SCHEDULING INDEPENDENT TASKS TO MINIMIZE COMPUTATION AND
COMMUNICATION MAKESPAN IN DISTRIBUTED SYSTEMS

Teofilo F. Gonzalez
Department of Computer Science
University California
Santa Barbara, CA 93106-5110, USA
email: teo@cs.ucsb.edu

ABSTRACT

We study the problem of scheduling tasks in a distributed
system where the data (and code) for a program may re-
side on a processor different from the one where it will be
executed. The scheduling of the tasks is complex as one
must balance execution and communications times. We
present an off-line polynomial time approximation algo-
rithm for the case when the processors can be split into
storage (client) and processing (server) nodes. Our algo-
rithm is the first constant ratio approximation algorithm for
this problem. Then we discuss generalization of our prob-
lem as well as the on-line version of our problem.

KEY WORDS
Deterministic  scheduling, —approximation algorithms,
client-server model, dual optimization criteria.

1 Introduction

Scheduling problems arising from several research areas
have been studied for more than five decades. The initial
work was in operations research, computer science, and
applied mathematics. More recently scheduling has been
studied in the context of parallel, cluster, and grid comput-
ing. Our model falls under the broad umbrella of schedul-
ing data-intensive distributed applications as well as grid
scheduling. Heuristic algorithms for different variations of
our problem were initially reported in [1, 2, 3, 4]. Our al-
gorithm is the first constant ratio approximation algorithm
for our scheduling problem, i.e., the schedule makespan is
guaranteed to be within a given percentage of the optimum
one. In this paper we discuss the problem of scheduling
in distributed systems where the data (and code) for a pro-
gram might not reside on the processor that will process the
program. This scheduling problem is more complex than
traditional ones, as we need to balance processors so that
the total processing time of the programs assigned as well
as the time required to transmit the data needed to process
the program.

The system consists of a set of M nodes denoted by
1,2,...,m. Each node j consists of m; processing ele-
ments (processors). For example, a node may be a parallel
processor system, a cluster of computers, or a single com-
puter with one or more cores. There are n independent

tasks denoted by 1,2,...,n to be processed. Task ¢ re-
quires t; units of time to be scheduled for processing by a
processing element.

The data (and code) for each task i is initially assigned
to node s; and, depending on the number of processing el-
ements at the nodes and the total demand on the system,
the task may or may not end up being scheduled for exe-
cution by a processor in node s;. If a task is not scheduled
to be executed by one of the processors in node s;, then
data requiring d; units of time need to be transmitted from
node s; to the node where task ¢ is to be processed. All the
task’s data must be available before a processor can start
processing of the task. The data communication between
nodes is performed through a channel in the communica-
tion network N. Each node j has c¢; bi-directional chan-
nels. The basic assumptions we make is that any one-to-
one interconnection between nodes through the channels
is supported by the communication network, and that the
routing to achieve this data interchanges can be computed
in polynomial time. As a large number of interconnection
networks satisfy these properties, the assumptions are not
restrictive. From these assumptions we know that each data
(file) to be sent from node ¢ to node j we need to specify
the time interval when the communication will take place,
the out channel to be used in node ¢ and the in channel to be
used in node j. Of course, the restriction is that data from
two or more programs cannot be transferred using the same
channel of the same node at the same time.

In this paper we consider the bipartite version of the
problem when the set of nodes is partitioned into two sets
called: Storage (Client) and Processing (Server) nodes.
The data needed by the tasks is stored at the storage nodes
and the processing of the tasks is to be performed at the
processing nodes. To simplify the notation, assume that the
first w nodes (1,2, ..., w) are the storage nodes, and the
remaining ones (w + 1,w + 2,...,m) are the processing
nodes. It is assumed that the number of channels for each
of the processor nodes is identical, i.e., ¢; is equal to the
number of processors at node (n;). In every storage node
we pair together processors and channels, in such a way
that there is a 1-1 correspondence between processors and
channels. For the storage nodes, c; > 1.

Given a set of independent tasks, their location and
data requirements, our problem is to find the node, pro-



cessor, and time at which each task is to be executed, as
well as the channels and time where the data (file) required
by each task needs to be transmitted. Our scheduling at-
tempts to balance as much as possible the processing and
communication times. We discuss the centralized (offline)
algorithm to be processed by a central processor that knows
all the global information. In Section 5 we discuss the por-
tions of our scheduling algorithm which can be performed
significantly faster in a distributed (on line) fashion when
processors know only local information.

In Section 2 we discuss some well-known schedul-
ing procedures that our algorithm will invoke as sub-
procedures. Our scheduling algorithm is discussed in Sec-
tion 3. In Section 4 we discuss a new approximation algo-
rithm for the two-component vector scheduling problem,
which is a central component of the proposed scheduling
algorithm in this paper. Then in Section 5 we discuss ex-
tensions of our results.

2 Preliminaries

In this section we survey well-known scheduling problem
as well as exact and approximation algorithms for their so-
lution. These algorithms are used by the approximation
algorithm proposed in this paper.

2.1 Openshop Scheduling

An openshop consists of m > 1 machines, and n > 1
jobs. Each job consists of m tasks. The 5" task of job
i must be processed by the j** machine for ps; = 0time
units. We use 7 to denote the number of tasks with non-zero
processing requirements and we use the triplet (P,n,m)
to denote a problem instance. A schedule is an assign-
ment of each task to its corresponding machine for a to-
ta] of p; ; time units in such a way that at each time unit
at most one task from each job is assigned to a machine,
and each machine is assigned at most one task at a time. A
non-preemptive schedule is one where every task must be
scheduled for processing without interruption. In a pre-
emptive schedule the processing of a task may be inter-
rupted and resumed at a later time. The makespan (finish
time) for schedule S, denoted by f(S9), is the latest point
in time a task is scheduled to be processed by a machine.
The minimum makespan openshop scheduling problem is
giving any problem instance construct a schedule with min-
imum finish time (makespan).

Given an instance (P, n,m) of the openshop problem,
let y; be the total time that machine j must be busy pro-
cessing tasks, and x; be the total time that job ¢ needs to
be processed. Let t = max{x;, y;}. Gonzalez and Sahni
[5] have shown that there is always a preemptive schedule
with makespan ¢ and one such schedule can be constructed
in O(r(min{r,m?} + mlogn)) time.! The makespan is

IThe preemptive openshop problem can be modeled as the problem of
coloring the edges in a multigraph [6].

best possible. Furthermore, when all the p; ;s are integers,
there is a schedule where preemptions occur only at integer
points, and one such schedule is generated by the algorithm
in Ref. [5]. For the case of non-preemptive schedules, the
problem is NP-complete even when there are only three
machines. There are several approximation algorithm for
both versions of the problem. The fastest and simplest one
is an O(r log m) time list scheduling algorithm that gener-
ates schedules with makespan at most two times the opti-
mum makespan [6].

2.2 Scheduling Identical Processors

The problem of scheduling independent jobs on identical
machines is a well known problem that has been studied
for the past four decades. The input to the problem is
a set of n independent jobs with execution time require-
ments given by p; > 0 to be scheduled for processing
on m identical machines. A schedule is an assignment of
jobs to machines in such a way that at any given time ev-
ery machine is scheduled to process at most one job and
each job is assigned to at most one machine. A schedule
is non-preemptive if every job is scheduled for processing
during one continuous time interval, Otherwise the sched-
ule is called preemptive. The makespan (finish time) for
schedule S, denoted by f(S) is the latest point in time a
job is scheduled to be processed by a machine. The mini-
mum makespan identical machine scheduling problem is to
construct for any instance of the problem a schedule with
minimum finish time (makespan). Constructing an opti-
mum makespan preemptive schedule for any instance of
this problem takes linear time with respect to the number
of jobs and machines. However, the corresponding non-
preemptive scheduling problem is an NP-complete prob-
lem. There are many well known algorithms to generate
near-optimum non-preemptive schedules, e.g., List [7] and
LPT [8] schedules. The former procedure generates sched-
ules in O(nlogm) time with a makespan that is within 2
times the optimum makespan, and the latter algorithm takes
O{nlogn) time and generates schedules with makespan at
most (4/3 — 1/3m) times the optimum makespan. Ad-
ditional information about scheduling identical processors
can be found in [6, 9].

2.3 Vector Scheduling on Identical Machines.

The vector scheduling problem for identical machines
is a well known generalization of the above problem.
The difference is that the processing requirement of
each job is given by d-component vector, for example
Pi1,Di2,- .- Did- The makespan (finish time) of a sched-
ule S, denoted by f(S), is the maximum over each ma-
chine j and component % of the sum of the processing time
of the k*" component of the jobs assigned to machine j
in schedule S. For this problem we are just interested in
non-preemptive schedules. There is a simple O(n logm)
time algorithm that generates schedules with makespan at



most d + 1 times the optimum makespan [10]. Chekuri and
Khanna [10] developed an algorithm that generates sched-
ules with makespan at most O(In* d) times the optimum,
as well as one with a smaller approximation ratio, O(In d),
for the case when d is bounded by a constant. However, the
constant associated with the approximation ratio is not so
small, Chekuri and Khanna [10] developed a polynomial
time approximation scheme (PTAS) for the case when d is
bounded above by a constant. However this algorithm is
very slow in practice. In Section 4 we present a fast linear
time algorithm that generates schedules with makespan at
most 2 times the optimum makespan.

3 Approximating the Bipartite Problem

As we said before we consider the bipartite version of the
problem where the set of nodes is partitioned into two sets
called: Storage (Client) and Processing (Server) nodes.

Let us outline our two-phase approximation algo-
rithm based on restriction, i.e., generate a schedule for a
restricted version of the bipartite problem. The restriction
is in the type of schedules it generates. The schedules con-
sist of two separate portions (phases) of a communication
schedule that takes care of all the communications, fol-
lowed by a computation schedules that takes care of all the
processing. The general approach for our scheduling algo-
rithm is as follows.

e Determine the processor where each task ¢ is to be
executed and identify the corresponding (in-) channel
to be used to receive the data for task s.

e Determine the (out-) channel to be used to send the
data for task 1.

e Construct the communication schedule Comm, i.e.,
determine the actual time when the data required by
the tasks will be sent from the storage node via the
out-channel to the receiving processing node via the
in-channels.

e Construct the computation schedule Comp, i.e., de-
termine the actual time when each task is to be pro-
cessed.

The basic steps of the above procedure are imple-
mented by solving different scheduling problems. The first
step is implemented by solving a two-component vector
scheduling problem; step two by scheduling a set of inde-
pendent jobs on identical machines; the third one by solv-
ing an openshop scheduling problem; and the last ope, is
the simplest one, as the ordering is determined by the or-
dering of the data arriving to the processor. In what follows
we explain the step in our procedure and then we formally
specify our algorithm.

Step 1: We determine the processor and in-channel to
be used to process and receive the data for each task. This is
established by constructing a schedule Sy (by the algorithm

given in Section 4) for the two-component vector schedul-
ing problem P; defined below. Let p be the total number
of processors (as well as the number of in-channels) in the
processing nodes, i.e., p = Z;n:wl n;, and ¢ be the total
number of out-channels for the data required to process the
tasks, ¢ = Z}ﬂ:l n;. The first ny,41 processors correspond
to node w1, the next n,, o processors correspond to node
w + 2, and so on.

We construct the instance P; of the two-component
vector scheduling problem as follows. For each task 7 we
define job 4 with its z-component as ¢; and its y-component
as d;. Define

2o di

t.
T = min {_Zp_”’ maz t;}, D = min {<—, maz d;}
P

and L = maz {T, D}.

Clearly the z-component and y-component of each one of
the tasks is a value between 0 and L. The sum of the z-
components of all the tasks is at most pL and the sum of the
y-components of all the tasks is at most pL. We construct
a schedule S for the instance P; by using the linear time
algorithm given in Section 4. All the tasks assigned to the
same machine in schedule S will be assigned to the same
processor for their execution and their data will be received
by the in-channel corresponding to the processor.

As we establish in the next section, in schedule S
all the tasks assigned to the same machine are such that the
sum of their z-component is at most 2. and the sum of their
y-component is at most 2L. Therefore, every processor will
be running tasks for at most 2L time units, and every in-
channel will be receiving data for at most 2L units of time.

Step 2: Now lets decide the out-channel to be used
to send the data for each task to the processor where the
task will be executed. For every storage node k, our al-
gorithm partitions the data stored at node j into ¢; groups
(remember ¢; is the number of out-channels). The data for
each task assigned to each group will be sent via a different
out-channel to the node where the processing of the task
will take place. This partitioning is such that the sum of
the communication times of all the data for the tasks as-
signed to any of the out-channels is least possible. It is
well known that this partitioning problem is NP-hard under
the assumption that all the data needed by a task has to be
transmitted using the same channel.? For this version of
the problem one can generate a near-optimum solution by
modeling the partitioning problem as an instance P; of the
problem of scheduling independent jobs on identical ma-
chines (which is the same as the single-component vector
scheduling problem). The execution time for the job is the
time required to transmit the data for the task. We can use
any of the scheduling algorithms discussed in the previous
section to produce a near-optimum schedule S, which is
then used to obtain near-optimum balanced partitions. If

2However, if one can transmit the data using two or more channels,
even if one can only transmit the data on one of the channels at a time, the
complexity of the problem is different.



we use list scheduling [7] then one can construct schedules
with makespan at most 2 times the makespan of an opti-
mum schedule in O(n log m) time. On the other hand, LPT
generates schedules with makespan (finish time) at most
(4/3 —1/3m) times the makespan of an optimum schedule
[8l.

To summarize, we have determined for every task %
the out-channel that will be used to send the data it needs
as well as the in-channel that will receive it, and the corre-
sponding processor where the task will execute. We need
to construct the communication schedule Comm and the
computation schedule Comgp.

Step 3: The timing of all the communication events is
obtained by modeling the problem as an openshop schedul-
ing problem, which we define below. Before defining the
openshop instance P; it is convenient to begin by defining
the bipartite multigraph G consisting of the set of vertices
X and Y. Each vertex in set X represents a storage node
and one of its communication out-channels. Similarly, each
vertex in set Y represents a processor in a processing node
and its corresponding communication in-channel. At this
point we know the out-channel and in-channel for the trans-
mission of the data for each task. So we use this informa-
tion to define the edge for each task joining a vertex in X to
a vertex in Y. The weight of the edge is d;, the communi-
cation requirement to transmit the data for the correspond-
ing task. Each node in X represents a job and each node
in Y represents a machine in the instance of the openshop
problem FP3 we construct. We define as p; ; the sum of the
weight of the edges joining vertex ¢ in X to vertex jin Y.
Let z; to be the sum of the weight of the edges incident to
vertex 7 in X, i.e. Zj Ps.4, let y; to be the sum of weight of
the edges incident to vertex j in Y, i.e. >, p; ;. We define
t as max {z;, y; }. From [5] we know that there is a pre-
emptive communication schedule S3 with makespan ¢ for
P3. The schedule S5 for the actual processing of the jobs
by the machines can be constructed by using well known
algorithms [5]. From schedule S5 one can construct sched-
ule C'omm that gives the specific times when the data for
task ¢ must be transmitted from the storage node where it
resides to the processing node where it will be processed
using the channels that have been previously selected.

Step 4: The computation schedule Comp is con-
structed in this last stage. L.e., we determine the exact times
when the processing of the tasks will take place. Since
we already know which tasks will be processed by each of
the processors, the ordering of the tasks may be arbitrary.
However, to reduce the makespan, it is better to use the or-
dering given by the arrival of the data for the tasks at each
in-channel. Therefore Comm is the schedule based on this
ordering where task ¢ will start processing at the latest of
{t1,t2}, where t; is the time at which all the tasks in the
ordering before task ¢ have completed and t2 is the time
at which all the data for task ¢ has arrived to the processor
where the task is to be processed.

Our two-phase algorithm is formally defined below.

Two-Phase Algorithm
Letp = 377L ., ny; //number of processors.
Letg = >7_; nj; //mumber of out-channels

/I Step 1: Determine the processor where each task 4 is to
// be executed and identify the corresponding in-channel
// to be used to receive the data for task 3.
Construct the instance P of the two-component vector
scheduling problem as follows.
For each task ¢ we define its z-component as ¢; and its
y-component as d;.
T = min {%, max ti}; D = min {Z;—", max d; }
D =min {Zpdi7 maz d;}; L = max {T, D}
Construct schedule Sy for P via the algorithm given
in Section 4;
Assign all the tasks corresponding to the jobs scheduled
on the same machine in Sy to the same processor and
corresponding in-channel.

// Step 2: Determine the out-channel to be used to send
the data for task <.

For each storage node k define an instance P; of the
problem of scheduling independent jobs on identical
machines. For each task stored at node k define a
job with execution time equal to the d;, the time
required to transmit the data for task j which is
stored in node k, and define the number of
machines as cy.

Use the list scheduling [7] to construct a non-preemptive
schedule S5 for Ps.

All the tasks corresponding to the jobs assigned to the
same machine in S will be using the same out-channel
in storage node k.

// Step 3: Construct the communication schedule Comm,

Define the bipartite multigraph G = (X UY, E).
There is a vertex in X for each storage node and one

of its communication out-channels.
There is a vertex in Y for each processor in a
processing node and its communication in-channels.
For each task 7 we define an edge from the vertex in
x representing the out-channel O; to the vertex
in'Y representing the in-channel p; with the
weight of the edge equal to d;.

Each vertex in X represents a job and each vertex in ¥
represents a machine in the instance of the openshop
problem P3 we construct.

Let p; ; the sum of the weight of the edges joining
vertex ¢ in X to vertex jin Y
T = D0 Digs Yj = 2 Pigs t = maz {z, y;}-

The algorithm in Ref. [5] constructs the preemptive
schedule S3 for Ps with makespan .

Schedule C'omm, which can be easily constructed from
S3, defines the specific times when the data
for task 7 must be transmitted from its
in-channel to its out-channel in such a way



that each channel transports the data for at
most one task at a time.

// Step 4: Construct the computation schedule Comp
Construct the schedule Comp that specifies for each
processor the order in which the tasks assigned to it
are to be processed. The ordering is the same one as
the order in which their data arrives to the processor
in its in-channel.
End of Two-Phase Algorithm

Theorem 3.1 Our two-phase algorithm takes O(np(p +
log q)) time and generates schedules with makespan at
most four times the makespan of an optimum schedule.

Proof: The number of tasks, nodes, processors and
out-channels is n, m, p and g, respectively. In Step 1
we construct an instance of the two-component scheduling
problem. Constructing this instance takes O(n + p) time
and constructing a schedule for the instance takes O(n +p)
time (Section 4).

Step 2 constructs an instance of the identical ma-
chine scheduling problem. This can be accomplished in
O(n-+q) time and constructing an LPT schedule for it takes
O(nlog g) time [8].

Assigning the actual time when the data for each task
will be transmitted from the out-channel to the in-channel
is determined by solving an instance of the openshop pre-
emptive scheduling problem. Constructing the instance P3
of the openshop problem takes O(n + p + ¢) time. Con-
structing the schedule S for the openshop instance takes
O(np(p + log q)) time, as the number of processors is p,
the number of jobs is ¢ and the number of non-zero tasks is
O(n)) I51.

Finally, Step 4 takes time O(n-+¢), as one may simply
use the ordering of the data arriving to each processor.

Hence, the overall time complexity is dominated by
the solution to the instance Ps of the openshop problem,
which takes O(np(p + log ¢}) time.

Let us now determine the approximation factor for our
approximation algorithm. The total time required to pro-
cess the tasks is at most 2L, where L is a lower bound for
the total time required for the processing of the tasks by the
p processors and a lower bound for the total time required
to receive all the data by the p in-channels.

The total time required to send all the data for the
tasks by the ¢ processors is at most (4/3—1/3m)L’, where
L’ is alower bound for the time required to send all the data
by the g processors.

The solution to the openshop problem is a commu-
nication schedule with makespan at most max{2L, (4/3 —
1/3m)L'}. Therefore, the makespan of the communication
schedule is at most 2L. Since an optimum makespan, f*
is at least min{ L, L'}, it then follows that the schedule we
have constructed has makespan at most 4 f*, where f* is
the makespan of an optimum schedule. This concludes the

proof of the theorem.
0O
From the proof of Theorem 3.1 on can gather that
the time complexity is dominated by the time required to
solve the openshop problem P;. A sub-optimum algorithm
for the openshop problem (Sub-section 2.1) can be used at
the expense of increasing the makespan. This results in a
schedule with makespan at most 8 times the optimum one,
and the time complexity is dominated by O(n log g).

4 Approximating the Two Component Vec-
tor Scheduling Problem

In this section we present an algorithm to construct a sched-
ule with makespan at most twice the finish time of an op-
timum makespan schedule for the two-component vector
scheduling problem. The two-component vector schedul-
ing problem consists of n independent jobs and m identi-
cal machines. Job ¢ has the two-component pair (x;, y;)
specifying its two component processing time. Define
T = min {Eﬁlﬁ? maz x;i}, D = min {Z;—n@—, maz yit,
and L = maz {T, D}. During the construction of our
schedule we assign jobs to machines. Let P; be the set of
jobs assigned to processor j. We say that j, (j,) is the
sum of the x-component (y-component) of the jobs in P;
assigned to it. A processor is said to be of type

, if0<j, <L and 05, < L

, L <jz; <2L and 0 < j, < L;

vy f0<gy; <L and L <j, <2L; and
g, ifL <7y <2L and L < jy < 2L.

T

&3

We say that a job ¢ fits in processor j if the z-
component of job ¢ plus j, is at most 2L, and the y-
component of job 7 plus j, is at most 2L. Processors j
and j  are said to be x-compatible and y-compatible if
Jo + j; < 2L and j, + jly < 2L, respectively. Pro-
cessors j and j/ are said to be xy-compatible if they are
both z-compatible and y-compatible. Processors j and ;'
are said to be incompatible if they are not z-compatible
nor y-compatible. Initially every processor is said to be
unmatched. During the execution of our algorithm we
will identify pairs of processors and say that each pair is
matched in such a way that each processor will be matched
to at most one other processor.

Procedure Approx (X,Y,n,m)
Initially P; is empty for 1 < 5 < m and therefore
all processors are of type E;
fori=ltondo
case
:There is a type E processor:
Let j be a type E processor;
Assign job 4 to processor j;
:else:
Let j be an unmatched type F}, processor;
Let jl be an unmaiched type [, processor;



while job ¢ does not fit in processor j or j, do
case
:Processors j and j are xy- compatible:
Move all jobs from j to processor j;
:Processors j and _] are mcompatlble
Match processors j and j ;
Let 7 be an unmatched type F;; processor;
Let j be an unmatched type F, processor;
:Processors j and j are - compatlble
while a _]Ob i a551gned to j fits in processor § do
Move job i fromj toj
endwhile
1f processor s type I, then
Let 5 be an unmatched type F; processor;
:Processors j and ] are y-compatible:
whilea _]Ob i a551gned to j fits in processor ] do
move job ¢ from j to j
endwhile
if processor jistype F, then
Let j be an unmatched type F, processor;
endcase
endwhile
if job < fits in processor j
then assign job ¢ to processor y,
else assign job ¢ to processor j ;
endfor
endcase
endfor
End of Procedure Approx

Lemma 4.1 The above algorithm generates a schedule
with finish time at most 2L for any two-component vector
scheduling problem.

Proof: For brevity we do not include the proof.

5 Discussion

We have presented a two-phase algorithm takes O(np(p +
logg)) time and generates schedules with makespan at
most four times the makespan of an optimum schedule for
the case when the set of nodes is partitioned into storage
and processing nodes. We have shown that the time com-
plexity bound can be decreased to O(nlog g), but then we
can only guarantee solutions that are within eight times the
optimal one. Our algorithms can be extended for other
cases, but for brevity we cannot include these results. Other
versions of interest are when processors have different pro-
cessing speeds and when all processors are both storage
and processing nodes.

Another interesting problem is to transform our al-
gorithm to a distributed one. The portion that is trans-
formable to a distributed on-line algorithm is the solution
to the openshop problem by using the algorithm developed
by Anderson and Miller [11]. However one needs to solve

on-line the other scheduling problems. List scheduling is
an on-line algorithm, but it is not a distributed one. Trans-
forming it to a distributed one as well as transforming our
algorithm for the two-component vector scheduling prob-
lem, while maintaining the same approximation ratjos at
the same time decreasing significantly their time complex-
ity bounds, are challenging open problems.

References

[1] Ranganathan, K. and Foster, 1., “Computation and
Data Scheduling in Distributed Data Intensive Appli-
cations,” Proc. of HPDC’02, July 2002.

[2] Beaumont, O., Legrand, A., and Robert, Y., “Optimal
Algorithms for Scheduling Divisible Workloads on
Heterogeneous Systems,” Proc. of IPDPS’03, 2003.

[3] Lampsas, P., Loukopoulos, T., Dimopoulos, F.,
and Athanasiou, M., Scheduling Independent Task
Scheduling in Heterogeneous Environments under
Communication Constraints,” Proc. of PDCAT 06,
2006.

[4] Loukopoulos, T., Lampsas, P., and Sigalas, P., Im-
proved Genetic Algorithms and List Scheduling Tech-
niques for Independent Task Scheduling in Dis-
tributed Systems, Proc. of PDCAT 2007, 67 — 74,
2007.

[5] Gonzalez, T.F. and Sahni, S., “Open Shop Scheduling
to Minimize Finish Time,” JACM, 23(4), 665 — 679,
1976.

[6] Leung, J. Y-T., ed., Handbook of Scheduling: Algo-
rithms, Models, and Performance Analysis, Chapman
& Hall/CRC, 2004.

[7] Graham, R.L., “Bounds for Certain Multiprocessing
Anomalies,” Bell System Tech. J, 45, 1563 — 1581,
1966.

[8] Graham, R.L., “Bounds on Multiprocessing Timing
Anomalies,” SIAM J. of Applied Math., 17(2), 416 -
429, 1969.

[9] Gonzalez, T.F, ed., Handbook of Approximation Al-
gorithms and Metaheuristics, Chapman & Hall/CRC,
2007.

[10] Chekuri, C. and Khanna, S., “On Multidimensional
Packing Problems,” SIAM J. on Comput., 33(4), 837 -
851, 2004.

[11] Anderson, R.J. and G. L. Miller, G.L., “Optical Com-
munications for Pointer Based Algorithms,” TRCS
CRI 88 - 14, USC, 1988.



