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ABSTRACT

In parallel and distributed systems many cornmunications
take place concurrently, so the routing algorithm as well as
the underlying interconnection network plays a vital role in
delivering all the messages efficiently. Fault tolerance and
performance are often obtained by delivering the messages
through nodc disjoint shortest paths. In this paper we de-
velop an efficient message routing algorithm that generates
node disjoint shortest paths in the presence of faulty nodes
for a set of pairs of vertices in an n-cube. The time com-
plexity of the algorithm is O(m?), when the input length is
m = O(n?).
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1. Introduction

The n-cube is a vital structure for parallel computing. Sev-
eral systems with this communication architecture have
been built in the past and the SGI Origin 2000 [1] is a re-
cent computing system whose interconnection network is
a variation of the n-cube. There are many algorithms for
several different routing problems that arise while execut-
ing code on an n-cube connected machine. In this paper we
present an efficient algorithm for a routing problem which
is common to many applications.

Our nodc disjoint shortest paths problem is defined
over the n-cube and the input consists of p pairs of vertices
X = {X|,X,, .., X,}, where X; = {s,,t;}. The prob-
lem consists of constructing node disjoint shortest path-
s from s; to ¢t; forall 1 < i < p. Zero length pairs or
blocking nodes may also be included in the problem input.
We show that under certain conditions a solution exists and
we present an O(m?) time algorithm, where m is the input
length, to construct a set of such paths. Node disjoint path-
s have been studied extensively in the context of the mesh
and planar graphs problems for VLSI systems.

The present dialogue regarding the n-cube originated
in the context of Rabin's paper {7] wherein three practical
concerns are analyzed simultaneously and algorithms pro-
posed: fault-tolerance, security and load balancing. While
the paperis an interesting starting point note that in general,
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three arbitrary parameters of optimization may sometimes
be contradictory or at least mutually interdependent.

, Gu and Peng [4] address an interesting and very sim-
ilar problem; however they study the problem of construct-
ing set-to-set node disjoint shortest paths. The main differ-
ence between their problem and ours is that they just need
to find a path from every vertex in one set to a different ver-
tex in the other set; where as, in our problem one constructs
paths for a given set of pairs of vertices. Our problem has
applications when network traffic endpoints are defined by
empirically observed flows; or are specifically initiated by
the individual nodes in the network to designated destina-
tions. The node-to-set node disjoint shortest paths problem
reduces to our problem after finding the first link for each
path. Gu and Peng'’s paper [4] exploits the fact that local
constraints, the existence of a first step in a path, dominate
in determining the existence of node-to-set node disjoint
paths. Namely the existence of an SDR or System of Dis-
tinct Representatives is a necessary and sufficient condition
for the existence of node disjoint paths. We have observed
to some extent, similar characteristics in restricted version-
s of our problem. Node-to-sct approaches in the n-cube
are highly pragmatic in the sense that it has applications
in the context of fault-tolerant distributed networks. There
are several important papers which address this issuc for
the n-cube, (2, 6].

In the next subsection we discuss the topology of the
n-cube and then in the next section we show that node dis-
Jjoint shortest paths in the n-cube exist for a large set of
problem instances. Then we present our algorithm, based
on our constructive proofs, to construct one set of such
paths. The time complexity of our algorithm is O(m?),
where m, the number of input bits, is O(n?).

1.1 Topology of an n-Cube

One method of representing the set of vertices 17 in an n-
cube is to assign to each vertex v € 17 an integer in the
range

00...0,=0<v<2"~1=11...1,.
N e’

n n

the set
1} where d{(a,b) is the number

The undirected edges E are given by
{{a,b} | d(a.b) =

"M+ PN S WU TSR ST S-S NP S Y W




of bits with value one in the binary representationof a © b
and & is the bitwise “exclusive or” operation.
This representation of the n-cube is prevalent in the

" literature of coding theory with the work of Frank Gray

and the “Gray Codes”. It is well known that paths in an
n-cube may be represented with Gray codes. In fact other
combinatorial objects such as permutations can be made to
have Gray-Code-like orderings; for a survey see [8].

An n-cube or equivalently an n dimensional hyper-
cube is an undirected graph G = (V, E) with the set of
verticies V = {0, 1,...,2™ — 1} and the set of edges

E={{i,j}| 4,5 € V,d(i,f) =1} .

Since shortest paths in the n-cube are the primary fo-
cus of this paper it is instructive to define a shortest path
predicate. ©(s,t,u) is true if and only if there exists a
shortest path in the n-cube from s to ¢ inclusive of u. For-
mally,

O(s,t,u) =[s@t == (s u “bitwiscor” u & t)] .

An alternate predicate, equivalent for the n-cube, is the dis-
tance based predicate

O(s, t,u) = [(d(s, u) + d(u, 1)) == d(s,1)],

where d(s, t) is the number of edges between node s and ¢
in the n-cube.

Qualitatively the bits of value one in the “bitwise ex-
clusive or” (s & ¢) operation can be viewed as bits which
change as we move from one node to the next along a short-
est path from s to ¢. Note by the topology of the n-cube at
each step only one bit changes, as in the “Gray Code.”

2. Node Disjoint Shortest Paths Problem

Let X = {X},Xs,...,X,}, where X; = {s;,t;},bea
set of p pairs of n-cube vertices all of which are distinct.
The node disjoint shortest paths problem is given X in the
n-cube, where n is the dimension of the cube, find node
disjoint shortest paths connecting each s; to ¢; such that no
two paths have a node in common. Each .Y'; is called a pair
and the two nodes in it are called endpoints of X;.

In the following section we discuss the extreme ver-
sion of this problem when d(X;) = n, forall 1 <
i < p. The endpoints of every pair .X; are complements
(&(2™ — 1)) of each other because they are in the n-cube
and d(X;) = n,ie, §; = s; D (2" — 1) = ¢; We show that
under certain conditicns the set of shortest paths exists for
the set of p pairs in .X even in the presence of g blocking
nodes, single vertices which can be considered as faulty or
simply blocking nodes. Blocking nodes can be viewed as
zero length shortest paths from a vertex to itself.

Our algorithm constructs the set of shortest node dis-
joint paths by finding for each i one link incident to an end-
point of .\'; which will be part of the final path and then
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reduces the preblem of finding p shortest paths in the pres-
ence of ¢ blocking nodes in an n-cube into two indepen-
dent problems in an (n — 1)-cube with a total number of
p pairs and p + ¢ blocking nodes. Our approach is to pro-
vide a constructive proof for our claim, present an algorith-
m based on our constructive proof and produce additional
claims not proved herein due to space constraints. The con-
structive proof appears in subsection 2.1 and the algorithm
is in Subsection 2.2. Latifi, Ko and Srimani [6] use a varia-
tion of this approach, albeit for a different routing problem,
for which they generate paths that are almost shortest paths.
The algorithm implied by the proof of Lemma 1 in Section
2.1 finds a link for each pair and reduces the problem, us-
ing a partitioning transformation, to finding a set of node
disjoint paths in an (n — 1)-cube.

. Let us now introduce notation to represent the sub-
cube defined by the source and destination nodes s and ¢
by

K(s,t) ={u] O(s,t,u)}.

Note when s = ¢ then the only solution is s = ¢ = u.
Vertices in K (s, t) are all the nodes which may reside on a
shortest path from s to ¢, inclusive of the endpoints.

2.1 The Simple Approach: p < [n/2]

Our problem is given p pairs of nodes and g blocking nodes
denoted by

X= {.\—1,.\’3,...

where X; = {s;,t;} andn = d(.X;),for1 < i < p, and
X; = {a;} forp+1 < i < p+ ¢ find node disjoint
shortest paths for the pairs .X; that do not include blocking
nodes and such that no two such paths have a node in com-
mon. We assume that all the endpoints and blocking nodes
are different, i.c., the cardinality of the set e(.X') is 2p + g,
where

{all endpoints and blocking nodes in X'}
= .\—‘ U .Yg U---u ‘\—p+q .

e(.X)

Our algorithmic approach, based on the proof of The-
orem 1, is to construct the set of node disjoint shortest paths
as follows. First we find an integer k which represents the
position of one of the bits in the binary representation of
the vertices and satisfies the property that for each pair of
vertices X;, 1 < i < p, each of its endpoints z € X; and
its neighbor g(z) = z © 2* (z and g(z) differ only on bit
k) in the n-cube are such that all the g(z) nodes are distinct
and every g(z) ¢ e(XX'). In Lernma 2 we show that a bit k
that satisfies this condition always exists when p + ¢ < n.
The selection of this bit k is very important because we use
it to reduce our original problem of finding node disjoint
paths in an n-cube for p pairs of vertices in the presence of
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g blocking nodes to two independent problems. One sub-
problem is in the sub-cube where bit % is zero and the other
one in the sub-cube where bit & is one. The first subprob-
lem consists of finding a path for one pair in the presence
of a number of blocking nodes. One isolates this problem
by transitioning on one pair using bit k. Lemma 1 estab-
lishes that a solution exists for this subproblem. The other
subproblem has p — 1 pairs of vertices with-another set of
blocking nodes. The subproblem is solved by using the in-
ductive proof in Theorem 1.

Let us illustrate our approach with the following ex-
ample. The value of n is 3, X1 = {0003, 1115}, and X» =
{100,,011,}. Transitioning on the bit k = 0 is not possible
because the neighbor of 000- along bit 0 is 1002 € e(X),
but bit 1 and bit 2 are possible choices for k. Using bit
kE = 1 our approach is to select from X the endpoint
e; = 000, and from X, the endpointe; = 011,. Their cor-
responding neighbors are g(e;) = 010, and gle2) = 001,.
Now the problem is to find a shortest path from 010, to
111, and one from 001, to 100,. Since both paths have
to go through nodes in which bit one is never changed (the
bit is always one for the first and zero for the second), it
follows that the resulting problems are independent of each
other. Therefore, we may refer to the resulting problems as
finishing up the path for X; in the sub-cube A '(0102, 111,)
with blocking node 011, and finishing up the path for .X»
in the sub-cube K(001,,100-) with blocking node 000..
By deleting bit k the resulting problems reduce to finding a
path in K'(002, 11») with blocking node 01 and finding a
pathin A (01, 102) with blocking node 00-. Once we find
the paths we add the deleted bit and the paths are complete
in the 3-cube.

Lemma 1 Given X consisting of one pair X1 = {s1,t1}
with d(X,) = n and q < n — 1 single nodes in an n-cube
foralln > 1, a node disjoint shortest path exist for X that
do not include any of the q nodes.

Proof omitted for brevity.

Lemma 2 Let X = {X}.Xa,..., X} be pairs of vertices
inside the an n-cube with d(X;) = nfor1 <i < p, and
{Xpt1, Xps2, .-+, Xpug} be a set of blocking nodes such
thatl < p<p+qg<nandn>2 There exist at least
n — p — q + 1 bits k such that the cardinality of the set

e(X) J{siw21<i<p Jlus2*|1<i<p)

is 4p+ q. This means that no two vertices are identical and
thus one may use bit k to start all the paths.

Proof: First we consider the case wherein ¢ = 0 and
p=n— 1. Forall 0 <! < ndefine the set

S= {{i,j}| ze€Xi,yeX; and
I‘E‘yz‘zly

1<i<p1<j<pt.
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Note that since n > 2, i is different j in each of
the above pairs. The meaning of these sets is as follows.
If S, # O then the neighbor of at least one endpoint
{X1,Xs,...,X,} using the [-bit transition is an endpoint
in X . Therefore bit ! cannot be used by our algorithm to re-
duce the problem to two independent problems of the pre-
viously established form. To prove the lemma we need to
show that at least n — p -+ 1 sets S; must be empty when
p < n — 1. The proof is by contradiction. Assume that for
every |, the number of empty sets S, is fewer thann —p+1.

Foreach [, suchthat S; # Pand 0 < | < n, select a
seta; € S;. Since n > 2 we know that if {i, j} € S, then
{i,j} ¢ Sy foralll' # I simply because if there exists
T€ X,y € X;suchthatzewy =2 and T &7 = 2!
then d(z,§) > 1 and d(y,Z) > 1. This precludes {i,j}’s
membership in any Sp, 1 # I'.

Therefore, all the sets a; are distinct. Define the graph
G' with the vertex set V' = {1,2,...,p} and edge set
E' = {a; | 0 £ i < n}. We claim that the graph
G’ does not have a cycle. Let us prove this claim. Sup-
pose there is a cycle C' with nodes hi,ha,...,h,. Clearly
r < p < n. Since there are no self or multiple edges be-
tween node(s) in G’ we know that 7 > 2. Without loss of
generality assume the edge {h;, hy}, with label &y, exists
because sp, & sp, = 2! and thus {h;, ho} € Sk,. Now,
fori = 2,3,...,r — 2, weclaim the edge {hi, hiy1} exists
because sp, @ sh,,, = 2%. The reason is that the end-
points of any pair X; can be relabeled and if z € X, and
y € Xp,,, are such that edge {hi, his1} exists because of
z®y = 2 then it also is the case that £ & § = 2'. Now
for the last edge in the cycle {h,,h;} therc are two pos-
sibilities. Either it exists because of s, & 85, = 27 or
Sy, Sitp, = k-

The former case is impossible because in an n-cube -
every cycle must make two transitions using the same bit,
which is not possible in C because each edge is from a
different set S;. In the latter case, we know that a path
composed of endpoints (e(.X')) in the n-cube (G) yiclds 2
cycle in the graph G'. Such a path in an n-cube using dis-
tinct dimensions at each step must necessarily be less than
n. In G’ the constraint on the number of paths implies that
d(X4,) = r £ p < n, which contradicts our condition that
d(Xp,) =n.

Clearly, the graph G’ is a tree. Since there are p paths
and hence p nodes in V"', then the maximum number of
edges is p — 1. Thus, the number of empty sets is at least
n — p+ 1. Now one may for each blocking node transform
the problem such that it consists only of paths and therefore
the fact that the Lemma holds forq = Oandp = n -1
implies that it holds for 1 < p < p+¢ < n. The constraint
n — p — q + 1 follows immediately by viewing blocking
nodes as length n paths. This completes our proof of the
Lemma 2. il

Our proof of Theorem 1 and algorithmic approach are
based on the I-bit step for finding disjoint paths for p pairs
and ¢ blocking nodes in an n-cube. First we find using
Lemma 2 an integer k that represents the position of one of



the bits; such that, for every pair there is a shortest path that
on one end makes a transition on bit k& without conflict.

The reduction uses a transition for one pair from 0 to
1 along the kP bit and p — 1 transitions from 1 to 0 for the
remaining pairs. Therefore, the subproblem in which all the
kth bit positions are 1 will have one pair that makes transi-
tions from O to 1, plus the blocking nodes that have a one
in the % bit plus one endpoint of the remaining p — 1 pairs
(the ones that make the transition from 1 to 0). Therefore
the resulting problemis (n—1,1,¢’), where ¢’ < p+q-—1.
This problem can be solved by using a constructive proof of
Theorem 1. The other subproblem in which all the k't bit
positions are 0 will have the p—1 pairs that make transitions
from 1 to 0, plus the blocking nodes that have a zero in the
ktP bit plus one endpoint of the pair that makes the transi-
tion from 0 to 1. This resulting problemis (n—1,p—-1,¢’),
where ¢’ < g+ 1. The solution for this problem is obtained
inductively.

Theorem 1 Given X consisting of p pairs of nodes and
q blocking nodes in an n-cube for n > 1. Node disjoint
shortest paths exist for all ¢ and j such that1 <1 < p <
2p+q¢<n+1

Proof: The proof is by induction on n. The base case
is when n = 2 which is covered by Lemma 1. The case
when p = 0 is trivial and when p = 1 it falls in the condi-
tions of Lemma 1 since 2p + ¢ < n + 1 which implies that
g < n — 1. So assume for all p > 2 the Theorem holds for
all n — 1 and let us prove it for n.

Since p > 2 then p+¢q < n and by Lemma 2 we know
that a bit k for a valid transition exists and we can apply the
1-bit step to reduce the problem into two subproblems. The
first problem is on n ~ 1 dimensions and it has p’ = 1 and
¢ <n-2p+1+p-1=n-p<n-1whichfall into the
conditions of Lemma 1. The second subproblemisonn—1
dimensionsandithasp’ = p—~1land¢’' <n-2p+1+1L
Therefore,p+q<n—2p+1+1+p-1<n—1which
bolds for p > 2; hence, the resulting problem falls into the
induction hypothesis. The theorem follows by induction. {]

In the following we will write (n,p,q) which rep-
resents all problem instances in an n-cube with p paths
and g blocking nodes. Note that thesc equivalence class-
es do not comrelate with the underlying decision problem
of whether or not node disjoint paths exist between the
endpoints. For example note that some placements for
(4,2, 3) have ncde disjoint paths and others do not. Note
that input {{0000,1111,}, {0011,,1100.}, {0101.},
{0110}, {1001,}} has no solution, but {{00002,1111>},
{0011,,1100,}, {00015}, {0110,}, {10012} } does.

For the case when n = 4 it is impossible to strengthen
our results because for p < [n/2] + 1 = 3 all the problem
instances cannot be be solved, i.e., disjoint paths do not
exist. One such problem instance is given in Example 1.

Example 1 The instance of (n,p.q) = (4,3,0} with
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X = {{0000_), 11112},

{1100,,00112},
{1010,,0101,}}

has no solution in the 4-cube. i.e., node disjoint shortest
paths do not exist for this problem instance.

However note that there is a bit £ = 3 (i.e. 0000, &
2% = 1000,) as noted in the proof of Lemma 2. Apply-
ing the 1-bit step we end up with the problems {X; =
{0002, 1112}, .’(2 = {1002}, X3 = {0102}}, and {_Yl =
{1005,0115}, Xs = {1002,011,}, X3 = {0002}}, The
former problem can be solved, but not the latter one simply
because there are not enough vertices in a 3-cube for-two
paths of length 3 and a blocking node.

As will be shown Theorem 1 can clearly be much im-

-proved. Example 2 gives a problem instance withn = 5

and p = 4 for which node disjoint shortest paths exist while
Theorem 1 does not cover this scenario.

Example 2 (n,p,q)=(5,4,0) with the pairs defined by

X = {{00000,,11111,}, {00001,, 111105},
{00010, 11101, }, {00100, 110111} } .

In binary, a set of disjoint paths for this problem is
given by

00000 > 01000 + 01001 + 01011 & 01111 & 11111
00001 + 00011 + 00111 + 00110 + 01110 & 11110
00010 + 01010 + 11010 + 11000 + 11001 ¢+ 11101
00100 + 00101 + 10101 + 10111 + 10011 & 11011

It is interesting to note that our proof technique (al-
gorithmic approach) will not work for the above problem
instance. The reason is that the only transition that can be
made is on bit k£ = Qor k = 1. Since both cases are similar,
under interchange of dimensions, we only discuss the case
when the transition is on bit k = 0. '

When a transition on bit k¥ = 0 is made according to
our 1-bit step, we advance as follows

11111, = 01111,
00001, — 10001,
00010> — 10010,
00100, — 10100,

In the resulting problem the sub-cube in which bit 0
is always a one has the pairs

X = {{00012,1110,}. {00102, 11015}, {01002, 10112}} .




“Exclusive or’ing the input with 0001, yields the equiva-
lent problem

X = {{00003, 11112}, {11002, 00113}, {1010-_), 01012}}

Which is Example 1 and does not have a solution. As
in general there may be problem instances that are not a-
menable to the 1-bit change approach, in the sequel we seek
to improve the sufficiency conditions required to insure that
node disjoint paths exist.

As the number of edges increases exponentially in
the n-cube as n increases linearly, one would expect that
a much stronger sufficiency condition exists.

2.2 The Algorithm

The following algorithm assumes that solutions are cal-
culated for dimension n = 2, forming a base case of
the recursion. The algorithm uses Theorem 1 to parti-
tion the problem. The program is called initially with
Find P aths#, X).

2.2.1 Algorithm

Find.P aths#, X = {X},Xs,..., X,

{ Xpt1y-- "XP'HI}
assume that d(X;) = d(X») = ... =d(X,) = n,
d(Xpr1) = d(Xpsa) = ... = d(Xpag) =0,

all X; are in the same n dimensional sub—cube,
p<[n/2] and 2p+g<n+1
if p = 0 return;
if p = 1 construct path using the
proof of Lemma 1, output and rctum
if n < 2 return appropriate base case;
k + Find_Bit(.X'); // using the proof of Lemma 2
//find an unobstructed bit.
X' ¢ OneToZeroTransition{k, X);
X" + ZeroToOneTransition(k, X );
Qutput P aths(k X);
Qutput path for X' using the proof of Lemma 1.
Find P aths#g - 1, X");
}

Output.P aths(k X) outputs the selection of the par-
ticular path. OneToZeroTransition selects one path per
the proof of Theorem 1 for transition from 0 to 1 on bit &
as well as the blocking nodes with a 1 in the &® bit posi-
tion. ZeroToOneTransition selects p — 1 paths for transi-
tion from 1 to 0 on bit £ as well as the blocking nodes with
a 0 in the k™ bit position.

2.3 Proof of Correctness

The proof of correctness follows du’ect]y from the con-
structive proof of Theorem 1.
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2.3.1 Analysis: Polynomial Order

Find Bit is to be implemented using a binary trie for set
insertion. The call finds a bit & with no conflicts for the 4p+
¢ insert operations. For the n bits each insert is length n bits
and the number of such operations is 4p + g. Therefore this
operation will take at most O(n*(4p + q)) steps. There are
at most p such calls. Therefore the order of the algorithm is
O(pn®(4p + q)). The condition of Theorem 1 requires that
p < [n/2]. Therefore the algorithm runs in O(pn>(4dp +
9))) = O(pn*(4dp + q)) = O(n*). Since the input length
is m = O(n?) the overall time complexity is O(m?).

3. _Conclusion

The paper presents a solution for a restricted version of the
node disjoint pairs in an n-cube. Our results for an im-
proved sufficiency conditions appear in [3]. This improve-
ments are based on an extension to Lemma 2 and a more
sophisticated transformation step. The transformation step
ends dividing a problem into four subproblems all of which
belong is different n — 2 cubes. But this new algorithm is
slower than the one in this paper.
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