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ABSTRACT nication networks is an NP-hard problem. To cope with
We consider the multimessage multicasting over the n pro- intractability efficient message routing approximation al-
cessor complete (or fully connected) static network when gorithms for classes of networks under different commu-
there are [ incoming buffers to each processor. We present nication assumptions have been developed. In this paper
an efficient distributed algorithm to route the messages for we consider the message communication problem where !
every degree d problem instance with total communica- buffers have been placed at the receiving end of each pro-
tion time d?/l + | — 1, where d is the maximum num- cessor. We show that speedups with factor of about [, over
ber of messages that each processor may send (or receive). the case without buffers, can always be achieved.

Our algorithm takes linear time with respect to the input The Multimessage Multicasting, M M ¢, problem was
length. When | = d our algorithm generates communica- introduced by Gonzalez {1, 2] and Shen [3]. The problem
tion schedules with smaller total communication time than consists of constructing a communication schedule, for an
previous algorithms, even when forwarding is allowed. n processor static network (or simply a network), with least
Furthermore, such schedules can be constructed in linear total communication time for multicasting (transmitting)
time. For [ = 1,d/2, and d we present lower bounds for any given set of messages. Specifically, there are n pro-
the total communication time. The lower bounds match the cessors, P = {P, P,,. ... P,}. interconnected via a net-
upper bounds for the schedules generated by our algorithm work N. Each processor is executing processes, and these
when [ = 1 and [ = d, and are within 25% when [ = d/2. processes are exchanging messages that must be routed

through the links of N. Our objective is to determine when
each of these messages is to be transmitted so that all the

KEY WORDS ' communications can be carried in the least total amount of
Approximation Algorithms, Multimessage Multicasting, time.
Forwarding, Buffers, Fully Connected Networks. Let us formally define our problem. Each processor

P; holds the set of messages h; and needs to receive the
set of messages n;. We assume that | Jh; = (Jn, and
that each message is initially in exactly one set h;. We
define the degree of a problem instance as d = max{|
hi |,| n; [}, ie..- the maximum number of messages that
any processor sends or receives. Consider the following

1 Introduction

Parallel and distributed systems were introduced to exe-
cute programs at unprecedented speeds. To accomplish this
goal a program must be partitioned into tasks and the com-

munications that must take place between these tasks must example.

be identified to ensure a correct execution of the program. Example 1.1 There are nine processors (n = 9). Proces-
To achieve high performance one must assign each task to sors Py, Py, and P; send messages only, and the remaining
a processing unit (statically or dynamically) and develop six processors receive messages only '. The messages each
communication programs to perform all the intertask com- processor holds and needs are given in Table 1. For this
munications efficiently. Efficiency depends on the algo- example the degree d is 3.

rithms used to route messages to their destinations, which
is a function of the underlying communication network, its
primitive operations and the communication model. Given
a network with a communication model, a set of commu-
nication primitives and a set of messages that need to be
exchanged, our problem is to find a schedule to transmit all
the messages in the least total number of communication
rounds. Generating an optimal communication schedule,
i.e., one with the least total communication rounds, for our
message routing problems over a wide range of commu- ''Note that in general processors may send and receive messages.

One may visualize problem instances by directed
multigraphs. Bach processor P; is represented by the ver-
tex labeled 7, and there is a directed edge (or branch) from
vertex i to vertex j for each message that processor P;
needs to transmit to processor P;. The set of directed
edges or branches associated with each message are bun-
dled together. The problem instance given in Example 1.1
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communication network. Other applications include sort-
ing, matrix multiplication, discrete Fourier transform, etc.
Message routing problems under the multicasting com-
munication primitives arise in sensor networks which are
simply static or slow changing ad-hoc wireless networks.
These type of networks have received considerable atten-
tion because of applications in battlefields, emergency dis-
aster relief, etc. Ad-hoc wireless networks are suited for
many different scenarios including situations where it is not
economically practical or physically possible to provide In-
ternet or Intranet wired communication. Other applications
in high performance communication systems include voice
and video conferencing, operations on massive distributed
data, scientific applications and visualization, high perfor-
mance supercomputing, medical imaging, etc. The need
to deliver multidestination (multicasting) messages is ex-
pected to increase rapidly in the near future.

The case when each message has fixed fan-out k
(maximum number of processors that may receive any
given message) has been studied [2]. For k = 1 (the prob-
lem is called multimessage unicasting MUc), Gonzalez
[2] showed that the problem corresponds to the makespan
openshop preemptive scheduling problem which can be
solved in polynomial time, and each degree d problem in-
stance has a communication schedule with total communi-
cation time equal to d [4]. The makespan openshop pre-
emptive scheduling problemis a generalization of the edge
coloring of bipartite multigraphs. Algorithms for this prob-
lem may also be used to solve the M U problem; how-
ever, Gonzalez and Sahni’s [4] algorithm is currently the
fastest method to solve the M U¢ problem, whereas Cole,
Ost and Schirra’s [5] edge coloring algorithm is the fastest
one when the edge multiplicities are small [6].

It is not surprising that several authors have studied
the M Uc problem as well as several interesting variations
for which NP-completeness has been established, subprob-
lems have been shown to be polynomially solvable, and ap-
proximation algorithms and heuristics have been developed
[7,8,9, 10, 11, 12].

With the exception of the work reported in [1, 2, 3,
13, 14, 15, 16, 17], research has been limited to unicast-
ing and most multicasting results are limited to single mes-
sages. Shen [3] has studied multimessage multicasting tor
hypercube connected processors. The heuristic try to min-
imize the maximum number of hops, amount of traffic,
and degree of message multiplexing. Recently, Thaker and
Rouskas [17] survey strategies for multimessage multicas-
ting problems defined for all-optical networks.

Gongzalez [2] shows that even when k = 2 the deci-
sion version of the MM problem is NP-complete. Gonza-
lez [2] also shows that every degree d instance of the MMc
problem with n processors has a communication schedule
with total communication time at most d®. This bound is
best possible in the sense that for all d > 1 there are prob-
lem instances that require d? communication time [2].

Gonzalez [13] presents a series of approximation al-
gorithms for all £ > 3 that generate solutions with (v& -+
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/2 — 1)d communication time. Schedules with total com-
munication of about gd + ke (d—1)for2 < g < kcanbe
constructed in O(q - d - €) time, where e < nd by sending
each message to all its destinations during ¢ time periods
rather than just two [2].

When forwarding is allowed the problem is referred
to as the MMF¢ problem. In this case messages may be
sent through indirect paths even though single-edge paths
exist. At first glance it appears that forwarding will not
really help deliver messages faster for the MM ¢ problem
because forwarding consumes more resources, and the net-
works is complete (all the bidirectional links are present).

The reduction used to establish that the MMc¢ is
NP-hard [2] can be easily modified to establish that the
MMF¢ problem is an NP-hard problem [15]. Gonza-
lez [15] developed algorithms to construct communication
schedules with total communication time at most 2d. in
O(r(min{r,n®} + n log n)) time, where r is the total
number of messages (r < dn). Clearly, these approxima-
tion algorithms are slower than the ones discussed above;
however, they generate communication schedules with sig-
nificantly smaller total communication time.

We have also studied the distributed version of the
MMF, which we refer to as the DMMF¢c problem. Each
processor initially knows only the value of nand d, and ata
given time it learns the messages it will be sending and their
destinations. The strategy to solve the DMMF problem is
to use the standard parallel prefix algorithm, followed by a
distributed version of the forwarding algorithm in [15] and
then the distributed multimessage unicasting distributed al-
gorithm in [18]. The algorithm performs all the multicas-
ting operations in O(d + logn) expected communication
steps [14].

It is simple to see that the DMMF¢ problem is more
general than the MMF¢ and the MM problems, but the
best communication schedule for the DMMF¢ problem
has total communication time Q(d + logn) where as for
the MM problem is d?, and just 2d for the MMFc prob-
lem. Therefore, knowing all the communication informa-
tion ahead of time allows one to construct significantly bet-
ter communication schedules, and forwarding plays a very
important role in reducing the total communication time in
our message routing problems.

3 New Results

In this paper we consider the communication architecture
where there are | buffers at the receiving end of each pro-
cessor and developing controlling hardware so the buffer-
ing behaves as follows: (1) if at the beginning of a com-
munication round one buffer has a message, then one such
message (perhaps in a FIFO fashion) is passed to the pro-
cessor and the buffer will be labeled empty for the current
communication round; and (2) if there are j empty buffers
during the current communication round, then up to J mes-
sages may be received and stored in these free buffers. In




this paper we present an efficient algorithm to construct for
every degree d problem instance a communication sched-
ule with total communication time at most 2/l +1-1,

. where d is the maximum number of messages that each
processor may send (or receive) and 1 is the number of in-

put buffers on each processor. Furthermore, such schedules
can be constructed in linear time. Forl = 1,d/2,and d

. we present lower bounds for the total communication time.

The lower bounds match the upper bounds for the sched-
ules generated by our algorithm when ] =1andl = d,and
are within 25% when [ = dj2.

When [ = 1 our algorithm generates schedule with
the same communication time as the one for the MMc
problem. On the other hand when | = d our algorithm gen-
erates a schedule with slightly smaller communication ime
than the one for the M M F¢ problem. Our new algorithm
has the added property that it does not forward any of the
messages and the time complexity to generate the solution
is considerably smaller. Forwarding requires heavier link
traffic since messages will be sent through more than one
link. In other words, our new algorithm utilize the min-
imum amount of network capacity at the expense of the
introduction of the buffers.

3.1 Algorithms and Lower Bounds

We show that for every degree d instance of the MMc
problem one can construct in linear time. with respect to
input length, 2 schedule with total communication time
42/l + 1 — 1 when there aré I input buffers. Before we
present this result it is convenient 10 consider Procedure
Coloring that guarantees that all the messages will be de-
livered by time d*/1 — d/l + d. Then we give Procedure
Ordered-Coloring, which is a slight modification of Proce-
dure Coloring, but generates @ solution with total commu-
nication time e2/i+1-1 This is better than the previous
one since by definition [ < d. Butnote that both procedures
generate 2 sotution with identical total communication time
in the extreme cases, ie.,whenl= 1and! =d.

Let P be any 7 processor instance of the M Mc prob-
Jem of degree d. We assumé that d is a multiple of the num-
ber of buffers, I. First we define the set of d? /1 colors as
follows: {(3,/)11 <1 = dand1 < j < d/l}. Now assign
an order (1 < @ < d) to all the bundles emanating from
each vertex. Now agsign the value of 1 to | incoming edges
to each processor, the value of 210! incoming edges 0 each
processor, .- - and the value of d/ltwol incoming edges t0
each processor. Assign color (i, ]) to edge e = {p,q}ife
belongs to the ith bundle emanating form vertex p, and e is
assigned the value of j asan incoming edge to vertex g.

Now we construct 2 schedule with total communica-
tion time d2/1 — d/l+ das follows. All the messages col-
ored (i,1) are transmitted at time i, for 1 < i < d. Since
for each processor there are at most [ messages incoming
with the color (i,1) it then follows that none of the buffers
for the processors will overflow. But it may be that for one
Of MoTe processors there are [ messages that arrive at time
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d. So one needs | — 1 time units to empty au uic poTisien T
So the transmission and reception of all the (i,1) messages
takes d + | — 1 tme units. The same arguments can be ap-
plied to each of the d /1 — 1 groups of messages (i, 2), (4 3),
..., (i,d/l),and conclude that each group transmission can
be achieved during the same communication time period.
Therefore the total transmission time is a1~ d/l+d.

Theorem 3.1 The informal al gorithm described above
generates d communication schedule with total communi-
cation time at most a2l —dfl+ d for every degree d in-
stance of the MMc when there are L buffers. Furthermore,
the algorithm takes linear time with respect to the number
of nodes and edges in the multigraph.

Proof: The proof follows the same arguments discussed
above.
O
We now show that the bound d?/l — d/l + d is best
possible for the algorithm given above by providing a prob-
lem instance for which it is tight.

Example 3.1 For any integer d > 1, we define problem
instance 14 as follows. The number of processors isn =
ded! + d. Processors Py, Py , Py just send messages
and the remaining processors P;gford = (J1,d2: - - .jd)
and 1 < i < d, where each j; € 1 ¢ d), i.e., each g is
an integer whose value is between 1 and d. Each processor
Py for J = (j1.J2> - - jg) and 1 < i < d, receives a
message from the jyth bundle of processor P,. Note that the
for every J there are d\ different processors that receive
their messages for the same set of d bundles.

Theorem 3.2 When we apply the above algorithm to the
problem instance I, results ina solution where every pro-

cessor receives at least one message at each time unit from
rime 1 to time d* /1 — @/L+ d.

Proof: Lets consider first Example 3.1. Assume that the
algorithm assigns the values 1 to the first [ edges incoming
to a vertex, the value of 2 to the second ! edges incoming
to a vertex, and so on. Assume that for every J all the d!
processors P, ; have a different ordering for the bundles
where the edges incoming to the processor originate. Since
there are d incoming edges to all of these processors and all
these processors have their edges originating on the same
set of d bundles, it then follows that this is always possible.

Tt is easy to see that the set of messages colored (3, §)s
forsome 1 <1 < dand1 < j <1, isnot empty simply
because every bundle coming out of a processor Py, is not
empty and it has a edge that ends in the d processors P g
for some ¢ and J. The edge will be in position 1,2, ..., din
these processors sO there will be an edge colored (i, j) for
a1 <i<d and1 < j <1 Therefore, when the messages
colored (i, j) are being sent, at least one processor receives
a message.

We need to show thatfor1 €1 < d one cannot com-
mence with the delivery of the messages colored (4 + 1, 1)




until [ — 1 time units have elapsed after the messages col-
ored (i, d) are delivered. Consider the d! processors P; s,
forJ = (1,1,...,1,d,d,...,d), where there are il entries
with ds and d — 4l entries with 1s. For one of the processors
P; ; all the messages that originate at the bundles labeled
d will appear before those originating at the the bundles
labeled 1. Therefore the processor has ! messages colored
(4, d) and ] messages colored (i+1, 1) One of the messages
colored (4, d) will be received by the processors at the time
it is sent, but the ( — 1) remaining messages will received
during the next I — 1 steps. The same arguments can be
used for 1 < ¢ < d. For the case when ¢ = d one can use
the same argument, i.., that there is a processor with [ — 1
messages in its buffer at the time the last message is sent.

This completes the proof of the theorem.

a

The above theorem establishes that for the algorithm
given above the total communication of the schedules gen-
erated is best possible. That does not prove that there is no
algorithm that generates solutions with smaller total com-
munication time. Further improvement to the total com-
munication time may be achieved by overlapping the time
used to empty the buffers and the transmission of the mes-
sages with higher labels. Luckily it is possible to do this by
a slight modification of the algorithm given above. In what
follows we present the new algorithm. We show that for
every degree d instance of the M M ¢ problem one can con-
struct in lineartime, with tespect to input length, a schedule
with total communication time d? /I +{ + 1 when there are
[ input buffers.

Again, we assume that d is a multiple of the number of
buffers, [. First we define the set of d2/1 colors as follows:
{(,H1 < i < dand1 < j < d/l}. Now assign an
order (1 < i < d) to all the bundles emanating from each
vertex. Now we depart from the previous algorithm. Each
incoming edge to a processor will be assigned a label which
is just the index assigned to the bundle where it emanates,
i.e., an integer value between 1 and d. We order all the
incoming edges to each processor in ascending order of its
label. This can be easily done via Radix sort in linear time.
Now with respect to this order assign the value of 1 to the
first [ incoming edges to each processor, the value of 2 to
next | incoming edges to each processor, ..., and the value
of d/1 to last | incoming edges to each processor. Assign
color (4, j) to edge e = {p, ¢} if e belongs to the i*" bundle
emanating form vertex p, and e is assigned the value of j
as an incoming edge to vertex q.

Now we construct a schedule with total communica-
tion time d? /I + [ + 1 as follows. All the messages colored
(4,1) are transmitted at time ¢, for 1 < ¢ < d. Since for
each processor there are at most [ messages incoming with
the color (7, 1) it then follows that none of the buffers for
the processors will overflow. But it may be that for one
or more processors there are | messages that arrive at time
d. The beauty of the new algorithm is that one may over-
lap the process of emptying the buffers after all the mes-
sages colored (4,) and the messages (7, + 1) are sent

340

forall 1 < § < d. This means that the transmission and
reception of all the (i, 1) messages takes d + [ — 1 time
units, but the last { — 1 units of time may be overlapped
with the transmission of the 4, 1) messages. The same ar-
guments can be applied to each of the d/l — 1 groups of
messages (4, 2), (4,3), ..., (¢,d/l), and conclude that each
group transmission can be achieved during the same com-
munication time period. Therefore the total transmission
timeisd* (d/l —1)+d+1—-1=d*/l+1+1

Theorem 3.3 Procedure Ordered-Coloring  described
above generates a communication schedule with tatal
communication time at most d2/l + 1 + 1 for every
degree d instance of the M M¢ when there are | buffers.
Furthermore, the algorithm takes linear time with respect
to the number of nodes and edges in the multigraph.

Proof: The proof follows the same arguments discussed
above, except that we need to show that there is no overflow
of buffers when we send the messages (¢, 7) for1 < < d
and 1 < j < d. The same arguments as before apply for
the case of the messages colored (,1) for1 < i < d. Since
the proof for the case for all values of j is very similar, we
only prove the case for j = 2.

Consider the case when one is sending the messages
colored (1,2) and let us consider any processor Q) that re-
ceives any subset of those messages. Clearly all of these
messages belong to bundle 1 of some processors. All of
the incoming messages to processor () were ordered ac-
cording to their labels which are just the index of their bun-
dles. Since the messages colored (1, 2) have label 1, it then
follows that all the messages received processor () during
the (i, 1) process were colored (1, 1). But that was d time
units ago, so the buffer is empty now since [ < d. The same
argument can be applied to all the messages colored (4, 2).
This concludes the proof of the theorem, since the proof of
the cases when 7 > 2 is similar.

O

We now establish a lower bound for the total commu-
nication time required by any algorithm. The proof of the
lower bound for the case when [ = 1 is given in [2].

Let us now establish a lower bound for the case when
| = d. Consider Example 3.2 given below which is a re-
stricted version of Example 3.1.

Example 3.2 For any integer d > 1, we define prob-
lem instance Iy as follows. The number of processors is
n = d% + d. Processors Py, Ps, ..., Py just send messages
and the remaining processors Py for J = (j1,j2,- - ja)
where each j; € [1 : d], i.e., each j; is an integer whose
value is between I and d. Each processor P; for J =
(j1,J2s - - - Ja), receives a message from the jith bundle of
processor P.

For the problem instance given in Example 3.2 we
know that processor P; must send the messages emanat-
ing out of one of its bundles for the first time at time d
or later simply because there are d bundles emanating out




of P; and no two messages belonging to different bundles
may be sent concurrently. The same holds Py, Ps, ..., Py.
. Lets say that these were bundles (j1, ja, ..., Jja). Let J =
- (J1,d25-.-,Jda). Now processor P, receives a message
" from all of these bundles at time d or later. To empty its
buffer it requires at least d — 1 time units. Therefore, the to-
tal communication time of every solution is at least 2d — 1.
Let us now consider the case when [ = d/2. Given
any two bundles emanating from different processors it is
not possible to send all their messages during the same time
unit. Therefore in a schedule with total communication
time at most 2d— 1 can have at most 2d — 1 bundles sending
their messages just during 1 time period. So we know that
there is a processor for which all the messages emanating
from at most one bundle are sent during one period of time
and at least d — 1 bundles need to be sent each during two
or more time periods. Therefore the total communication
time is at least 1 + 2(d — 1) = 2d — 1. Our schedules have
total communication time equal to 2d + d/2 — 1, which is
about 25% from the lower bound.
We conjecture that similar lower bounds can be estab-
lish for all values of I. For brevity we cannot include our
preliminary results here.

4 Discussion

We have shown the buffers, a relatively inexpensive ways
to speed-up communication, can be used to generate so-
lutions that require considerable smaller total communica-
on time than that required for the A/ M¢ problems. The
solutions are similar to the ones obtained for the M M F¢
problems. However they can be generated much faster than
for the M M F¢ problem. Furthermore, the solutions pre-
sented in this paper use the fewest number of communi-
cation links since messages are sent directly, rather than
indirectly though several links. The most important open
problem is to determine whether or not buffers can be used
to reduce the total communication time for the MM Fo
problem to obtain communication schedules with at most
3d/2 communication rounds.

We have established tight lower bounds when ! = 1
and | = d, as well as almost tight bounds when [ = d/2.
We conjecture that our solutions are almost tight for all val-
ues of [.
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