Improved Multimessage Multicasting Approximation Algorithms

T. F. Gonzalez
Department of Computer Science
University of California

Santa Barbara, CA, 93106

Abstract

We consider Multimessage Multicasting over the n

processor complete (or fully connected) static network
(M Mc). We present a fast approximation algorithm
with an improved approximation bound for problem
instances with small fan-out (maximum number of
processors Teceiving any given message), but arbitrary
degree d, where d is the maximum number of messages
that each processor may send (receive). These prob-
lem instances are the ones that arise in practice, since
the fan-out restriction is imposed by the applications
and the number of processors available in commercial
_ systems.
"% Qur algorithms are centralized and require all the
communication information ahead of time. Applica-
tions where this information is available include itera-
tive algorithms for solving linear equations and most
dynamic programming procedures. The Meiko CS-2
machine and in general computer systems with pro-
cessors communicating via dynamic permutation net-
works whose basic switches can act as data replicators
(e.g., n by n Benes network with 2 by 2 switches that
can also act as data replicators) will also benefit from
our results at the expense of doubling the number of
communication phases.

1 Introduction

1.1 The MMy Problem

The Multimessage Multicasting problem over the
n processor static network (M Mc¢) consists of finding
a communication schedule with least total communi-
cation time for multicasting (transmitting) any given
set of messages. Specifically, there are n processors,
P = {Py,Ps,..., P,}, interconnected via a network N.
Each processor is executing processes, and these pro-
cesses are exchanging messages that must be routed

~ “through the links of N. Our objective is to determine

“when each of these messages is to be transmitted so

that all the communications can be carried in the least
total amount of time. Our introduction is a condensed
version of the one in [7], which includes a complete jus-
tification for the M M¢ problem as well as motivations,
applications and examples.

Routing in the complete static network (there are
bidirectional links between every pair of processors) is
the simplest and most flexible when compared to other
static and dynamic networks. Multimessage Multicas-
ting for dynamic networks that can realize all permu-
tations and replicate data (e.g., n by » Benes network
based on 2 by 2 switches that can also act as data
replicators) is not too different, in the sense that the
number of communication phases for these dynamic
networks can be shown to be twice of that in the com-
plete network. This is accomplished by translating
each communication phase for the complete network
into two communication phases for these dynamic net-
works. The first phase replicates data and transmits it
to other processors, and the second phase distributes
data to the appropriate processors ([13], [14], [16]).
The IBM GF11 machine [1], and the Meiko CS-2 ma-
chine use Benes networks for processor interconnec-
tion. The two stage translation process can also be
used in the Meiko CS-2 computer system, and any
multimessage multicasting schedule can be realized by
using basic synchronization primitives. This two step
translation process can be reduced to one step by in-
creasing the number of network switches about 50%
([13], [14], and [16]). In what follows we concentrate on
the M M¢ problem because it has a simple structure,
and, as we mentioned before, results for this network
can be easily translated to other dynamic networks.

Let us formally define our problem. Processor F;
needs to multicast s; messages, each requiring one time
unit to reach any of its destinations. The jt* message
of processor P; has to be sent to the set of processors
T:; C P—{P;}. Let r; be the number of distinct mes-
sages that processor P; should receive. We define .tbe
degree of a problem instance as d = max{s, ri}, 1.8,
the maximum number of messages that any processor

456

/q -~y

4

or receives. We define the fan-out of a problem
instance as k = max{ | T;; | }, i.e., the maximum
number of different processors that must receive any
given message. Consider the following example.

Example 1.1 There are three processors (n = 3).
Processors Py, P2, and P3 must transmit 3, 4 and
9 messages, respectively (i.e., s = 3,82 = 4, and
s3 = 2). The destinations of these messages is:
Tvi = {2} Th2 = {3}, Ths = {2,3}, Ton = {1},
T2,2 = {1}! T2,3 = {3}: T2,4 = {1’3}! T3,1 = {1a2}7
and Ts 2 = {2}. For this ezample ry = 4, ro = 4, and
r3 = 4.

It is convenient to represent problem instances by
directed multigraphs. Each processor P; is represented
by the vertex labeled 7, and there is a directed edge
(or branch) from vertex 7 to vertex j for each message
that processor P; needs to transmit to processor P;.
The |T; ;| directed edges or branches associated with
each message are bundled together, i.e., belong to a set
for the bundle.

The communications allowed in our complete net-
work satisfy the following two restrictions.

1

During each time unit each processor may trans-
mit one message, but such message can be multi-
casted to a set of processors; and

2.- During each time unit each processor may receive
at most one message.

Our communication model allows us to transmit
any of the messages in one or more stages. lLe., each
get T;; can be partitioned into subsets, and each of
these subsets is transmitted at a different time. This
added routing flexibility reduces the total communica-
tion time.

A communication mode C is a collection of subsets
of branches from a subset of the bundles that obey

the following communications rules imposed by our
network:

1.- Branches may emanate from at most one of the
bundles in each processor; and

2.- All of the branches end at different processors.

‘ A communication schedule S for a problem instance
I is a sequence of communication modes such that each
b}'anch in each message is in exactly one of the commu-
nication modes. The total communication time is the
!atest time at which there is a communication which
2. \j‘ual to the number of communication modes in
~~dule S, and our problem consists of constructing

a communication schedule with least total communi-
cation time. From the communication rules we know
that a degree d problem instance has at least one pro-
cessor that requires d time units to send, and/or re-
ceive all its messages. Therefore, d is a trivial lower
bound for the total communication time. To simplify
the analysis of our approximation bound we use this
simple measure. Another reason is that load balancing
(placement) and multimessage multicasting (routing)
are normally separate procedures, and load balancing
must use a simple objective function in terms of the
problem instance it generates that somehow represents
the final communication time for the particular place-
ment and some reasonable routing procedure.

Using our multigraph representation one can visu-
alize the M M problem as a generalized edge coloring
directed multigraph (GECG) problem. This problem
consists of coloring the edges with the least number
of colors (positive integers) so that the communica-

" tion rules (now restated in the appropriate format)

imposed by our network are satisfied: (1) every pair of
edges from different bundles emanating from the same
vertex must be colored differently; and (2) all incoming
edges to each vertex must be colored differently. The
colors correspond to different time periods. In what
follows we corrupt our notation by using interchange-
ably colors and time periods; vertices and processors;
and bundles, branches or edges, and messages.

1.2 Previous Work, New Results, and
Applications

Gonzalez [7] developed an efficient algorithm to con-
struct for any degree d problem instance a communica-
tion schedule with total communication time at most
d?, and presented problem instances for which this up-
per bound on the communication time is best possible,
i.e. the upper bound is also a lower bound. One ob-
serves that the lower bound applies when the fan-out
is huge, and thus the number of processors is also huge.
Since this environment is not likely to arise in the near

future, we turn our attention in subsequent sections to

important subproblems likely to arise in practice.
The basic multicasting problem (BM¢) consists of
all the degree d = 1 M M¢ problem instances, and can
be trivially solved by sending all the messages at time
zero. There will be no conflicts because d = 1, i.e.,
each processor must send at most one message and
receive at most one message. When the processors are
connected via a dynamic network whose basic switches
allow data replication, the basic multicasting problem
can be solved in two stages: the data replication step
followed by the data distribution step ([13], [16], [14]).

457

This two stage process can be used in the MEIKO
CS-2 machine [7].

Gonzalez [7] also considered the case when each
message has fixed fan-out k. When k = 1 (multimes-
sage unicasting problem MUc), Gonzalez showed that
the problem corresponds to the Makespan Openshop
Preemptive Scheduling problem which can be solved in
polynomial time, and each degree d problem instance
has a d color optimal coloration. The interesting point
is that each communication mode translates into a sin-
gle communication step for processors interconnected
via permutation networks (e.g., Benes Network, Meiko
CS-2, etc.), because in these networks all possible one-
to-one communications can be performed in one com-
munication step.

It is not surprising that several authors have studied
the MUc problem as well as several interesting varia-
tions for which NP-completeness has been established,
subproblems have been shown to be polynomially solv-
able, and approximation algorithms and heuristics
have been developed. Coffman, Garey, Johnson and
LaPaugh [2] studied a version the multimessage uni-
casting problem when messages have different lengths,
each processor can send (receive) a(P;) > 1 (B(P;) >
1) messages simultaneously, and messages are trans-
* mitted without interruption (non-preemptive mode).
Whitehead [18] considered the case when messages can
be sent indirectly. The preemptive version of these
problems as well as other generalizations were studied
by Choi and Hakimi ([4], [5], {3]), Hajek and Sasaki
[11], Gopal, Bongiovanni, Bonuccelli, Tang, and Wong
[10]. Some of these papers considered the case when
the input and output units are interchangeable, i.e.,
each processor can be involved in at most ¥(P;) mes-
sage transmissions (sending and/or receiving). Rivera-
Vega, Varadarajan and Navathe [15] studied, the file
transferring problem, a version the multimessage uni-
casting problem for the complete network when ev-
ery vertex can send (receive) as many messages as
the number of outgoing (incoming) links. Our M M
problem is closest to the communication model in the
Meiko CS2 machine and it involves multicasting rather
than just unicasting.

The M M¢ problem is significantly harder than the
MUec. Gonzalez [7] showed that even when k = 2 the
decision version of the M M¢ problem is NP-complete.
He also developed an algorithm to construct a com-
munication schedule with total communication time
2d — 1 for the case when the fan-out is two, i.e., k = 2.
Gonzalez [7] developed an O(q - d - ¢) time algorithm,
~ where e < nkd (the input size), to construct for prob-
“'lem instances of degree d a communication schedule

with total communication time ¢d + k%(d — 1), where
¢ is the maximum number of colors that can be used
to color each bundle and k > ¢ >= 2.

We present a fast approximation algorithm with an
improved approximation bound for problems instances
with any arbitrary degree d, but small fan-out (max-
imum number of processors that may receive a given
message), where d is the maximum number of mes-
sages that each processor may send (receive). These
problem instances are the ones that arise in practice,
since the fan-out restriction is imposed by the applica-
tions and the number of processors available in com-
mercial systems.

The M Mc¢ problem arises when solving sparse sys-
tems of linear equations via iterative methods (e.g.,
a Jacobi-like procedure), and most dynamic program-
ming procedures.

2 Improved Approximation Algorithm

All of our approximation algorithms generate a col-
oration with at most a1 - d + a5 colors. The value of
constant a; for the different methods we have devel-
oped and for different values for %k is given in Table
1. The methods labeled “simple” are for the method
described in [7]. The “involved (2c¢)” is the method
discussed in this paper. The “2¢” stands for at most
two colors per bundle. We briefly discuss in Section 4
and in [8] the remaining methods.

Table 1: Number of Colors For The Different Methods.

[Method \k [3 [5 [10 [20 | 100 |
Simple (2c) 3.73 | 4.23 | 5.16 | 6.47 | 12.00
Involved (2c) || 3.33 | 3.60 | 4.60 | 6.00 | 11.54
Matching (2¢) || 2.67 | 3.50 | 4.50 | 6.00 | 11.53
Better Bound || 2.50 | 3.50 | 4.40 | 5.756 | 11.52

Simple (3¢) —~ | 4.00|4.81] 5.60 | 7.62
Involved (3c) - 4.00 | 467 {520 | 7.24
Simple (4c) — 550 | 578 | 6.11] 7.16
Simple (5¢) — — | 6.58 |6.82]| 751

The input to our algorithm is a directed multi-
graph G with bundled edges, integers h and ! that
restrict the color selection process and it is assumed
that (¢ > ! > h > 1). Note that k and d can be
extracted from the multigraph. The algorithm colors
the edges emanating out of P;, then P;, and so on
until Pj_;. Then the algorithm will color the edges
emanating out of P;. Each of these branches leads to

458

a processor with at most d — 1 other edges incident
to it, some of which have already been colored. These
colors are called t;_1-forbidden with respect to a given
branch emanating from P;. When considering proces-
sor P;j, a t;_;-forbidden color with a special property
is selected from each bundle and then such color is
used to color as many of the branches of the bundle.
The remaining uncolored branches are colored with a
second color whose existence is guaranteed by setting
the total number of colors available to an appropriate
number. Before we present our algorithm we define
some useful terms.

At the beginning of the jt* iteration the algorithm
has colored all the branches emanating from proces-
sors Py, Ps, ..., Pj_1. Let us define the following terms
from this partial coloration. For 0 < i < k, let C? be
the set of colors that are ¢;_;-forbidden in exactly i
branches of bundle b. Let ¢? = |C?|. When the set b is
understood, we will use ¢; for cf-’, and Cj for C’f’. Since
there can be at most d-—-1 ¢;_-forbidden colors in each
branch and there are at most k branches in each bun-
dle, it then follows that Zf___l iC? < (d — 1)k for each
bundle b emanating from P;. Clearly, all the branches
of bundle b can be colored with any of the colors in C§

tha.t have not been used to color other branches ema-
:oting from Pj. Also, one can color all the branches
“ui bundle b w1th two colors, a € Cf and b € C’b pro-
vided that colors a and b are not i 1-forb1dden in
the same branch of bundle b, and have not been used
to color another branch emanating from processor P;.
Just after coloring a subset of branches of a bundle
emanating from processor P;, we say that a color is
s;-free if such color has not yet been used to color any
of the branches emanating from processor P;.

To simplify our notation we define the expressions
L and R as follows

L = h’j:h:tz_*_d%_h"’ih-—z and

Hd—1)

(h+1)(h’+3h —20h24h3 4k

R= (h -+ 1)2 + 1=y) + 2(d._14)-([__-};)
Procedure Coloring is defined for all d > 24202

AZ+3h=21
k>L k>101>h>1andd> 4. These precon-

ditions might give the feeling that there are a large
number of cases for which our algorithm is not de-
fined, but this is not a the case because for each k > 3
there is a nonempty set of h and [values for which
1t is defined. We begin by establishing in Lemma 2.1
that L < R. This fact will be used to partition in
two cases the set of values for which our algorithm
is defined. For brevity we do not include proofs for
our lemmas. These proofs appear in [8], and also in-
- 'e Mathematica programs (and their outputs) for
<< 'mechanical parts of these proofs.

Lemma 2.1 For the set of values Procedure Coloring
is defined L < R.

In Table 3 we define equations eq.(0), ..., eq.(h+1)
that are used by the algorithm and are necessary for
the correctness proof (Theorem 2.1).

Table 3: Equations eq.(0), ..., eq.(h + 1).
co > d; eq.(0)
J
For1<j<h Z (7 + 2)d — 25; eq.(5)
i=0
!
D> (h+2)d—2h. eq.(h+1)

=0

.

Let us now briefly outline our Procedure as well as
some of the arguments used in the correctness proof.
When coloring the bundles emanating out of proces-
sor P;, Procedure Coloring finds the smallest integer
g» such that equation eq.(gs) holds. Lemma 2.5 shows
that at least one of such equation holds for each bundle
b. Then ry is defined as min{qs, h}. For each bundle
b emanating from processor P; an s-free color from
Ct,C?b,...,C? is selected to color as many branches
in bundle b as possible. Lemma 2.4 can be used to
show that one such colors exist. The integer s; is de-
fined as ¢, if 0 < ¢p < h and it is set to ! otherwise. The
remaining uncolored branches of each bundle b are col-
ored with an s-free color in C§,C?,...,C? . One can
show that the existence of such color from Lemma 2.5.

Procedure Coloring is given below. For the set of
valid inputs defined above, procedure computes the
maximum number of colors needed (A) and a col-
oration for G with at most A colors.

Procedure Coloring (G, A,{)

/* k,d, L, and R can be computed from G */

/* Procedure is defined for d > %l(%'—,
k>L,k>1>h>1,andd>4%/

A= ((2d—4)h+4d~2)1+2(d=1)k+(2=d)h?+(d-2)h+2d
- 2(1+1))

if R < k then A = Ethtl)-(k4h) .

// Theorem 2.1 establishes fg;i‘rectness. //
for each processor P; do
for each bundle b emana.tlng from P; do
compute C8,C?, CS,...C;
let ¢ be the smallest integer such that
equation eq.(gs) holds;
let r, = min {qs, h};

459

let sp = g if 0 < gp < h and sy = ! otherwise;
endfor
/* Color a subset of edges emanating from each
bundle of P;. for-loop-a */
for each uncolored bundle b of P; do
color as many branches of bundle b with one
sj-free color in Ct,Ch,....Ct;
/* Color the remaining uncolored edges
emanating from P;. for-loop-b*/
for each partially colored bundle b of P;
color all uncolored branches of b with an s;-free
color in C§,C%,...,C%;
endfor;
end of Procedure Coloring

To establish that Procedure Coloration generates
a valid coloration for the cases it is defined is diffi-
cult. Theorem 2.1 establishes that our algorithm gen-
erates valid colorations for all valid inputs, and that it
takes O(ed), where e is the total number of edges. The
proof of this theorem is based on Lemmas 2.4 and 2.5.
Lemma 2.5 established that at least one of the equa-
tions eq.(j) holds for each bundle emanating out of
processor P;, and Lemma 2.4 is used to show that one
lor from each bundle can be selected to color a sub-
“~iof its branches. These lemmas are then used to
‘snow that a second color exists to color the remain-
ing branches of each partially colored bundle. Lemma
9.3 is used in the proof of Lemmas 2.4 and 2.5, and
requires Lemma 2.2.

Lemma 2.2 For the set of;)alues Procedure Coloring
is defined R> (h+1)% — d_h-'-T + %—_i‘

Lemma 2.3 The value for A defined by Procedure
Coloration is greater than or equal to (h + 2)d — 2h.

Lemma 2.4 At the beginning of the jt* iteration of
Procedure Coloring ec;‘ch bundle b emanating from pro-
cessor P; satisfies Y ;o ¢t > d.

- Lemma 2.5 At the beginning of the jt* iteration of
Procedure Coloring each bundle b emanating from pro-
cessor P;j satisfies at least one of the inequalities eq.(j),
for0 < j < h+1, holds.

Theorem 2.1 Procedure Coloring generates a com-
munication schedule with total communication equal
to the value of A computed by the algorithm, for every
instance for which the Procedure is defined. The time
complezity of the procedure is O(ed), where e is the
total number of edges.

ffii: ~ Sof: First we prove that Procedure Coloration col-
ors all the edges in the multigraph with A colors,

where A is determined by the algorithm. Then we
establish the time complexity bound.

Consider now the iteration for P; for any 1 <7 <
n. By Lemma 2.5 we know that at least one of the
equations eq.(i) for 0 < ¢ < h+1 holds for each bundle
emanating from P;. Therefore, all the gqp values are
integers in the range (0,2 + 1], and all the ry values are
integers in the range [0,h].

We now claim that one can color a nonempty subset
of branches from each bundle with a distinct s-free
color in C§, C?, .. .ng. We prove this by showing that

STt o ¢t > d, since this fact guarantees that one unique
s-free color in C3, C%,...Cp. for each bundle b can be
selected in for-loop-a to color a nonempty subset of
edges emanating out of each bundle. As we established
before, ry < h. If r, = h then by Lemma 2.4 it follows
that 7%, c? > d. On the other hand, if r, < A then
by definition of 7, and Lemma 2.5 we know that eq.(rs)
holds. This implies that either co > d or Y ;2gei >
(ry + 2)d — 2r. Since d > 2, it then follows that
Y ¢? > d. Therefore, in for-loop-a one can select
unique s-free color in C§, C?, .. .Cf]’j for each bundle b
to color a nonempty subset of edges emanating out of
each bundle.

We now claim that at each iteration in the for-loop-
b one can select unique colors to color the remaining
uncolored branches of each bundle. From the defini-
tion of s, we know that 3_:2o¢i > (sp + 2)d — 2sp.
The number of colors that were t;_i-forbidden in
the same branch as the color selected in for-loop-
b is at most (d — 2) - 7, and the maximum num-
ber of colors used during for-loop-a and for-loop-b is
at most 2d — 1. It follows that the colors that one
can use to color the remaining branches are at least
(85 +2)d —2sp — (d —2) - 7 — 2d + 1. This is equivalent
to (d —2)(ss — rs) + 1. Since d > 2 and sp > rp, we
know that there is at least one color left with which we
can color all the remaining uncolored branches. This
completes the correctness proof.

It is simple to see that the time complexity of the
algorithm is bounded by O(ed), where e is the total
number of edges in the graph. This follows from the
observation that each edge is considered a constant
number of times and each time the algorithm spends
O(d) time on it.

0

460

e

* Summary

A more involved analysis can establish a slightly
smaller approximation bound (see Table 1 “Better
Bound”), but it is asymptotic to the ones in this pa-
per. The proof for this bound is tedious. By selecting
three colors instead of two colors, one can also im-
prove the approximation bounds in this paper. The
time complexity is the same as the corresponding one
in the previous two procedures, but the approxima-
tion bound is better. For brevity we cannot provide
the details of these procedures, so we just point out
that their benefit is when k is about 15 (about 10%
improvement) and there is a benefit of more than 50%
when k is about 100. The proofs are similar in na-
ture to the ones in the previous sections, however the
equations are much more complex.

Acknowledgements

We would like to thank Professor Si-Qing Zheng
from LSU for presenting our paper at the PDCS’96
Conference.

F ferences

[1] G. S. Almasi, and A. Gottlieb, Highly Parallel
Computing, The Benjamin/Cummings Publishing
Co., Inc., New York, 1994.

[2] E. G. Coffman, Jr, M. R. Garey, D. S. John-
son, and A. S. LaPaugh, Scheduling File Transfers
in Distributed Networks, SIAM J. on Computing,
14(3) (1985), pp. 744 — 780.

[3] H.-A. Choi, and S. L. Hakimi, Data Transfers in
Networks, Algorithmica, Vol. 3, (1988), 223 - 245.

[4] H.-A. Choi, and S. L. Hakimi, Scheduling File
Transfers for Trees and Odd Cycles, SIAM J. on
Comp., Vol. 18, No. 1, February 1987, pp. 162 -
168.

[6] H.-A. Choi, and S. L. Hakimi, “Data Transfers in
Networks with Transceivers,” Networks, Vol. 17,
(1987), pp. 393 — 421.

[6] Gonzalez, T. F., “Multi-Message Multicasting,”
Proceedings of the Third International Workshop
on Parallel Algorithms for Irregularly Structured
Problems (Irregular’96), to appear.

[7] Gonzalez, T. F., “Multimessage Multicasting:
_Ef:omplexity and Approximations,” UCSB TRCS-
40-15, July 1996.

[8] Gonzalez, T. F., “Proofs for Improved Ap-
proximation Algorithms for Multimessage Mul-
ticasting,” UCSB TRCS-96-17, July 1996, (or
http://www.cs.ucsb.edu/ " teo).

[9] T. F. Gonzalez, and S. Sahni, Open Shop Schedul-
ing to Minimize Finish Time, JACM, Vol. 23, No.
4, October 1976, pp. 665 - 679.

[10] I. S. Gopal, G. Bongiovanni, M. A. Bonuccelli, D.
T. Tang, and C. K. Wong, An Optimal Switching
Algorithm for Multibean Satellite Systems with
Variable Bandwidth Beams, IEEE Transactions on
Comm., COM-30, 11 (1982) pp. 2475 - 2481.

[11] B. Hajek, and G. Sasaki, Link Scheduling in Poly-
nomial Time, IEEE Transactions on Information
Theory, Vol. 34, No. 5, Sept. 1988, pp. 910 - 917.

[12] I. Holyer, The NP-completeness of Edge-
Coloring, SIAM J. Comp., 11 (1982), 117 - 129.

[13] T. T. Lee, Non-blocking Copy Networks for Mul-
ticast Packet Switching, IEEE J. Selected Areas of
Comm., Vol. 6, No 9, Dec. 1988, pp. 1455 — 1467.

[14] S. C. Liew, A General Packet Replication Scheme
for Multicasting in Interconnection Networks,
Proceedings IEEE INFOCOM 95, Vol.1 (1995),
pp. 394 — 401.

[15] P.I. Rivera-Vega, R, Varadarajan, and S. B. Na-
vathe, “Scheduling File Transfers in Fully Con-
nected Networks,” Networks, Vol. 22, (1992),
pp- 563 — 588.

(16] J. S. Turner, A Practical Version of Lee’s Mul-
ticast Switch Architecture, IEEE Transactions
on Communications, Vol. 41, No 8, Aug. 1993,
pp. 1166 — 1169.

[17] V. G. Vizing, On an Estimate of the Chromatic
Class of a p-graph, Diskret. Analiz., 3 (1964),
pp. 25— 30 (In Russian).

[18] J. Whitehead, The Complexity of File Transfer
Scheduling with Forwarding, STAM J. on Comput-
ing Vol. 19, No 2, April 1990, pp. 222 - 245.

461

