €). Overall, the innermost loop is
executed once for each edge in the bundle, the middle
loop is executed once for each bundle emanating out of
the processor, and the outermost loop is executed once
for each processor. Therefore, the total time complexity
is O(n +e). 1

A communication schedule with total communica-
tion time d for the instance of the multimessage unicas-
ting problem (I, &) can be constructed in polynomial
time by reducing the problem to the Makespan Open-
shop Preemptive Scheduling problem [8].

Lemma 2.2: ([6]) The above informal reduction can be
used to construct communication schedule X' with to-
tal communication time equal to d for any multimessage
unicasting problem (I, @) of degree d with A processors.
The procedure takes O(r(min{r,A?} + 7 log 7)) time,
where r is the number of messages (r < df).

Proof. The specifics of the reduction and the correct-

- 499 -

ness proof appears in [6]. I

Theorem 2.2: Communication schedule X generated

by procedure -FORWARD plus the communication sched-

ule X' generated by the reduction in [6] is a commu-
nication schedule for (I,G) with total communication
time 2d — |4] + 1. The overall time complexity for
our procedure is O(r(min{r,n?} + n log n)), r is the
number of messages (r < dn).

Proof. The proof follows from Lemmas 2.1, and 2.2,
and Theorem 2.1. 1

In order for the communication schedule to be ex-
ecutable by pr-dynamic networks one needs to perform
all the multicasting operations to adjacent numbered
processors. In Figure 4 we see that message a will be
multicasted only processors P3 and Ps, and message e
to processors P; and Pjg. Since no other processor will
transmit at the same time to Py, Ps, and Py, then mes-
sage a can be multicasted to processors Ps, Py, and Ps,
and message e to processors Pr, Py, Py, and Pg. By
applying this type of transformation we can establish
the following result.

Theorem 3.2: Communication schedule X plus X'
is a communication schedule with total communication
time 2d — | 4] + 1 for any pr-dynamic network.

Proof. The proof of this theorem follows form the
fact that all multicasting messages can be sent to a
set of adjacent processors and that such a multicasting
operation can be performed in one step in pr-dynamic
networks. i

3 Conclusion

When 1 < I < 2 one can use a similar strategy to
construct a communication schedule with total com-
munication time |(1+ 5t)d| + 1, for the | — MM Fp
problem. For brevity we do not include this result.

Our algorithm is designed for the off-line case when
all the information is available in advance, which is jus-
tified by the following application. The author has also
developed algorithms for the on-line case. Multimes-
sage multicasting problems arise when solving sparse
systems of linear equations via iterative methods (e.g.,
a Jacobi-like procedure), and most dynamic program-
ming procedures in a parallel computing environment.
Let us now discuss the application involving linear equa-
tions in more detail. We are given the vector X (0) and
we need to evaluate X (¢) for t = 1,2,..., using the it-
eration z;(t + 1) = f;(X(¢)). But since the system is
sparse every f; depends on very few terms. A place-
ment procedure assigns each z; to a processor where it
will be computed at each iteration by evaluating f;().
Good placement procedures assign a large number of
fi()s to the processor where the vector components it

requires are being computed, and therefore can be com-
puted locally. However, the remaining f;()s need vec-
tor components computed by other processors. So at
each iteration these components have to be multicas-
ted (transmitted) to the set of processors that need
them. The strategy is to compute X (1) and perform
the multimessage multicasting, then compute X (2) and
perform the multicasting, and so on. The same commu-
nication schedule is used at each iteration. Speedups
of n for n processor systems may be achieved when
the processing and communication load is balanced, by
overlapping the computation and communication time.

References

[1] G. S. Almasi, and A. Gottlieb, Highly Parallel Computing,
The Benjamin/Cummings Publishing, New York, 1994.

[2] E. G. Coffman, Jr, M. R. Garey, D. S. Johnson, and A.
S. LaPaugh, “Scheduling File Transfers in Distributed Net-
works,” SICOMP, 14(3) (1985), pp. 744 — 780.

[3] H.-A. Choi, and S. L. Hakimi, “Data Transfers in Net-
works,” Algorithmica, Vol. 3, (1988), pp. 223 — 245.

[4] T. F. Gonzalez, “Multi-Message Multicasting,” Proceed-
ings of Irregular’96, Lecture Notes in CS (1117), Springer,
(1996), pp. 217-228.

[6] T. F. Gonzalez, “Improved Multimessage Multicasting
Approximation Algorithms,” Proceedings of the Ninth
PDCS’96, (1996), pp. 456 — 461, July 1996.

[6] T.F. Gonzalez, “Complexity and Approximations for Mul-

tiMessage Multicasting,” Journal of Parallel and Dis-

tributed Computing, 55, (1998), 215 — 235.

T. F. Gonzalez, “Simple Multimessage Multicasting Ap-
proximation Algorithms Allowing Forwarding,” Proceed-
ings of the Tenth PDCS’97, (1997), 372 — 377.

T. F. Gonzalez, and S. Sahni, “Open Shop Scheduling to
Minimize Finish Time,” JACM, Vol. 23, No. 4, (1976),
pp. 665 — 679.

I. S. Gopal, G. Bongiovanni, M. A. Bonuccelli, D. T.
Tang, and C. K. Wong, “An Optimal Switching Algorithm
for Multibean Satellite Systems with Variable Bandwidth
Beams,” IEEE Transactions on Communications, COM-
30, 11 (1982) pp. 2475 — 2481.

[10] B. Hajek, and G. Sasaki, “Link Scheduling in Polynomial
Time,” IEEE Transactions on Information Theory, Vol. 34,
No. 5, (1988), pp. 910 — 917. :

[11] S.C. Liew, “A General Packet Replication Scheme for Mul-
ticasting in Interconnection Networks,” Proceedings IEEE
INFOCOM 95, Vol.1 (1995), pp. 394 — 401.

[12] P. I. Rivera-Vega, R, Varadarajan, and S. B. Navathe,
“Scheduling File Transfers in Fully Connected Networks,”
Networks, Vol. 22, (1992), pp. 563 — 588.

{13] H. Shen, “Efficient Multiple Multicasting in Hypercubes,”
Journal of Systems Architecture, Vol. 43, No. 9, Aug. 1997.
[14] J.S. Turner, “A Practical Version of Lee’s Multicast Switch
Architecture,” IEEE Transactions on Communications,
Vol. 41, No 8, (1993), pp. 1166 — 1169.

[15] J. Whitehead, “The Complexity of File Transfer Scheduling
with Forwarding,” SICOMP Vol. 19, No 2, (1990), pp. 222
— 245.

