Proceedings of the 14th IASTED International Conference
PARALLEL AND DISTRIBUTED COMPUTING AND SYSTEMS

November 4-6, 2002, Cambridge, USA

Complexity of k-Pairwise Disjoint Shortest Paths in the Undirected
Hypercubic Network and Related Problems

Teofilo F. Gonzalez and David Serena
Department of Computer Science
University of California
Santa Barbara, CA, USA
email: {teo, dserena} @cs.ucsb.edu

ABSTRACT

In parallel and distributed systems many communications
take place concurrently, so the routing algorithm as well as
the underlying interconnection network plays a vital role
in delivering all the messages efficiently. Fault tolerance
and performance are often obtained by delivering the mes-
sages through node disjoint shortest paths. In this paper
we present results for the undirected n-cube topology. It is
determined that the k-pairwise node disjoint shortest paths
decision problem is NP-complete even for a restricted form
of a partial permutation routing request — a subset of the 1-
1 routing request. We also discuss our results for the node
disjoint paths and node disjoint near-shortest paths prob-
lems.

KEY WORDS Fault-tolerance, hypercube, undirected n-
cube, node disjoint paths and shortest paths, node disjoint
near-shortest paths, k-pairwise routing, NP-completeness.

1 Introduction

The n-cube is a fundamental structure for parallel comput-
ing. Several systems with this communication architecture
have been built. The SGI Origin 2000 is a computing plat-
form whose interconnection network is a variation of the n-
cube. There are many algorithms for several different rout-
ing problems that arise while executing code on an n-cube
connected machine. In this paper we study the computa-
tional complexity of routing problems which are common
to many applications. The topology chosen for analysis is
the undirected n-cube, hereafter referred to as the n-cube.

The node disjoint shortest paths problem for the n-

cube is given p pairs of nodes and g blocking nodes denoted
by

X ={X1, X, ... Xp Xpe1. Xppo ool Xpiqt

where X; = (s;,;), for 1 < i < p,and X; = (a;) for
p+1 < i < p+gq, find node disjoint shortest paths in the n-
cube for all the pairs .X; that do not include blocking nodes
and such that no two such paths have a node in common.
Each pair X; = (s;,¢;) consists of two endpoints which
are called the source and target respectively. Every node in
the n-cube is represented by an n-bit string and there is an

373-097

61

edge between two nodes if their bit representation disagrees
in exactly one bit. The distance between the source and
target nodes of pair .\; in the n-cube is denoted by d(.X;) =
d(s;,t;) and it is the number of bits that differ in the bit
representation of s; and ¢;. The distance d(a.b) is none
other than the “Hamming Distance” between the vertices
a and b in an n-cube. By a shortest path for the pair .X;
we mean any path from s; to ¢; with length equal to d(X;),
i.e. the path is the shortest path in the graph between the
two nodes independent from any other biocking nodes or
endpoints of pairs sy and ¢; for i’ # i. The nodes a; (or
blocking nodes or faulty processors) may also be included
as part of the input. Since each vertex contains at most
one endpoint or blocking node, the problem is said to be
a partial permutation routing request. When every vertex
contains at most one source and one target then it is said to
be a 1-1 routing request. The edge disjoint shortest paths
problem is given X (without faulty nodes or ¢ = 0) in the
n-cube, find shortest paths connecting each s; to #; such
that no two paths have an edge in common.

Both the decision problems and the search problems
are important for analysis. In the undirected n-cube there
are “yes” and “no” instances of the k-pairwise node dis-
joint shortest paths decision problem. Note that in the con-
text of undirected graphs the order of the source to target in
the routing request is not important. Therefore, we use the
undirected pairs X; = {s;,t;} in lieu of the directed pair
(si,t;). Now in the 2-cube, X = {{00.11},{01},{10}},
has no solution because any path between 00 and 11
must go through 01 and 10. On the other hand, V' =
{{00.11},{01}} does have such a solution with pair
{00, 11} yielding route 00 + 10 ¢ 11. The algorithms
presented herein are search algorithms in the sense that
they construct for yes instances of the decision problem a
set of node disjoint paths. For problem instance ¥ given
above a successful routing is 00 < 10 < 11. Note that
while problem instance Z = {{000.011}.{001},{010}}
has no shortest path solution. it does have a routing with
any length paths: 000 «+ 100 +» 101 < 111 « 011. To
clarify the problem the possible shortest path routings are
000 < 010 « 011 and 000 < 001 ¢ O11. Though these
paths are shortest paths by our definition. neither of these
paths may be traversed due to the blocking nodes in the

A -5l




input: {001} and {010}. For edge disjoint shortest paths
both of those paths are possible. However the problem in-
stance Z = {{00.11},{10,01}} does not have edge dis-
joint shortest paths.

Node disjoint paths have been studied extensively.
Karp [10] showed that determining whether or not there
exist node disjoint paths for a set of pairs of vertices in
a graph is an NP-complete problem. Shiloach [18] pre-
sented a polynomial time algorithm to construct node dis-
joint paths in a graph for two pairs of vertices and Watkin
[20] showed that (2k — 1)-connectedness is a necessary
condition for a graph to admit disjoint paths for a set of
k pairs of vertices.

The related problem where one seeks to find p-
pairwise node disjoint paths (arbitrary distance pairs)
from vertices in set {si,ss2,...,5,} to vertices in set
{t1.ta,..., tp} is called the set-to-set node disjoint paths
problem. In this problem one needs to find p node disjoint
paths from one set to the other such that the paths are from
5; 10 ty(;) where ¢ : {1,2....p} — {1,2,...p} and ¢ is
any 1-1 function. Whereas in the k-pairwise problem ¢ is
the identity function, namely ¢(i) = i. The undirected ver-
tex version of Menger's theorem is applicable to the former
problem but not the latter [14]. It is not applicable to the
set-to-set node disjoint shorrest paths problem as Menger's
Theorem may imply arbitrary length paths.

Madhavapeddy and Sudborough [12] developed an
O(n® log n) time algorithm to find disjoint paths for k pairs
in an n-cube when [n/2] > k > 2 and n > 4. Each of
the paths is of length at most 2n. Then Gu and Peng [7]
presented an algorithm that takes O(kn logn) time to find
node disjoint paths for k pairs. Even if there are n — 2k + 1
faulty clusters of diameter 1 and k& < [n/2].

The main difference between the work mentioned
above and ours is that we are interested in finding node
or edge disjoint shortest paths rather than just node dis-
joint paths (i.e. for each pair .X; the length of the path must
be d(.X;)). Rabin (17] proposed an algorithmic strategy
which addresses fault-tolerance, security and load balanc-
ing. While the paper is an interesting starting point it is
clear that in general, three arbitrary parameters of optimiza-
tion may sometimes be contradictory or at least mutually
interdependent.

Gu and Peng [8] address the problem of construct-
ing set-to-set node disjoint paths. They also presents al-
gorithms for the node-to-set node disjoint paths problem.
Gao. Novick and Qiu [2] present an algorithm for find-
ing node-to-set node disjoint shorrest paths. Node-to-
set approaches in the n-cube are highly pragmatic in the
sense that it has applications in the context of fauli-tolerant
distributed networks. There are several important papers
which also address this issue for the n-cube. [2. 11]. Find-
ing k disjoint paths between two nodes in the hypercube
has also been studied [7], but for brevity we do not discuss
in detail these results. There are other interesting results
and conjectures regarding the doubled n-cube [19].

Gonzalez and Serena [5] present polynomial time al-

62

gorithms for a restricted subproblem called the extreme ver-
sion. The extreme version of the node disjoint shortest
paths problem has the additional constraint d(X;) = n for
1<i<p.

Madhavapeddy and Sudborough [13] show that the k-
pairwise edge disjoint paths problem in the hypercube is
NP-complete. Unfortunately they did not include a proof
that the problem is in NP and we are unable to validate that
proposition. Their reduction utilizes a vertex occupancy of
the routing request that is well above the 1-1 routing re-
quest [13]. They conjecture that the k-pairwise node dis-
joint paths problem is also NP-complete. In Section 3 we
prove that this problem in NP-hard.

In this paper we show that the node disjoint short-
est path problem for the n-cube is NP-complete even when
d(X;) = 3for1 < i < p. We also establish that the node
disjoint paths problem (proving the conjecture in [13]), and
the node disjoint near-shortest paths problems are NP-hard.
Our problem has applications when network traffic end-
points are defined by empirically observed flows: or are
specifically initiated by the individual nodes in the network
to designated destinations.

2 n-Cube:
Node Disjoint Shortest Paths

In this section we show that when d(.X;) < 2 finding node
disjoint shortest paths for pairs of vertices is polynomially
soluble not only in the n-cube but also in general graphs.
We also show that for the case when d(.X;) < 3 the prob-
lem becomes NP-complete. We prove this result by reduc-
ing from a restricted version of 3-SAT, which we call L3-
SAT, to the k-pairwise node disjoint shortest path problem.

We show that the node disjoint shortest paths problem
when d(.{;) < 2 is solvable in polynomial time by reduc-
ing it to 2-SAT, which we know can be solved in linear time
[1, 15] via resolution. This approach is identical to the one
by Raghavan, Cohoon and Sahni [16] for a similar problem
defined on a grid (mesh). Given an instance (X, k.n) of
the k-pairwise node disjoint shortest path problem defined
in the n-cube, we construct an instance (U, C) of 2-SAT as
follows. The idea is that for each pair X; € X we intro-
duce a boolean variable u;. Then we introduce clauses that
disallow choices that are infeasible. Using this approach
it is simple to construct an algorithm that generates a set
of paths for any instance of the k-pairwise node disjoint
shortest paths problem in the n-cube, where the distance
between every pair is at most two in O(k>n) time. when-
ever such paths exist.

However. for arbitrary graphs we cannot use the same
technique to solve our problem. The reason is that the
number of shortest paths between a pair of vertices at a
distance two from each other may be more than two. It
does not seem possible with an instance of 2-SAT to select
one of these possible paths. However, the problem remains
polynomially solvable by reducing it to finding a maximum
matching in a bipartite graph which we know is polynomi-
ally solvable [9].




Note that the time complexity for our new algorithm is
very different from that for the n-cube case simply because
the input to the algorithm is a set of vertices, V', with an
arbitrary set of edges, E, followed by k pairs of vertices.
For the n-cube the graph structure i$ implicit and the whole
structure is simply characterized by the integer n. Thus,
the input size is just n followed by the k pairs of vertices

(O(kn)).

Theorem 1 Given any instance of the k-pairwise node dis-
joint shortest path problem defined over graph G = (V, E)
with v = |V| vertices and e = |E| edges, where the dis-
tance berween each pair of vertices is at most 2, algorithm
2G-NDSP solves the problem in O(kvV'k + v) time.

Proof: We present a constructive proof. First we
construct a bipartite graph and then we find a maximum
matching in it. If the cardinality (number of edges) of
the matching is k, then there are k-pairwise node dis-

joint shortest paths for the pairs and they can be con-
" structed from the matching. Otherwise there is no solu-
tion to the instance. For every pair X; = {s1, t;} and let
I = {vi1,vi2,-.-,vie;} C V bethe middle (or inter-
mediate) nodes in the shortest paths from s; to ¢; that are
not part of the other vertices of the k-pairs. Note that each
of the shortest paths must have a length equal to two. We
construct the bipartite graph G’ = (1, E') as follows:

L = {z1,T2,-.-,Tk}
k
R = U U u
j=lu€l;
V' = LUR
E' = {(a,b)[aeL,bER}

Clearly, the vertex sets L and R are distinct, LNAR=
0. We claim that G’ has a matching of cardinality % if,
and only if, there exist node disjoint shortest paths for the
k-pairs in G. The reason is that a matching of cardinal-
ity k chooses for each pair a path which by construction
of G' are all node disjoint, and vice-versa. The construc-
tion of the graph takes O(kv) time and the resulting graph
has k + v vertices and O(kv) edges. Hopcroft and Karp's
[9] algorithm takes O(kv+/k + v) time. The node disjoint
shortest paths can be constructed in O(k) tme from the
maximum matching. Thus the overall time complexity is

O(kvVk + v). §

We now show that the k-pair node disjoint shortest paths
problem in the n-cube is NP-complete when d(z;) < 3.
We prove this by reducing the L3-SAT problem to the k-
pair node disjoint problem. The L3-SAT problem s defined
as follows.

INPUT: Given a set [ of boolean variables
{u,ua. ..., Uy} and a collecton of clauses
C = (c1,¢2,...,¢y) over U so that each clause has

two or three variables. As an additional criteria, all clauses

63

contain no more than two instances of the variable v and
the same holds for .

QUESTION: Is (U, C) satisfiable?

The 3-SAT problem is L3-SAT without the last con-
dition and removal of size one clauses. 3-SAT was shown
to be NP-complete in {3].

A simple polynomial reduction from 3-SAT to L3-
SAT exists; however, it is omitted for brevity. It is a well
known result that the L3-SAT decision problem is an NP-
complete problem. .

In Theorem 2 we show that our problem is NP-
complete. We establish this result by reducing the L3-SAT
problem to it. Before we present the proof of Theorem 2,
we start by discussing the transformation details. There are
three types of components: serting and fan-out, convey and
clause-checker. The setting and fan-out component assigns
to each variable a value, making two copies of the variable
and its negation. The convey apparatus transports the value
of a boolean variable or its negation from one vertex in the
n-cube to another. The clause checker makes sure that a
clause is satisfied if at least one of its literals has the value
true.

Figure 1 presents the setting and fan-out component
which generates two copies of a boolean variable and its
complement. The construction consists of a length three
pair (s, t) = (000, 111) and two blocking nodes a; = 010
and ag = 101: {(000,111), (010), (101)}. Note that there
are only two possible node disjoint shortest paths for the
pair: 000 + 100 + 110 + 111 and 000 + 001 «
011 & 111

s = 000
a; = 010
u 100 001 @
u 110 011 @
as = 101

t=111

Figure 1. Duplication of consistent variable state: “setting
and fan-out” component.

There are two consistent copies of the value of a vari-
able and its negation. In particular when the nodes 100 and
110 are in the path for pair {000.111} the boolean vari-
able u has the value of false, and when the nodes 001 and
011 are in the path for the pair then the variable u has the
value of true. The opposite holds for @, the negation of u.
The reason one needs only two copies of each value of a
variable and its negation is that we are reducing from the
L3-SAT problem which has the property that no variable or
its negation is in more than two clauses.

The convey apparatus is used to transport “almost”
consistent variable state information from the setting and




81 52 - Sm—1 Sm

ty to trm—1 tm

Figure 2. Convey Apparatus

fan-out components to the clause-checkers. A convey ap-
paratus is shown in Figure 2 and consists of the pairs
{(s1,t1),(s2.t2), ..., (Spq:tprq)}. Each pair has ver-
tices at a distance two from each other. All these pairs are
called conveyor pairs. Note that in Figure 2 if vertex A4 is
covered by a path from a non-conveyor pair then B will be
covered by the paths joining the pair {s,,, ¢, }. However
if 4 is not covered by a path from a non-conveyor pair the
vertex B may or may not be covered. Note that in Figure
2if A is covered by a path from a non-conveyor pair then
B will be covered by the path joining the pair (s,,, tm ).
However if A4 is not covered by a path from a non-conveyor
pair then B may or may not be covered by the path joining
the pair (s,,,tn). Ideally we would want a perfect trans-
mission of information which in this case means that B is
covered by the path joining the pair (5,5, ¢, ) if and only if
4 is covered by a path for a non-conveyor pair. Convey ap-
paratus which transmit vertex coverage precisely exist, but
they have a complex structure and are based on pairs whose
nodes are at a distance four from each other with overlap-
ping 4-cubes. Our construction has a possible faulty trans-
mission, but the component is simple and the fault does not
cause a problem. The reason for this is that the components
are used as follows: a false value will be transmitted to B
as a covered vertex, whereas a true value may be received at
B as either a covered or non-covered vertex. Note however,
it is always possible to receive it as a true value; namely as
an uncovered node at vertex B in the convey apparatus. A
false value for u corresponds with .4 being covered by a
path from a non-conveyor pair in Figure 1. - A true value
for u corresponds with .4 not being covered by a path for a
non-conveyor pair. ‘A similar argument holds for the nega-
tion of u. If u is in a clause, the vertex A4 of the convey
apparatus will be coincident with vertex 100 or 110 in Fig-
ure 1 and vertex B will be a vertex in the clause-checker. If
u has a true value the pair (000, 111). as shown in Figure
1, is connected by the path 000 « 001 < 011 « 111
and vertex 4 = 100 is not covered. Thus vertex B may
or may not be covered by the path in pair (s,,.%,). On
the other hand if v is false it results in vertex 100 and 110
being covered. hence 4 = 100 is covered and the path
for pair (s,,.t,,) must cover node B. A similar argument
holds when 1 is coincident with nodes 110. 001 or 011.
The latter two nodes are used when i is in the clause.

Any clause of size one may be eliminated since the
variable or its negation must be true when the problem in-
stance is satisflable. Therefore all clauses contain two or
three literals. The clause-checkers for this case are given

64

in Figure 3. The convey apparatus terminates at a clause-
checker vertex by, be and b3 for clauses with three literals
and at vertex b; and b, for clauses with two literals. The
convey apparatus transmits the value of a variable or its
negation from vertex .4 to vertex B and vertex B will be
coincident with a vertex labeled by, bs or b3 in a clause-
checker. Remember that if in the convey apparatus, a literal
has the value of false, vertex 4 is covered and thus vertex
B will be covered as part of the path for pair (s, t,). So
if all the literals in a clause have the value of false there
will be no way of connecting (s, t), in Figure 3, by a short-
est path since all of the neighbors surrounding the shortest
path from s to ¢ are covered. On the other hand if at least
one of these values is true, it is possible that vertex B will
not be covered and hence there is at least one shortest path
available for the pair (s,¢). At this point one may conjec-

Figure 3. Same parity clause-checkers for 2 and 3 literals.

ture that it is just matter of embedding all of these compo-
nents in an n-cube, but this alone does not suffice. There
are some subtle details which need to be addressed. Let us
define the parity of a vertex as even if the number of ones
in its bit representation is even, and odd otherwise. The
convey apparatus has the property that the parity of .4 must
be equal to the parity of B. Since the parity of the ver-
tices in the setting and fan-out components vary, we need
to construct clause-checkers whose terminals have all pos-
sible combinations of parities. Figure 3 shows components
whose terminals have identical parities. Figure 4 shows
the case when the terminals have differing parities. For a
clause with two literals, the left hand side construction in
Figure 4 can be used by assigning b; and b, to the appro-
priate vertices; so that both have even parity, odd parity,
or differing parity. For clauses with three literals one may
use the right hand component in Figure 3 for even parity or
odd parity by placing the terminals in appropriate vertices,
and for mixed parity one can use the component in the right
hand side of Figure 4 by placing the terminals in appropri-
ate vertices. The actual placement of the terminals so thar
the desired parity for each vertex is correct is straightfor-
ward. Clearly, Figures 3 and 4 demonstrate that one may
construct clause-checkers where the terminals have all pos-
sible combinations of parities.

Given an instance of the L3-SAT problem with w
clauses and v variables we construct an instance of the
k-pairwise node disjoint shortest path problem as follows.
The nodes of the n-cube will be a sequence of bits of the
following form:



bo 231

Figure 4. Left: Two literal clause-checker with different
parity terminals. Right: Three literal clause-checker with
two same parity terminals (b; and b3) and one differing one
(ba).

DOD1-~~D[log2(v—+—1)"| EOEI-"Eflog._,(w-é—l)] Y FGH JKL

The 3-cubes for the setting and fan-out components use
the bits FGH and clause-checkers use bits JK L. The
index of a clause number is represented in binary by the
bits FoF1 ... E[logQ(w+lﬂ and we use the bits DgD; ...
Driog,(v+1)] to represent the index of variables. The Y bit
is used to make the parity of an intermediate vertex equal
to the parity of the vertices A and B in a convey apparatus.

The 3-cube for the setting and fan-out component rep-
resenting the i*P variable is defined using the bits FGH,
the bits Dg.Dy ... Dyiog,(v+1)] Tepresent the value of i and
all the remaining bits are zero. Now we match the ter-
>minals of the setting and fan-out component to the ap-
propriate clauses to determine the type of clause-checker

needed. The j* clause-checker will be set so that bits
JK L are the 3-cube as indicated. EoFE: ... Eflog, (w+1))
represents the integer j in binary. Again all the other bits
set to zero. The terminals in the setting and fan-out com-
ponents matched to the terminals in the clause-checkers
effect a polynomial reduction to the instance of L3-SAT
and insure that they have the same parity. This is possi-
ble because the clause-checkers can be constructed with
any combination of parities. The third part is to spec-
ify a convey apparatus for every pair of matched termi-
nals. Let us now define the path of the convey apparatus
that joins a terminal in the i*® variable with a terminal in
the j*P clause-checker. The convey apparatus will start at
node bitrep(i) bitrep(0) 0 FGH 000 where bitrep()
is the bit representation of integer £ and FGH are the
bits for the setting and fan-out terminal in the matching
being implementing. By changing two bits at a time the
conveyor pairs end at bitrep(0) bitrep(j) 0 000 JKL.
We require that the conveyor visits the intermediate ver-
tex bitrep(i) bitrep(j) Y FGH JKL. Y is such
that the parity of this vertex is exactly the parity of ver-
tex 4 and B in the convey apparatus. There is no over-
lap with other pairs and their respective paths because
(... bitrep(j) ... FGH ...) is unique in the first part
f the path and (bitrep(i) ... JA'L) is unique in the sec-
ond part of the path.

65

Theorem 2 The k-pair node disjoint shortest paths prob-
lem for the n-cube is NP-complere.

Proof: Showing the problem is in NP is straightfor-
ward [6]. Given any instance of L3-SAT we construct an
instance of the k-pairwise node disjoint shortest paths prob-
lem as shown just before this theorem. The proof that the
instance of L.3-SAT is satisfiable if and only if the prob-
lem instance constructed from the k-pairwise node disjoint
shortest path problem has & node disjoint paths; is straight-
forward and follows the arguments in the discussion just
before the theorem. Thus the problem is NP-complete. []

We should point out that in the above reduction every
pair has the property that d(.Y;) = 3. Thus the problem
is NP-complete even under this condition. We have also
shown that the problem is NP-hard even if there are no sin-
gletons [6].

3 n-Cube: Related Problems

In this section we show that finding k-pairwise node dis-
joint arbitrary length paths in the n-cube is an NP-hard
problem. The idea is to take the construction in Section 2
and just wrap blocking nodes around it so that every path
for each pair does not go outside the corresponding short-
est path for the pair. We state our resuit in the following
theorem without a proof.

Theorem 3 Given X a partial half permutation routing
request with singleton nodes the k-pairwise node disjoint
paths problem for the n-cube is NP-hard.

The difficulty of showing that the problem is in NP
is due to the fact that some paths may be of exponential
length in the size of the input. This factor makes it diffi-
cult to prove that a “yes” instance has a nondeterministic
polynomial solution.

How about if the paths connecting the pairs are al-
lowed to have a length constrained by an approximation
of the shortest path? Such as d(.X;) + ¢ or ¢ d(.X;) where
¢ > 11is a constant. In this section we demonstrate that
NP-hardness persists even under this relaxation. Now let
us define the node disjoint near-shortest paths problem in
the n-cube by allowing paths of length at most ¢ d(.X;)+2b,
where b and ¢ are constants such thatc = 1 and b > 0, or
¢ > 1and b > 0. The reason for the constant time is that
any detour from the shortest path in the n-cube must return
on that dimension to reach a target node. A reduction from
the node disjoint problem cannot be applied directly as a
“yes” instance in that context may map to a “'no” instance
of the near-shortest paths problem. Namely an actual path
length may in fact exceed the upper bound ¢ d(.X;) + 2b.

Theorem 4 Given X a partial half permutation routing
request with singleton nodes the k-pairwise node disjoint
near-shortest paths problem for the n-cube is NP-hard.

Proof: Take the construction which is derivative of
L.3-SAT as shown in Section 2 with the constraint on pair



distance of 3. All of the constructions listed in- Section 2
function for any length pairs even when wrapped. Now by
definition d(.Y;) < ¢ d(.X;) + 2b s0 a “‘yes” instance of the
construction has a set of node disjoint shortest paths and
therefore maps to a “yes” instance of the k-pairwise near-
shortest paths problem. A “no” instance of the construction
does not have node disjoint paths and therefore maps to a
“no” instance of the k-pairwise near-shortest paths prob-
lem. Further the construction takes polynomial time for the
same reason stated in the proof of Theorem 3. '}

4 Conclusion

We have established that the k-pairwise node disjoint paths,
and the node disjoint shortest paths problems in the n-cube
are NP-hard. The result holds even when d(.X;) < 3. How-
ever the problem is polynomially solvable when d{.X ;) < 2
even when defined over general graphs. Given current as-
sumptions about the equivalence of classes P and NP this
indicates that the likelihood of finding polynomial algo-
rithms for these problems on these topologies is negligible.
What is even more problematic is that the k-pairwise node
disjoint near-shortest paths problem is NP-hard. This prob-
lem may be viewed as approximating the original problem.
A similar result has been established by Gonzalez and Ser-
ena [6] for the edge disjoint shortest paths problems. How-
ever, Gonzalez and Serena [5] have developed polynomial
time algorithms for a restricted subproblem called the ex-
treme version. :

References

[1] DOWLING, W. F., AND GALLIER, J. H. Linear-Time
Algorithms for Testing the Satisfiability of Proposi-
tional Hom Formulae. J. Logic 3 (1984), 267-284.

[2] Gao, S., NovVICK, B., AND QuUI, K. From Hall's
Matching Theorem to Optimal Routing on Hyper-
cubes. Journal of Combinatorial Theory, Series B 74,
2 (November 1998), 291-301.

[3] GAREY, M. R., AND JOHNSON, D. S. Comput-
ers and Intractability A Guide to the Theory of NP-
Completeness. Freeman, 1979.

{4] GoNzALEZ, T. F., AND SERENA, F. D. n-Cube Net-
work: Node Disjoint Shortest Paths for Pairs of Ver-
tices. Tech. Rep. TRCS-2001-12, University of Cali-
fornia at Santa Barbara, July 2001.

[5] GonzALEZ, T. F., AND SERENA, F. D. Node Dis-
joint Shortest Paths for Pairs of Vertices in an n-Cube
Network. In Proceedings of the International Con-
ference on Parallel and Distributed Computing and
Systems (PDCS2001) (2001), IASTED. pp. 278-282.

[6] GONZALEZ, T. F.. AND SERENA, F. D. Complexity
of k-Pairwise Disjoint Shortest Paths in the Hyper-
cube and Grid Networks. Tech. Rep. TRCS-2002-14.
University of California at Santa Barbara. May 2002.

66

{71 Gu, Q.-P., AND PENG, S. k-Pairwise Cluster Fault
Tolerant Routing in Hypercubes. IEEE Transactions
on Computers 46, 9 (September 1997).

[8] Gu, Q.-P., AND PENG, S. Node-to-Set and Set-
to-Set Cluster Fault Tolerant Routing in Hypercubes.
Parallel Computing 24 (1998), 1245-1261.

[9] HOPCROFT, J., AND KARP, R. M. An n*? Algo-
rithm for Maximum Matchings in Bipartite Graphs.
SIAM J. Computing (1973), 225-231.

[10] KARP, R. On the Computational Complexity of Com-
binatorial Problems. Nenworks 5 (1975), 45-68.

{11] LaTIFI, S., KO, H., AND SRIMANI, P. K. Node-
to-Set Vertex Disjoint Paths in Hypercube Networks.
Computer Science Technical Report, Colorado State
Universiry CS-98-107 (1998).

[12] MADHAVAPEDDY, S., AND SUDBOROUGH, I. H. A
Topological Property of Hypercubes: Node Disjoint
Paths. Proc. Second IEEE Symp. Parallel and Dis-
tributed Processing (1990), 532-539.

[13] MADHAVAPEDDY, S., AND SUDBOROUGH, I. H.
Disjoint Paths in the Hypercube. In Graph-Theoretic
Concepts in Computer Science, 15th International
Workshop, WG ‘89 (June 1990), M. Nagl, Ed,
vol. 411 of Lecture Notes in Computer Science, pp. 3—
18.

[14] MENGER, K. Zur Allgemeinene Kurventheore.
Fund. Math 10 (1927), 95-115.

[15] PRETOLANI, D. A Linear Time Algorithm for
Unique Horn Satisfiability. Information Processing
Letters 48 (1993), 61-66. '

[16] R. RAGHAVAN, J. C., AND SAHNI, S. Single Bend
Wiring. Journal of Algorithms 7 (1984), 232-257.

[17] RAaBIN, M. O. Efficient Dispersal of Information for
Security, Load Balancing, and Fault Tolerance. Jour-
nal of the Association of Computing Machinery 36, 2
(April 1989), 335-348.

[18] SHILOACH, Y. Two Paths Problem is Polyno-
mial. Tech. Rep. TR-CS-78-654, Stanford University,
1978.

[19] SzYMANSKI, T. On the Permutation Routing of
a Circuit-Switched Hypercube. Proc. International
Conference on Parallel Processing (ICPP) 1 (1989),
103-110.

[20] WATKIN, M. Graphis (2k—1)-Connected is a Neces-
sary Condition to Admit & Paths. Duke Math. Journal
(1968).




