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ABSTRACT

This paper examines the wavelength assignment problem
with single, dual, and multimessage multicasting. We use
a star network as our model where the messages are routed
using Wavelength Division Multiplexing over single, dual,
and multifiber optical networks. The specific problem we
consider is given any star network, with a finite number of
nodes, a predetermined number of fibers that connect these
nodes, and a set of multicasts to be sent in one communica-
tion round, determine the number of wavelengths required
per fiber to achieve conflict free transmission of all of the
messages.
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1 Introduction

The ever increasing need for faster data transmission
has led to extended research into the area of Optical Net-
works using Wavelength Division Multiplexing (WDM).
Optical Networks in general allow much greater data
transmission speeds than Electrical Networks, and optical
switching has allowed us to retain these transmission
speeds even when direct links between nodes are not
available [1, 2]. Furthermore, WDM allows messages to
be transmitted on different wavelengths (or channels) over
the same fiber. A passive star coupler is utilized to join
the nodes in these networks, making transmission between
all nodes along the same wavelength completely optical
[2]. Networks can be single, dual, or multifiber networks
depending on the number of fibers that connect adjacent
nodes in the system. In dual fiber and multifiber networks,
messages can be switched from one fiber to another along
the same wavelength {2, 3].

These high transmission speeds are needed for
applications such as video conferencing, distributed data
processing, scientific visualization. high speed supercom-
puting, and real-time medical imaging to name a few [4].
The need for multicasting is also growing and it is likely
that future communication networks will include a large
amount of multi-destination traffic [1, 4]. Furthermore.
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since one of the biggest costs to implement an optical
network is the actual physical laying of the optical fibers,
often many fibers may be installed at the same time
resulting in multifiber networks [5]. Wide area testbeds are
currently being developed, employing WDM technology
to pass data over various wavelengths in real-time [6].
The problem we consider in this paper is given any star
network, a predetermined number of fibers, and a set of
multicasts to be sent between nodes in one communication
round, find the least number of wavelengths per fiber
required to send all of the messages.

We use multicast to indicate that a node sends a
message to one or more nodes in the system (also called
a unicast when sending to only one other node and a
broadcast when sending to all other nodes). A star network
is a system of nodes that communicate with each other
by sending messages through an internal routing node
(the passive star coupler in our case). The messages are
then routed to all of the appropriate receiving nodes. The
benefit of multifiber networks is that even though nodes
must receive messages on the same wavelength from which
they were sent, the receiving nodes are able to receive the
message on any fiber. We call this optical rerouting of
messages onto a different fiber, “switching” the message.
This is the central process that allows for better utilization
of individual fibers in dual and muitifiber networks. In this
paper we consider a single time phase, meaning messages
are sent and received in the same phase.

We consider the wavelength assignment problem
(WAP) which is to determine the wavelengths on which
to send the required messages. A related problem is the
scheduling and wavelength assignment (SWA) problem.
The goal of SWA is to schedule the required messages on
the available wavelengths in order to minimize the finish
time. Even more closely related is the wavelength and rout-
ing assignment problem ( WRAP), in which both the routes
and the wavelengths that each message uses must be deter-
mined.

1.1 Problem Definition

Given n nodes, with node i sending s; multicasts. the
jth multicast of each node. for 1 < j < sy, is sent to the




set of nodes d; ;. Note that since d; ; is a set, a multicast

cannot be sent to the same node more than once. Also, i ¢
d; j, Viand j since it does not make sense for a node to
" send a message to itself. Consider Example | with n = 4,
3 fibers, and 2 A/ f. The routing requests s; and d; ; are
given in Table 1.

Table 1. s; and d; ; for Example 1

s1=3 | dii=1{2} di2=1{2,3} diz={2,3}
82 =

s3=3 | d3gq1 = {1, 2,4} d3 2 = {2} dsa = {-L}
sa=1 1 ds1 =1{1,2.3}

We now specify the constraints for sending and re-
ceiving messages in our model. Nodes cannot both send
and receive on the same fiber-wavelength pair at the same
time. Furthermore, nodes can receive at most one message
on each fiber-wavelength pair and send at most one multi-
cast on each fiber-wavelength pair, but not both. There is
no reason to send a message on multiple fibers using the
same wavelength because switching the messages across
fibers can achieve this result. However, it might be advan-
tageous to send the same message on different wavelengths
so that different nodes can recetve the message on several
wavelengths and avoid conflicts with other messages. As

. we stated above, we can switch a message from one fiber

" to another on the same wavelength, but cannot switch the
wavelength on which a message is sent. Given a system
with n nodes, g fibers, and the sets of multicasts d; ;, an as-
signment using w wavelengths is to specify for each wave-
length w in the system, the messages it will transmit, i.e.
a partition of the nodes and fibers into sets for each w as
specified in (1).

Yw partition {1, 2,.,n} X {1.2,....9}
into Sy, St} 5%, - S“’ for 1<5<g (D

The set .S i3 in (1), indicates that a multicast sent from
node 7 on fiber j is transmitted to node k on fiber [ for each
(k,1) € S¥. The set Sy’ represents the unused receiving
node-fiber pairs; and, if S i # (0, then (4,7) € S¥ (since a
node-fiber pair used to send a message cannot be used to
receive a message). Additionally, k£ # 7 for all cases since
a node cannot send a message to itself, and a node cannot
send the same multicast to the same destination more than
once. Consider the assignments in Figure | which contains
4 nodes and 3 fibers. Two wavelengths are shown (w; and
ws). On the left side of each wavelength representation,
the nodes are shown with their respective sent messages.
The messages are then routed by the passive star coupler
~ and finally received by the nodes on the right. Each node
= has three lines on which messages can be transmitted with
the top line representing fiber 1 (f}), the next {5, and the
bottom f3.
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Figure 1. Routing Example

On w1, the multicast labeled “A” is sent from node 1
on f; and received by node 2 on f1. So, S}; = {(2,1)}.
No messages are sent from node 1 on f2, so Sf, = 0.
The multicast labeled “B' is sent from node 1 on f3 and
received by both node 2 on f; and by node 3 on f5, so
Sty = {(2,3),(3,2)}. Remember that since nodes cannot
send and receive on the same fiber-wavelength pair, once
node 1 sends on f;w; it cannot receive on f; wq. Multicast
“C” cannot be sent from node 4 to node 2 on w; since node
2 does not have any fibers available. Instead, node 4 sends
multicast “C” to node 2 on w». The nonempty sets for wy
and w» are defined in Table 2.

Table 2. Set definitions for Figure 1

So ={(1,1),(1,3),3,1), | S§={(11),(1.2),3E1D),
(4, 1),(4.2)} (3.3), (4.2), (4, 3)}

Sis = {(2, 3) (3.2)} Sh = {(2,2)}

S ={(1,2),(2.2), (4,3)} [ S5 = {(4, 1)}

542 - {(3 3)} S‘f-’.’a = {(1*3)7 (273)}

An assignment is said to be feasible if the assignment
can transit all of the multicasts, d; ;, to their destinations.
In other words, d;; will be associated with a set of S}
which we call ¢; ; such that d; ; = {k | S}, € t;;} and
each S} is assigned to at most one set t; ;. Table 3 shows
some of the d; ; sets for Example 1.

Table 3. d; ; and t; ; for Example 1

diur: (St =t
din: {Siz} =t

daz: {S3a} =taz
d_L[ : {5}2, 53)3} = t4.1

1.2 Related Work

The SWA problem was shown to be NP-Hard [7] for
both preemptive (operations can be stopped. or preempted,

S




and resumed at a later time) and non-preemptive (opera-
tions cannot be preempted) cases. Bampis and Rouskas [7]
develop efficient approximation algorithms for both cases.
Li and Simha [3] consider the offline WAP over multiple
fibers in a unicast only environment. The main result in
[3] is that in a multifiber network, switching messages
between the fibers increases wavelength utilization. For
star networks, WAP is known to be NP-Complete over
a single fiber [5], but in [3], optimal polynomial time
algorithms for the cases of dual and multifiber networks
are developed. For ring networks, the dual and multifiber
cases are shown to be NP-Complete and upper bounds are
established for both cases. Several papers consider mul-
ticast environments over a single fiber network including
[1, 4], and these architectures use all optical networks and
WDM. Thaker and Rouskas [2] survey multicast schedul-
ing algorithms (MSAs) in single fiber star networks.

We extend the above research by considering the
WAP in multifiber multicast networks. We use an optical
star network as our model and develop bounds for single,
dual, and multifiber networks using WDM. We consider the
offline version of the WAP.

1.3 Conventions and Outline

We introduce the notation defined ( « | 3| v ). The
first and second terms, o and 3, specify that every node
in the system can receive at most o messages and send
at most 3 multicasts. Additionally, there is at least one
node in the system that receives « messages and sends 3
multicasts. We consider the cases where the values of o
and 3 are 1, 2, or n. The cases are called single, dual and
multimessage multicasting, respectively. The number of
fibers is . We assume that all fibers have the same number
of wavelengths.

For every system, ( « | 3 | v ), we exhibit a
least possible upper bound (which we denote as LPU
bound) and an upper bound on the number of wavelengths
required per fiber. By LPU bound, we mean that there
exists a problem instance, in this specific system, that in
order to achieve conflict free transmission of all messages,
requires at least this number of wavelengths per fiber. By
upper bound. we mean that every problem instance, in this
specific system. can achieve conflict free transmission of
all messages with at most this number of wavelengths per
fiber.

Throughout the paper we use the terms wavelength
and color interchangeably. Additionally, although the
internal routing node is always present, in this paper we
simplify our descriptions and figures by ignoring it and
showing all messages going from one node in the system
directly to another node in the system.

The chromatic index (or edge coloring problem) of

a graph is the minimum number of colors required to
color the graph's edges so that no two edges emanating
from the same vertex have the same color. The problem is
known to be NP-Complete [8] and there have been several
approximation techniques developed [9]. Our problem
reduces to the edge coloration problem only in the specific
case where all messages are unicasts and the number of
fibers is equal to one.

For every section in the paper the trivial LPU bound
is simply l_ M.I . About half of the LPU bounds we ob-

=
tain are equal to this trivial bound and the remaining LPU

bounds are obtained using examples that range from sim-
ple to much more complex problem instances. A summary
of the results is shown in Figure 2. This paper contains
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Figure 2. LPU and Upper Bounds on the Number of Wave-
lengths required per Fiber. LP = LPU Bound, UB = Upper
Bound. Values are tight bounds (i.e. LP=UB) unless other-
wise stated. n > 2 and ¢ > 2 unless otherwise stated.

* LP valid for g > 4; and, UB valid for g > 3

proofs of some selected results; detailed proofs for all of
the results from Figure 2 can be found in {10]. The paper
is organized as follows. Instances of LPU bound and upper
bound resuits for single message multicasting are described
in Sections 2 through 3. Section 6 presents a result for dual
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message multicasting, and Section 7 gives a multimessage
multicasting example. We conclude the paper in Section 8.

2 Boundsfor(1|1|1)

In this case, the LPU bound and the upper bound are
both equal to 3 wavelengths per fiber (3 A/ f). The LPU
bound follows from the problem instance given in Figure
3(a) which requires three colors because each of the three
edges must be colored differently than the other two.

a. b.

Figure 3. a. Requires 3 Colors, b. Requires 4 Colors

Next, we show that the upper bound is also 3A/ f. Ev-
ery problem instance can be viewed as a collection of dis-
joint subgraphs. Each subgraph is a tree, plus there could
be a single additional edge from a node to the root. We
color all of the edges in each tree with colors 1 and 2, and
the edge that goes from a node to the root with color 3.

3 Beoundsfor(1]1]2)

In this situation, the LPU bound and the upper bound
are both equal to 1 A/ f. The algorithm to “color” the mes-~
sages is a simple one. All messages are sent out on f;w;
(fiber one and wavelength one). Next, we will utilize the
dual fiber network and switch the messages from one fiber
to another. So, every message is switched to faw;. Since
every message is sent out on f; wy, received on fawq, and
every node can receive at most one message, there will not
be any conflicts. Therefore, every graph can be colored
with 2 fibers and | color per fiber. Note that having addi-
tional fibers available would not decrease the upper bound.

4 Boundsfor(2|1|1)

For this case, we show an LPU bound of 4 A/ f and
an upper bound of 3 A/f. We establish the LPU bound
with the problem instance given in Figure 3(b). The proof
that this probiem instance requires 4 colors can be found
in {107

To show the upper bound of 3 \/f we first consider
the subproblem where every node has exactly two outgoing
edges and two incoming edges. We present a constructive

proof that shows that every such problem instance is col-
orable with 5 colors. Then we show how to use this result
to color all problem instances with 5 colors. The resulting
algorithm takes O(n) time.

Theorem 4.1 Every problem instance where every node
has exactly 2 outgoing edges and exactly 2 incoming edges
can be colored with 5 colors (which correspond o fiwr
through fiws).

Proof: Our proof is constructive. We consider each
node one at a time. When considering a node z we
color its incoming edges and in some special cases,
we must recolor some, previously colored, edges. We
will refer to the nodes where the two incoming mes-
sages to node r originate as the “parents” of node z
and label them P1 and P2. There are three cases to
consider when coloring node = depending on the number
of different colors of the incoming messages to P1 and P2.

The cases where the number of colors that overlap
is 0 or | are very similar and straightforward. We now
discuss the 374 case, when the incoming edges to node P1
are colored identically to the incoming edges to node P2.
Without loss of generality, we can assign the incoming
messages of P1 and the incoming messages of P2 each to
colors | and 2. If an edge leaving node z is an incoming
edge to P1 or P2, then clearly the incoming edges to node
z can be colored with the remaining colors. In all other
cases, we proceed as follows. Without considering the
edges emanating from node z, the edge from P1 to z and
the edge from P2 to z could each be colored 3,4, 0or5. If
the outgoing edges from node z are colored, then remove
such coloring. Those edges, leaving node z, may each be
colored with two colors in such a way that they will not
conflict with the coloring of the other edges at the nodes
where they terminate. Let Sy be the set of colors of which
the first edge leaving node z can be colored and let S5 be
the set of colors of which the second edge leaving node =
can be colored.

If 51 and S> have a color in common, then these
edges (the edges leaving node z) can be assigned such
color and there will be at least two possible colors that can
be assigned to node z's incoming edges. Therefore, a valid
coloration is possible in this case.

On the other hand, we have the case where S; and
S do not have a color in common. Since S; and S have
two colors each, there is at least one color in Sy or Ss that
is not color 3, 4. or 5. Assume. without loss of generality,
that such color is s € S1. Now, assign color s to the first
edge leaving node r, and assign one of the colors from
Sa, let us call it ¢, to the second edge leaving node z. The
incoming edges to node & may then be assigned to colors
{3.4,3} — t. Therefore, a valid coloration is also possible
in this case. []




Let us now return to the more general problem where
any node can send up to one multicast (to any number of
destinations) and receive up to two messages and show that
this problem can be colored using 5 colors.

Theorem 4.2 Every problem instance where every node is
sending at most one multicast and receiving at most two
messages can be colored with 5 colors.

Proof: Let ) be the message directed graph. Every node
in G has an in-degree of at most two and an out-degree of
at most n. Consider any node z of out-degree zero or one.
Given any 5-coloration of Gy — {incoming edges to T}
one can color the incoming edges to node z without any
conflicts as follows. The incoming edges to node z cannot
be the same color as the two edges being received by the
node where the edge originates or as the edge leaving node
z. This leaves at least 2 colors available to color 2 edges.

The resulting problem is on a message directed graph
G+. Every node in (G5 is such that either the out-degree is
one and the in-degree is zero or the out-degree is at least
two and the in-degree is at most two. One can show that
it must be that every node is of in-degree 2 and out-degree
2. By Theorem 4.1, such a problem is 5-colorable. There-
fore, every problem instance where all nodes can send at
most one multicast and receive at most two messages can
be colored with 5 colors. []

5 LPUBoundfor(n|1|g)

In this case, the LPU bound is equal to [ 21 NS
(where g is the number of fibers). To show the LPU
bound we give a problem instance that cannot be colored
using ([;27] — 1) A/f. The construction will be such
that n nodes will have the same colors available for their
multicasts; and additionally, they will have less than %
of such colors. Furthermore, all of these nodes will send
a message to some node r. Therefore, we will have a
conflict because there will not be enough colors available
to color the messages that node i receives.

We now describe the structure of the problem in-
stance. There are k levels of nodes with @; nodes in level 4.
Every node in the first level, receives n messages (from n
nodes that are not in these levels of nodes, and that do not
receive any messages), and sends one multicast. For every
subset of n nodes in level 1, there are n nodes in level
2 receiving a message from each of these n nodes. The
nodes in every subsequent level i, for i > 1, will receive n
messages from the previous level. Also, for every subset of
n nodes in level i, there are n nodes in level i + 1 receiving
a message from each of these n nodes. To guarantee
that there are n nodes in level 1, all receiving identically
colored messages. we let @) = (( (9%511 _l)g) (n —1)+1.
Additionally, to guarantee that there are n nodes in a
level i. all receiving identically colored messages. we
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let ¢; = (*-')n fori > 1. Note that this implies a
graph with a large number of nodes; however, since the
number of nodes is finite, it is still a valid problem instance.

Let 3 colors be available in g fibers for the input mes-
sages to a node (at any level). Clearly, 3 < |'—1 - 1.
It must be that 3g > n, as otherwise there is no feasible
coloring of the incoming messages at the node. We claim
the following theorem.

Theorem 5.1 [fa node receives all messages in 3 different
colors, then the maximum number of colors available for
its multicasting send operation is less than 3.

The proof of Theorem 5.1 can be found in [10], for
brevity, we have omitted it from this paper. From Theorem
3.1, we have established that, in our problem instance, for
any number of fibers greater than or equal to two (g > 2),
the number of colors available as input to the next level
of nodes is strictly less than the number of colors avail-
able as input to the current level of nodes. Since the num-
ber of colors available is always decreasing, by having at
most ([ -£5] — |' 1) levels of nodes, the number of colors
avaxlable w111 fall below 7+ At this point, there will not be
enough fiber-wavelength pairs to color the next level and
we will have a conflict.

6 LPUBoundfor(2]2)2)

Here, the LPU bound is equal to 3 A/ f. To establish
the LPU bound, we give the problem instance in Figure 4.
We refer the reader to [10] for a detailed proof.

Figure 4. Requires 3 \/f

7 Upper Bound for (n |n|g)

[n this section, we exhibit an upper bound of m A/ f
(where m > 1) for the case when the number of fibers is
equal to (/ + =), where | represents any natural number.
We minimize the product. fibers * wavelengths, by letting
the value of i = \/——_— Therefore, g = v'” and m = ig'lv.
This upper bound is essentially four times the LPU bound
result and is therefore a better result than the general upper




bound result when we are not limited to a fixed number of
fibers.

The following descriptions assume that the values of
i, m, and n when used to assign wavelengths always result
in integer values for the expressions below. When this is
not the case we refer the reader to [10]. The messages to
be received by all nodes are assigned as follows.

The idea is to use i fibers (fi, f2, ... ,f;) to receive
the messages at every node. We will use each fiber for z
of the messages. Since each fiber has m wavelengths, we
will allow the use of 2 wavelengths for each message. So
the first incoming meésage at every node can be assigned
to fiber one (f;) and any of the wavelengths from set S, in
Figure 5. The second incoming message at every node can
be assigned to f; and any of the wavelengths from set S,:
and so on up to the (2)%* message which can be assigned
to f; and any of the wavelengths from set .S =. The next
7 messages are assigned similarly, but using f5. This
coloring process continues until the last set of ~ messages
which use f; and the same sets of wavelengths. At this
point, using this technique, all of the incoming messages at
every node can be assigned a unique fiber-wavelength pair.
The appropriate wavelength to use for every incoming

im
1 2 m S,
m | m 2in S
n n - n 2
a4 ) im n_p)im
(l l)n+l (i l)n+2 m Sll
T, T,

Figure 5. Sets of Wavelengths

message will be determined based on the multicasts
wavelength assignments, which are described below. Note
that we have used a total of ; fibers and m A / f to assign
the messages received at every node.

Next we discuss the multicasts sent from every node.
In order to avoid any conflicts every message in every mul-
ticast must be able to be sent using a wavelength in each of
the sets 57, 55, ..., S z onsome fiber; and no other multicast
emanating from this node can use these fiber-wavelengths
pairs. To accomplish this we define a set T} as the set of all
ofthe j** elements in each of the sets S , S2,.... Sz (when
viewing these sets as order sets). F igure 5 gives a possible

o definition of the sets S and T. Clearly, there are o dif-

:rrent T sets. So, each fiber can be used on %”— different

* multicasts. Therefore, the total number of fibers needed to
send the n multicasts at every node is 7 (fibers £, |, fi1»,
a2 ).

im

..,i+
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8 Conclusion

We determined LPU and upper bounds on the num-
ber of wavelengths required per fiber for star networks
where the messages are routed using Wavelength Division
Multiplexing. Single, dual, and muitimessage multicast-
ing were considered along with single, dual, and multifiber
optical networks. If, as networks develop, the available
fibers increases beyond the amount of traffic in the network,
(i.e. g > n), many of our results reduce to 1 A/ f; how-
ever, this seems unlikely to happen given current trends.
Future work could include continued efforts to obtain tight
bounds for all of the remaining systems within star net-
works along with finding bounds for ring networks and
more general network topologies.
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