Gossiping in the Multicasting Communication Environment

Teofilo F. Gonzalez
Department of Computer Science
University of California
Santa Barbara, CA, 93106
teo@cs.ucsb.edu

Abstract

The gossiping problem consists of an n processor com-
munication network, N, in which every processor has to
broadcast a single message. We present an efficient al-
gorithm to generate a communication schedule with total
communication time at most n + r, where r is the radius
of the network, when message multicasting is allowed. Our
algorithm begins by constructing a spanning tree (or tree
network T') with least possible radius. Then all the com-
munications are carried out in the tree network as follows.
Each processor waits its turn to transmit consecutively to its
parent and children all the messages in its subtree. Before
and after these communications, each processor must trans-
mit to its children all the messages emanating elsewhere in
the network.

1 Introduction
1.1 The Problem

Let N be any n > 3 processor (or node or vertex) com-
munication network (or graph). The broadcasting problem
defined over IV consists of sending a message from one pro-
cessor in the network to all the remaining processors. The
gossiping problem over N consists of broadcasting n mes-
sages each originating at a different processor. Gossiping
problems have been studied under many different objective
functions and communication models. Our communication
model allows each processor to multicast one message to
any subset of its adjacent processors, but no processor may
receive more than one message at a time. Our objective is
to determine when each of these messages is to be trans-
mitted so that all the communications can be carried in the
least total amount of time. As we shall see later on, multi-
casting is a powerful communication primitive that allows
for the communications to be performed much faster than

when restricting to the telephone (or unicasting) communi-
cation model (at each time unit a processor may transmit a
message to just one of its adjacent processors and receive at
most one message) or broadcasting communication model
(at each time a processor may transmit a message to all the
adjacent processors, but receive at most one message) com-
munication primitives.

Example 1: There are nine processors (n = 9) in a ring
network N;. The first communication in an optimal sched-
ule for this problem instance is for each processor to send to
its right hand side neighbor the message it holds, and then
in the next seven iterations every processor transmits to its
right hand side neighbor the message it just received on its
left hand side link (edge). In this case it is simple to verify
that all the communications can be carried out in 2—1 steps,
which is best possible under our communication model.

Let us formally define our problem. Initially each pro-
cessor P; holds one message in its hold set h; and needs
to receive the remaining n. — 1 messages. The multicasting
communication model allowed in our network must satisfy
the following two restrictions.

1.- During each time unit each processor P; may transmit
one of the messages it holds (i.e., a message in its hold
set h; at the beginning of the time unit), but such mes-
sage can be transmitted simultaneously to a set of pro-
cessors adjacent to P;. The message will also remain
in the hold set h;.

2.- During each time unit each processor may receive at
most one message provided such message was sent
during the previous time unit. The message that pro-
cessor P; receives (if any) is added to its hold set h; at
the beginning of the time unit when it was received.

The communication process ends when each processor has
the n messages. The above communication rules define a
communication mode (or step) for a communication sched-
ule as follows. A communication mode C is a set of tu-
ples of the form (m,!, D), where [is a processor index

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

(1 <1 < n), and message m € h; is to be multicasted
from processor F; to the set of processors with indices in
D. In addition the set of tuples in a communication mode
C must obey the following communications rules imposed
by our network:

1.- All the indices ! in C' are distinct, i.e., each processor
sends at most one message; and

2.- Every pair of D sets in C are disjoint, i.e., every pro-
cessor receives at most one message.

A communication schedule S for a problem instance I
is a sequence of communication modes such that after per-
forming all of these communications every processor will
hold the n messages. The fotal communication time is the
number of communication modes in schedule S, which is
identical to the latest time there is a communication. Our
problem consists of constructing a communication sched-
ule with least total communication time. From the commu-
nication rules we know that in every problem instance every
processor needs to receive n — 1 messages and since no pro-
cessor may receive two or more messages simultaneously, it
follows that n — 1 is a trivial lower bound on the total com-
munication time. Therefore the schedule we constructed for
network [V; is an optimal one.

In this paper we are mainly concerned with the off-line
gossiping problem, i.e., the schedule is constructed by a
processor that knows all the information about the problem
ahead of time.

Example 1 suggests a method for solving the gossiping
problem. The idea is to first construct a Hamiltonian cir-
cuit and then use that circuit as in Example 1 to transmit all
the messages in n — 1 time units. As it is well known, that
the Hamiltonian circuit problem is an NP-complete problem
and it is conjectured that there is no efficient algorithm for
its solution. Fortunately, it is not sufficient for a network to
have a Hamiltonian circuit in order for the gossiping prob-
lem be solvable in n — 1 steps.

Figure 1 gives network N, that does not have a Hamil-
tonian circuit in which gossiping can be performed in 7 — 1
communication steps under the multicasting communica-
tion model, but not under the telephone communication
model. Since the telephone communication model is a re-
stricted version of the multicasting communication model,
the above example establishes that multicasting is much
more efficient way to communicate.

The above examples suggest that it is always possible to
perform gossiping in our communication model in n — 1
steps. However, that is not the case. Consider the straight
line network. In this line network it is impossible to deliver
a new message to each end of the line during each time pe-
riod, though it is possible to deliver it to only one of its end
points.

Figure 1. Network N-.

1.2 Previous Work, New Results, and Applica-
tions

The broadcasting and gossiping problems are not new,
these problems have been studied for the past three decades
[12]. However, most of the work is for the telephone type of
communication, i.e., at every step each processor may send
at most one message to at most one processor and no pro-
cessor may receive more than one message at a time. Also,
most of the previous work allows for up to n messages to
be transmitted over a single link at a time. In other words,
the transmission packets must be of size (n). This implies
that such algorithms are not scalable. Under the traditional
model these problems are computationally difficult, i..e.,
NP-hard. But there are efficient algorithms to construct op-
timal communication schedules for restricted networks un-
der some communication models [3, 6, 15]. Up to now there
is no known polynomial time approximation algorithm with
fixed approximation ratio for the broadcasting problem de-
fined over arbitrary graphs, i.e., there is no known efficient

~

approximation algorithm A such that f(I)/f*(I) < c for
every problem instance I, where f (I) is the total commu-
nicatjon time for the schedule constructed by algorithm A
for problem instance I, f*(I) is the total communication
time of an optimal schedule for problem instance I, and c is
a constant. Determining whether or not such algorithm ex-
ists has been an intriguing open problem for more than two
decades. The best known approximation algorithms appear
in [13, 15], and a randomized algorithm is presented in [4].

Broadcasting under our communication model is trivial
to solve. At time zero, the processor that has the message
broadcasts it to all its neighbors. Then at each iteration,
each processor that just received a message will plan to mul-
ticast it to all its neighbors that do not have the message.
But, if there are two or more processors currently planning
to send a processor the message, then only one of them will
actually send it. This is trivial to solve because we are deal-
ing with the off-line scheduling problem. Once the round
of communications is completed, we start with the next it-
eration. It is simple to see that every processor i receives a
message at time j if, and only if, the shortest path (remem-
ber that all edges have weight one) from the broadcasting

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

node to vertex ¢ has j edges. Clearly, the total communica-
tion time in the communication schedule generated by the
above procedure is equal to the maximum length of a short-
est path from the broadcasting node to any vertex in the
graph. The above algorithm is clearly off-line.

A variation of the gossiping problem in which there are
costs associated with the edges and there is a bound on
the maximum number of packets that can be transmitted
through a link at each time unit has been studied in [5]. Ap-
proximation algorithms for several versions of this problem
are given in [5, 1, 7].

Routing under the multicasting communication model
has been considered in [16, 8, 9, 11]. But they study the
multimessage multicasting problem. In this problem each
processor needs to transmit a set of messages, but each mes-
sage is to be received by its own subset of processors. Shen
[16] studied the problem for hypercube connected proces-
sors, and Gonzalez [8, 9, 11] considered the problem for
fully connected processors and also for processors intercon-
nected via a multistage interconnection network that satis-
fies some simple properties (e.g. the MEIKO CS-2 parallel
computer system).

In this paper we study the gossiping problem under the
multicasting communication model. Our main motivation is
that this communication model has been available for many
years and allow us to generate solutions with fewer com-
munication steps than the telephone communication model.
Gossiping arises in many application [2, 14], that include
sorting, matrix multiplication, Discrete Fourier Transform,
solving linear equations, etc.

2 Algorithms

We discuss in this section our algorithm to generate a
communication schedule with total communication time at
most nn + r, where r is the network radius. The radius of a
network is the least integer such that for some vertex vg
there is a path from every vertex v in the graph to vertex
vo with at most r edges. Our procedure consists of two
steps. First we build a special tree network (subsection 2.1)
and then we perform all the communications in that tree
network (subsection 2.2).

2.1 Constructing the Tree Network

As we mention above, the first step of the algorithm con-
structs a minimum radius spanning tree. To do this we begin
by finding the length of the shortest path between all pairs
of vertices. Then we select a processor in the network such
that the maximum length of a shortest path for it to all ver-
tices in the network is least possible and construct a tree
rooted at that node in which all the paths to the other ver-

tices are shortest paths in the original network. Then we
perform all the communications in that tree network.

Figure 2. Network N; (solid and dashed lines)
and Tree Network T (solid lines).

Applying this procedure to the network N3 in Figure 2
(solid and dotted edges) results in the tree network 7' given
in Figure 2 (solid edges). In the next subsection we discuss
several algorithms for gossiping in trees.

2.2 Gossiping in Tree Networks

The problem of gossiping in an arbitrary network has
been reduced to gossiping in a tree with height r. Our algo-
rithm for gossiping in trees is a little bit complex, so before
we discuss it we introduce increasingly more complex pro-
cedures. Let us begin by defining some terms. The topmost
vertex is called the root of the tree. The level of every vertex
in the tree network is defined as follows: the level of root is
zero, the level of the children of the root is equal to one, the
grandchildren are at level 2, and so forth. For every vertex
we sort its subtrees from left to right. Our algorithm pro-
ceeds by labeling the vertices in in depth-first search order
starting at the root (label 0) and ending at some leaf (label
n — 1). Applying the algorithm to the tree network T in
Figure 2 (solid edges) we obtain the labels that appear to
the right and just below the vertices.

We begin by discussing the first algorithm (Simple) to
perform the gossiping in 2n + 7 — 3 time units. This pro-
cedure has been used to solve other message routing prob-
lems. The idea is to send up all the messages to the root first
so that message ¢ > 1 is received by the root at time i. The
message labeled ¢ at level k is transmitted to its parent (if
any) at time ¢ — k, to its grandparent (if any) form its parent
at time 7 — k 4 1, and so on. Clearly, there are no conflicts
and at time n — 1 all the messages are received by the root.
Clearly this process takes n — 1 communication steps. Now
all the messages need to be propagated downwards. At time
n — 2 message 0 is sent from the root to all its children, at

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

time n — 1 message 1 is sent from the root to all its chil-
dren and so on. Note that during all this process when a
non-root vertex receives a message from its parent it imme-
diately sends it to all its children. It is simple to verify that
by time 2n + r — 3 all nodes will receive all the messages.
The main advantage of procedure Simple is that it is quite
simple, but on the other hand the total communication time
is not so small.

Lemma 1: The communication schedule generated by
procedure Simple has total communication time 2n+4-r—3
for any tree with n nodes and height r.

Proof: The proof follows from the above discussion.

Procedure UpDown developed by Gonzalez [10] is more
complex, but the communication schedule it generates has
smaller total communication time. The approach is simi-
lar to procedure Simple, except at the same time the algo-
rithm sends messages up and down throughout the tree. The
procedure consists of two phases. In the first phase, like in
the algorithm Simple, all the messages are propagated to
the root, but at the same time it begins the process of prop-
agating messages to other parts of the tree. In the second
phase the algorithm just propagates down some messages
that got stuck in the network. The first and second phase
take n + 7 — 1 and 2(r — 1) + 1 steps, respectively.

In this paper we introduce algorithm
ConcurrentUpDown which is the most complex of
our procedures, but generates the best schedules with
respect to the total communication time. It is based on
the observation that all the operations can be carried out
in a single stage by maximizing the concurrent operations
performed at each step. The total communication time of
the schedules generated by this algorithm is just n -+ 7.

Let us now introduce additional notation. Consider ver-
tex v at level £ < 1. Vertex v has message 1 initially and
the subtree rooted at v includes messages ¢ up to message j
initially. The parent of non-root vertex v, which we refer to
as v, has message ¢’ initially and the subtree rooted at ver-
tex v’ includes messages i’ up to message j' initially. The
level of vertex v’ is k' = k — 1. To simplify the notation we
say that the root of the tree has a (virtual) parent called v’
with ¢’ = 0 and j' = n. Remember that vertices are labeled
fromOton ~ 1.

The messages in every non-root vertex v are labeled as fol-
lows:

e messages 1,2,...,4 — 1 are called the front messages
or f-messages. The f-messages are partitioned with re-
spect to vertex v as follows:

- messages 1,2, ...,4'—1 are called the front in par-
ent messages or fip-messages.

— messages i',4' + 1,...,4 — 1 are called the new
front messages or nf-messages.

e messages 4,7 + 1,...,j are called the body messages
or b-messages. The b-messages are partitioned with
respect to vertex v as follows:

— message ¢ is called the original message or o-
message.

— message i+1,ifi+1 < j, is called the lookahead
message or [-message .

~ messages ¢ + 2,...,7 (if any) are called the re-
maining messages or r-messages.

The b-messages are also partitioned with respect to
vertex v', (the parent of vertex v) as follows:

— message i, if i = ¢'+1, is the lookahead in parent
(lip) message or lip-message.

- messages maz{i, i’ + 2},...,7, if any, are the
remaining in parent (rip) messages or rip-
messages.

e messages j 4+ 1,...,n — 1 are the end messages or e-
message. The e-messages are partitioned with respect
to vertex v as follows:

— messages j + 1,5 + 2,..., 7' are called the new
end messages or ne-messages.

- messages j' +1,...,n — 1 are called the new end
in parent messages or eip-messages.

e message 0 is called the really last message or rl-
message.

Note that the root of the tree ends up labeled as follows:
message 1 = 0 is the o-message, message 1 is the 1-message,
messages 2..n — 1 are called r-messages and all messages
are rip-messages. There are no lip-messages and message
1 = 0 is also called an rl-message.

First we establish that a set of messages will be sent to
the root as specified by algorithm Propagate-Up and then we
show that algorithm Propagate-Down propagates all mes-
sages to all the vertices. Both of these algorithms will end
up operating concurrently. Algorithm Propagate-Up will
guarantee that all the b-messages of each vertex v will be
available by time j — k at v. This implies that the root of the
tree will contain all the messages by time n — 1. When all
the communications of Algorithm Propagate-Down finish
every vertex will have all the messages. In order for these
two algorithms to deliver all the messages to all the vertices
quickly, the algorithms are interleaved.

Algorithm Propagate-Up (v)

1. {Time 1} At time 1 vertex v receives from a child its
I-message (if any). Specifically, if 1 + 1 < 5 (v is not
a leaf vertex), then vertex v receives message ¢ + 1 at
time 1.

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

e

2. {Time ¢ — k + 2..j — k} Starting at time ¢ — k + 2
vertex v receives sequentially from its children all its
r-messages in order. This is equivalent to saying, if
message ¢ + « is an r-message, it will be received
by v at time i + o — k, simply because the first r-
message, if any, is message ¢ + 2 and it is received
at time ¢ — k + 2, then the remaining r-messages are
received sequentially in order.

3. {Time 0} If v is not the root of the tree, then at time 0
vertex v sends to its parent its lip-message.

4. {Time i — k+w..j — k} If v is not the root of the tree,
then starting at time ¢« — k + w send sequentially to
its parent all its rip-messages, where w is the number
of lip-messages at v. This is equivalent to saying that
if message i’ + « is a rip-message at v then it will
be sent at time 3’ + o — k to its parent. The first of
these messages is labeled 4 + w and it is sent at time
1 — k + w and the remaining rip-messages will be sent
sequentially in order.

End of Algorithm Propagate-Up

Lemma 2: Algorithm Propagate-Up is feasible, i.e., ev-
ery vertex v in the tree receives the messages in steps (1)
- (2) as specified, and every non-root vertex v in the tree
sends the messages in steps (3) - (4) as specified.

Proof: The proof is by induction on the height of v. For
brevity the proof is omitted.

Algorithm Propagate-Down (V)

If vertex v is the root of the tree then perform (1), else per-
form operations (2) - (6) and if v is not a leaf-node then also
perform operations (7) - (10).

1. {Time 1..n — 1} The root of the tree propagates its
information down as follows: fortimet = 1,2, ...,n —
1 send to all its children message i (except for the child
that already has the message).

2. {Time k+1..¢' — k+ 1} Starting at time &k + 1 vertex v
receives from its parent all its fip-messages except for
no more than 2(k — 1) of them which will be received
later on by v. These messages are not necessarily re-
ceived one after the other or in order.

3. {Times' —k+2..i — k+ 1} Starting at time ¢’ — k + 2
vertex v receives from its parent all its nf-messages.
These messages are received one after the other and in
order.

4. {Time j —k+3..j' — k+ 2} Starting at time j —k + 3
vertex v receives from its parent all its ne-messages
J + 1.5/ — 1. These messages are received one after
the other and in order.

5. {Time j'—k+3..n+k} Starting at time j' —k+3 vertex
v receives from its parent all its eip-messages plus the
fip-messages (no more than 2(k — 1)) which were not
received earlier. These messages are not necessarily
received one after the other or in order.

6. {Time n + k} At time n + k vertex v receives the rf-
message.

7. {Time k + 1..4 — k — 1} Starting at time &k + 1 ver-
tex v sends sequentially to its children the f-messages
it received in (2) and (3) except possibly for the ones
received at time ¢ — k and ¢ — k + 1 (if any), which will
be sent later on.

8. {Timei—k..j —k} Starting at time i — k vertex v sends
sequentially to its children (except for the children that
already have them) all its b-messages.

9. {Timej—k+1landj—k+2} Attime j —k+1 and
J — k + 2 vertex v sends to its children the f-messages
received attime ¢ — k and 7 — k + 1 (if any).

10. {Time j—k+3..n+k} Starting at time j — k+3 vertex
v sends the e-messages it receives to all its children.
These messages are the e-messages, the rf-message
and the f-messages that were postpones at previous
levels.

End of Algorithm Propagate-Down

Lemma 3: If Algorithm Propagate-Down is feasible
then Algorithm Propagate-Up is feasible, i.e., the root of
the tree propagates the messages as in (1) and for the re-
maining vertices the messages are received as specified by
steps (2) - (5), and the messages in steps (6) - (10) will be
sent as indicated.

Proof: The proof is by induction on the level of v. For
brevity the proof is omitted.

The schedule is given below for the vertex labeled 0, 1,
4 and 8 in the tree network 7" Figure 2. The schedule for the
vertex labeled O is straight forward. Message ¢ is received
at time ¢ and it is sent at time ¢ for 1 < ¢ < 15, and message
0 is sent at time 16. The schedule for the vertex labeled 1
is simple since it receives the b-messages and then the e-
messages.

The schedule for vertex labeled 4 is more complex since
it includes messages 2 and 3 that are delayed. In the vertex
labeled 8 it is more complex since messages 2, 3, 6, and 7
are the ones delayed.

Procedure ConcurrentUpDown is just algorithms
Propagate-Up and Propagate-Down executed con-
currently.

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

TR

Table 1. Schedule for the Vertex Labeled 1. Table 3. Schedule for the Veriex Labeled 8.
Time | 0 | 1 2 3 4 5 6 7 8
Rec. | - | 2 3 - - 4 5 6 7 Time | 0 1 2 3 4 5 6 7 8 9
Snd. | 1| 2 3 - - 4 5 6 7 Rec. - 9 - 1 4 5 6 7110} -
Time |9 |10 | 11|12] 1314 15]16] 17 Snd. | - | - |- |1 |45 |8]9]10]6
Rec. (8| 9 (10|11 1213 14|15} 0 Time | 10 | 11 |12 |13 |14 (15|16 |17 | 18| 19
Snd. |8} 9 |10(11 1211314 |15 0 Rec. 2 31112713 |14115]| 0 -

Table 2. Schedule for the Vertex Labeled 4.
Time | O 1 2 3 4 5 6 7 8
Rec. - 5 1 2 3 6 7 8 9
Snd. - - 1 4 5 6 7 8 9
Time | 9 | 10|11 |12 (13|14 | 15| 16| 17
Rec. | 10| - - |1)12(13|141151 0
Snd. | 10| 2 311211314115] 0

Theorem 1: The communication schedules generated by
procedure ConcurrentUpDown has total communication
time n + r for any n node network with radius r.

Proof: The idea is to establish that there are no conflicts
at the vertices when messages are being transmitted. This is
accomplished by identifying time periods where the differ-
ent type of messages are being transmitted. For brevity the
proof is omitted.

3 Discussion

We have presented an algorithm to construct commu-
nication schedules with total communication time at most
n + 7, where r is the radius of the graph. The algorithms
are efficient and generate near optimal solutions. The most
time consuming part of the algorithm is solving the all pair
shortest paths problem. This information is needed to com-
pute the radius of the network and then building a tree net-
work with least height. All the other steps of the algorithm
to construct the schedule take O(n) time.

With a little bit of preprocessing and storing additional
information at each vertex, our algorithm can be made on-
line provided there is a general synchronization process.
For brevity we cannot elaborate on this extension. Our algo-
rithm can be easily adapted to the weighted gossiping prob-
lem where each processor has at least one message to trans-
mit.

References

[1] J. C. Bermond, L. Gargano, A. A. Rescigno, and U. Vac-
caro. Fast gossiping by short messages. SIAM Journal on
Computing, 27(4):917-941, 1998.

Snd. | 7 | 2 |3 |11 [12|13|14]15| 0 | -

[2] D.P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed
Computation: Numerical Methods. Prentice-Hall, Engle-
wood Cliffs, NJ, 1989.

[3] S.Even and B. Monien. On the number of rounds necessary

to disseminate information. In Proc. Ist ACM Symp. on Par-

allel Algorithms and Architectures, pages 318-327, 1989.

U. Feige, D. Peleg, R. P, and U. E. Randomized broadcast in

networks. In International Symposium SIGAL '90, Lecture

Notes in Computer Science, pages 128-137, Berlin, 1990.

[5] P. Fraigniaud and S. Vial. Approximation algorithms for
broadcasting and gossiping. Journal of Parallel and Dis-
tributed Computing, 43:47-55, 1997.

[6] S. Fujita and M. Yamashita. Optimal group gossiping in
hypercube under circuit switching model. SIAM Journal on
Computing, 25(5):1045-1060, 1996.

[7] L. Gargano, A. A. Rescigno, and U. Vaccaro. Communica-
tion complexity of gossiping by packets. Journal of Parallel
and Distributed Computing, 45:73-81, 1997.

[8] T. F. Gonzalez. Complexity and approximations for multi-
message multicasting. Journal of Parallel and Distributed
Computing, 55:215-235, 1998.

[9]1 T. F. Gonzalez. Improved approximation algorithms for
multimessage multicasting. Nordic Journal on Computing,
5:196-213, 1998.

[10] T.F. Gonzalez. Gossiping with multicasting communication
primitives. In Proceedings of the 2000 Parallel and Dis-
tributed Computing Systems Conference, PDCS'2000, vol-
ume II, pages 768-773. IASETED, 2000.

[11] T. F. Gonzalez. Simple algorithms for multimessage multi-
casting with forwarding. Algorithmica, to appear.

[12] S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman.
A survey of gossiping and broadcasting in communication
network. NETWORKS, 18:129-134, 1988.

[13] I. Hromkovic, R. Klasing, B. Monien, and R. Peine. Dissem-
ination of Information in Interconnection Networks (Broad-
casting and Gossiping), pages 273-282. In Combinatorial
Network Thoey, D. Z. Du and D. F. Hsu (Eds.), Kluwer Aca-
demic, 1996.

[14] D. W. Krumme, K. N. Venkataraman, and G. Cybenko.
Gossiping in minimal time. SIAM Journal on Computing,
21(2):111-139, 1992.

[15] R. Ravi. Rapid rumor ramification. In Proc. 35th Annual
Symp. on Foundations of Computer Science, pages 202-213,
1994.

[16] H. Shen. Efficient multiple multicasting in hypercubes.
Journal of Systems Architecture, 43(9), August 1997.

[4

—

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

