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Abstract—We present an algorithm for the gossiping problem defined over an n processor communication network, N, where

message multicasting is allowed. The algorithm generates a communication schedule with a total communication time at most nþ r,
where r is the radius of the network. Our algorithm begins by constructing a spanning tree (or tree network T ) with the least possible

radius. Then, all the communications are carried out in the tree network as follows: Each processor waits its turn to transmit “almost”

consecutively to its parent and children all the messages in its subtree. During other times, each processor transmits to its children all

the messages emanating elsewhere in the network.

Index Terms—Approximation algorithms, gossiping, multicasting, communication schedules.

æ

1 INTRODUCTION

LET N be any communication network (or graph) with
n � 3 processors (nodes or vertices). The broadcasting

problem defined over N consists of sending a message from
one processor in the network to all the remaining
processors. The gossiping problem (also known as the all-
to-all broadcasting problem) over N consists of broad-
casting n messages, each originating at a different proces-
sor. Gossiping problems have been studied under many
different objective functions and communication models.
Our communication model allows each processor to multi-
cast one message to any subset of its adjacent processors,
but no processor may receive more than one message at a
time. Our objective is to determine when each of these
messages is to be transmitted so that all the communica-
tions can be carried in the least total amount of time.
Multicasting is a powerful communication primitive that
allows for the communications to be performed much faster
than when restricting to the telephone (or unicasting)
communication model (a processor may transmit a message
to just one of its adjacent processors at a time) or the
broadcasting communication model (a processor may transmit
a message to all the adjacent processors). Consider the
problem instance given in Fig. 1, where an optimal solution
to the gossiping problem can be easily constructed as
follows: In the first communication round, each processor
sends to its clockwise neighbor the message it holds, and
then, in the remaining iterations, every processor transmits
to its clockwise neighbor the message it just received from
its counter-clockwise neighbor. The total communication
time is nÿ 1, which is best possible.

Let us formally define our problem. Initially, each

processor Pi holds one message in its hold set hi and needs

to receive the remaining nÿ 1 messages. The multicasting

communications model in our network must satisfy the

following two restrictions:

1. During each time unit t, each processor may receive
at most one message provided such message was
sent during the previous time unit (tÿ 1). The
message that processor Pi receives (if any) at time t
is added to its hold set hi at time t.

2. During each time unit t, each processor Pi may
transmit one of the messages it holds (i.e., a message
in its hold set hi at time t), and such a message can
be transmitted simultaneously to a set of processors
adjacent to Pi. The message will also remain in the
hold set hi. It is important to note that the receive
operation is performed before the send operation. In
other words, a message that is sent to Pi at time tÿ 1
arrives at Pi at time t and processor Pi may send it at
time t to other processors.

The communication process ends when each processor has
the n messages. The above communication rules define a
communication round (or step) for a communication
schedule as follows: A communication round C is a set of
tuples of the form ðm; l;DÞ, where l is a processor index
(1 � l � n), and message m 2 hl is to be multicasted from
processor Pl to the set of processors with indices in D. In
addition, the set of tuples in a communication round C
must obey the following communications rules imposed by
our network at each step:

1. Every pair of D sets in C are disjoint, i.e., every
processor receives at most one message; and

2. All the indices l in C are distinct, i.e., each processor
sends at most one message.

If at time t processor Pi receives a message, then the
message was sent to Pi during communication round tÿ 1.
The message is added at time t to hi and it may be sent from
Pi during communication round t or later.

A communication schedule is a sequence of communication
rounds. A communication schedule S that solves the
gossiping problem for a given graph G is a communication
schedule such that, after performing all the communication
rounds, every processor will hold the n messages. The total
communication time is the number of communication rounds
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in schedule S, which is identical to the latest time there is a
communication. Our problem consists of constructing a
communication schedule with the least total communication
time. From the communication rules, we know that, in every
problem instance, every processor needs to receive nÿ 1
messages and, since no processor may receive two or more
messages simultaneously, it follows that nÿ 1 is a trivial
lower bound on the total communication time. Therefore, the
schedule we constructed for networkN1 is an optimal one. In
order to make communication rounds equal in time, we say
that the first round of communications is sent at time zero and
received at time one, the second round is sent at time one and
received at time two, and so on.

In this paper, we are mainly concerned with the offline

gossiping problem, i.e., the schedule is constructed by a
processor that knows all the information about the problem
ahead of time. We discuss the online problem in the final
section, where the n processors know limited global
information.

The solution we constructed for network N1 suggests a
method for solving the gossiping problem. The idea is to
first construct a Hamiltonian circuit and then use that
circuit to transmit all the messages in nÿ 1 time units. It is
well-known that determining whether or not a graph has a
Hamiltonian circuit is an NP-complete problem and it is
conjectured that there is no efficient algorithm for its
solution [10]. Fortunately, it is not necessary for a network
to have a Hamiltonian circuit in order for the gossiping
problem be solvable in nÿ 1 steps. There are networks that
do not have a Hamiltonian circuit, but in which gossiping
can be performed in nÿ 1 communication steps even under
the telephone communication model. The Petersen graph
(Fig. 2) is one such graph.

Network N3 (Fig. 3) does not have a Hamiltonian circuit,
but gossiping can be performed in nÿ 1 communication
steps under the multicasting communication model, but not

under the telephone communication model [16]. Since the
telephone communication model is a restricted version of
the multicasting communication model, the above example
establishes that multicasting is a much more efficient way to
communicate.

The above examples suggest that it is always possible to
perform gossiping in our communication model in nÿ 1
steps. However, this is not always the case. Consider a
straight line network with three processors. After the first
round of communications takes place, the center processor
will know at most two messages because it can only receive
one message at a time. Therefore, it is not possible to deliver to
one of the two ends all the messages in two time units. Now,
consider a straight line network with n ¼ 2mþ 1 processors,
for any positive integer m. The earliest time that all the
n messages can arrive at the center processor is nÿ 1. The
earliest time at which the last message that arrived at the
center processor can be received by both of the end processors
is nÿ 1þm. Therefore, every communication schedule for
this problem instance has a communication time at least
nþ rÿ 1, where r is the radius of the network. In this paper,
we present an algorithm for the gossiping problem that
generates a schedule with nþ r communication steps for any
network.

2 PREVIOUS WORK, NEW RESULTS, AND

APPLICATIONS

The broadcasting and gossiping problems are not new.
These problems have been studied for the past three
decades [7], [17]. However, most of the work is for the
telephone type of communication, i.e., at every step, each
processor may transmit information to at most one
processor and no processor may receive information from
more than one processor at a time. Some of the previous
work allows for up to n messages to be transmitted over
a single link in one time unit. In other words, the
transmission packets may be of size 
ðnÞ, which implies
that such algorithms are not scalable. In this paper, as
well as in the more traditional ones, we limit the amount
of information to be transmitted over a link during one
time unit to one message. Under the traditional model
these problems are computationally difficult, i.e., NP-
hard. But, there are efficient algorithms to construct
optimal communication schedules for restricted networks
under some communication models [5], [9], [19], [21]. Up
to now, there is no known polynomial time approxima-
tion algorithm with constant approximation ratio for the
broadcasting problem defined over arbitrary graphs, i.e.,
there is no known efficient approximation algorithm A
such that ^fðIÞfðIÞ=f�ðIÞ � c for every problem instance I,
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Fig. 1. Network (N1) with a Hamiltonian circuit.

Fig. 2. Network N2 (Petersen graph).

Fig. 3. Network (N3).



where ^fðIÞfðIÞ is the total communication time for the
schedule constructed by algorithm A for problem instance
I, f�ðIÞ is the total communication time of an optimal
schedule for problem instance I, and c is a constant.
Determining whether or not such an algorithm exists has
been an intriguing open problem for more than two
decades. The best known approximation algorithms
appear in [1], [18], [21], and a randomized algorithm is
presented in [6].

Broadcasting under our communication model is trivial
to solve. At time zero, the processor that has the message
broadcasts it to all its neighbors. Then, at each iteration,
each processor that just received a message will plan to
multicast it to all its neighbors that do not have the message.
But, if there are two or more processors currently planning
to send a processor the message, then only one of them will
actually send it. This is trivial to solve because we are
dealing with the offline scheduling problem. Once the
round of communications is completed, we start with the
next iteration. It is simple to see that every processor i
receives a message at time j if and only if the shortest path
(remember that all edges have weight one) from the
broadcasting processor to processor i has j edges. Clearly,
the total communication time in the communication
schedule generated by the above procedure is equal to the
maximum length of a shortest path from the broadcasting
processor to a processor in the network. The above
algorithm is clearly offline.

A variation of the gossiping problem in which there are
costs associated with the edges and there is a bound on the
maximum number of packets that can be transmitted
through a link at each time unit has been studied in [8].
Approximation algorithms for several versions of this
problem are given in [2], [8], [11].

Routing under the multicasting communication model
has been considered in [12], [13], [14], [20]. In this problem,
each processor needs to transmit a set of messages, but each
message is to be received by its own subset of processors.
Shen [20] studied the problem for hypercube connected
processors, and Gonzalez [12], [13], [14] considered the
problem for fully connected processors and also for
processors interconnected via a multistage interconnection
network that satisfies some simple properties (e.g., the
MEIKO CS-2 parallel computer system). The gossiping
problem is a restricted version of the multimessage multi-
casting problem; however, all the previous algorithms for
the multimessage multicasting problem are for a set of
architectures. The algorithm for the gossiping problem in
this paper works for any arbitrary network.

In this paper, we study the gossiping problem under the
multicasting communication model. Our main motivation for
using this communication model is that it has been available
for many years and it allows us to generate solutions with
fewer communication steps than when using the telephone
communication model. For example, the Meiko CS-2 allows
multicasting, and one may build arbitrary networks using
components similar to the ones in the Meiko machine.
Synchronization may be achieved through different techni-
ques, one such technique is through software barriers. The
ability of processors to send information concurrently to more
than one destination (which we call multicasting) arises

naturally in wireless communications where a transmission
with power r� reaches all receivers at a distance r, where � is
between two and four [4]. In static sensor networks, the
traditional message routing problems take an interesting new
twist where, in addition to having to disseminate information
quickly, one also desires to maximize the battery life of the
units [4]. Our communication model also arises naturally in
optical networks. Gossiping arises in many application [3],
[19] that include sorting, matrix multiplication, Discrete
Fourier Transform, solving linear equations, etc.

In Section 3, we begin by reducing the network gossiping
problem to gossiping in a tree with least possible height (or
depth). Then, we give a simple but inefficient algorithm to
construct a communication schedule for any arbitrary tree.
Our main result are two algorithms, Propagate-Up and
Propagate-Down, that, when executed concurrently,
generate a communication schedule for the gossiping
problem with communication time nþ r, where n is the
number of processors and r is the network radius (or height
of the tree).

3 ALGORITHMS

In this section, we discuss our algorithm to generate a
communication schedule with total communication time at
most nþ r, where r is the network radius. The radius of a
network is the least integer r such that there is a vertex v at a
distance at most r from every vertex in the graph. For
example, there is a path from every vertex in the graph to
vertex v with at most r edges. Our procedure consists of two
steps. First, we build a special tree network (Section 3.1)
and, then, we perform all the communications in that tree
network (Section 3.2).

3.1 Constructing the Tree Network

As we mentioned before, the first step of the algorithm
constructs a minimum-depth spanning tree. Such a tree can
be easily constructed by performing n breadth-first search
(BFS) traversals of the graph starting at each vertex and
then selecting the tree with least height (or depth). This
procedure takes OðmnÞ time. All the communications will
be performed in the resulting tree network.

Applying the above procedure to the network in Fig. 4,
results in the network given in Fig. 5. In the next section, we
present our algorithms for gossiping in trees.

3.2 Gossiping in Tree Networks

The problem of gossiping in an arbitrary network has been
reduced to gossiping in a tree with height r. Our algorithm
for gossiping in trees is a little bit complex, so, before we
discuss it, we introduce two procedures that generate
communication schedules with a larger total communica-
tion time. Let us begin by defining some terms. The topmost
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vertex is called the root of the tree. The level of every vertex
in the tree network is defined as follows: The level of root is
zero, the level of the children of the root is equal to one, the
grandchildren are at level 2, and so forth. For every vertex,
fix the ordering of the subtrees in any arbitrary order. Our
algorithm proceeds by labeling the message originating at
each vertex in depth-first search order starting with the one
at the root (label 0) and ending at some leaf (label nÿ 1).
Applying the algorithm to the problem tree in Fig. 5, we
obtain the labels that appear to the right of the vertices.

We begin by discussing the first algorithm (Simple) to
perform the gossiping in 2nþ rÿ 3 time units. This
procedure has been used to solve other message routing
problems. The idea is to send up all the messages to the root
of the tree first in such a way that message i � 1 is received
by the root at time i. The message labeled i at level k is
transmitted to its parent (if any) at time iÿ k, to its
grandparent (if any) from its parent at time iÿ kþ 1, and so
on. Clearly, there are no conflicts and at time nÿ 1, all the
messages are received by the root. Clearly, this process
takes nÿ 1 communication steps. Now, all the messages
need to be propagated downwards. At time nÿ 2, message
0 is sent from the root to all its children; at time nÿ 1,
message 1 is sent from the root to all its children; and so on.
Note that; during this entire process, when a nonroot vertex
receives a message from its parent, it immediately multi-
casts it to all its children. It is simple to verify that, by time
2nþ rÿ 3, all processors will receive all the messages. The
main advantage of procedure Simple is that it is quite
simple, but on the other hand, the total communication time
of the schedules it generates is not so small. This is a
problem when we have to perform a large number of
gossiping operations using the same tree network.

Lemma 1. The communication schedule generated by procedure
Simple has a total communication time 2nþ rÿ 3 for any
tree with n processors and height r.

Proof. The proof follows from the above discussion. tu

Procedure UpDown, developed by Gonzalez [15], is
more complex, but the communication schedule it
generates has a smaller total communication time. The
approach is similar to procedure Simple, except that, at
the same time, the algorithm sends messages up and
down throughout the tree. The procedure consists of two
phases. In the first phase, like in the algorithm Simple,
all the messages are propagated to the root, but, at the
same time, it begins the process of propagating messages
to other parts of the tree. In the second phase, the
algorithm just propagates down some messages that got
stuck in the network. The first and second phase take
nÿ 1þ r and 2ðrÿ 1Þ þ 1 steps, respectively.

In this paper, we introduce algorithm ConcurrentUp-

Down, which is rather simple and it generates the best
schedules with respect to the total communication time. It is
based on the observation that all the operations can be
carried out in a single stage by maximizing the concurrent
operations performed at each step. The total communica-
tion time of the schedules generated by this algorithm is just
nþ r. Our algorithm is a simplified version of our previous
algorithm [16], and its correctness proof is much simpler.

Let us now introduce additional notation. Consider
vertex v at level k � 1. Vertex v has message i initially and
the subtree rooted at v includes message i up to message j
initially. The parent of nonroot vertex v, which we refer to
as v0, has message i0 initially and the subtree rooted at
vertex v0 includes message i0 up to message j0 initially. The
level of vertex v0 is k0 ¼ kÿ 1. Remember that vertices are
labeled from 0 to nÿ 1.

The messages in every nonroot vertex v are labeled as
follows:

. Messages 0; 1; . . . ; iÿ 1 and jþ 1; jþ 2; . . . ; nÿ 1 are
called the other messages or o-messages.

. Messages i; iþ 1; . . . ; j are called the body messages
or b-messages. The b-messages are partitioned with
respect to vertex v as follows:

- Message i is called the starting message or s-
message at v.

- Message iþ 1, if iþ 1 � j, is called the lookahead
message or l-message .

- Messages iþ 2; . . . ; j (if any) are called the
remaining messages or r-messages.

. The b-messages are also partitioned with respect to
vertex v0, (the parent of vertex v) as follows:

- Message i, if i ¼ i0 þ 1, is the lookahead in parent
(lip) message or lip-message.

- Messages maxfi; i0 þ 2g; . . . ; j, if any, are the
remaining in parent (rip) messages or rip-messages.

Note that the root of the tree ends up labeled as follows:
Message i ¼ 0 is the s-message, message 1 is the l-message,
and messages 2; . . . ; nÿ 1 are called r-messages. All
messages are rip-messages and there are no lip-messages.

First, we present algorithm Propagate-Up to construct a
schedule that indicates when all the messages are trans-
mitted to the root of the tree. Then, we present algorithm
Propagate-Down that indicates when all the messages are
propagated down to all the vertices. Since there will be no
conflicts between these two schedules, then the overlap of
the two schedules is our final schedule. We refer to the
procedure that invokes Propagate-Up and Propagate-Down
and then combines the schedules generated by these
procedures as algorithm ConcurrentUpDown. After perform-
ing all the communications in the final schedule, every
vertex will have the n messages by time nþ r.

In order to avoid conflicts with the schedule generated
by Algorithm Propagate-Down, the lip-message at each
vertex v will be sent by Algorithm Propagate-Up at time
0. If we do not do this and instead we were to modify
Algorithm Propagate-Down, then some messages
would get stuck at each level, like in the algorithm in [12],
and the total communication time would be more than
nþ r. More specifically, consider node 1 (with message 4) in
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Fig. 5. Suppose message 5 was not sent to processor 1 at
time zero, but instead it was sent at the latest time which is
time 3 (and, thus, received at time 4). Now, message 3
arrives at the root at time 3 and it is sent at that time to
processor 1. Then, there would be a conflict (two different
messages sent at the same time to processor 1). So, one
needs to delay sending message 3 from the root. In other
words, message 3 would get stuck in the root as in [12] and,
hence, the total communication time would increase in
many cases.

Every vertex v labels its messages as defined above.
Then, algorithms Algorithm Propagate-Up and Algo-

rithm Propagate-Down are executed at each vertex v.

Algorithm Propagate-Up (v)

(U1) {Time 1}. If v is not a leaf vertex (i.e., iþ 1 � j), then

vertex v receives message iþ 1 at time 1.
(U2) {Time iÿ kþ 2; . . . ; jÿ k}. Starting at time iÿ kþ 2,

vertex v receives sequentially from its children all its

r-messages (if any) in increasing order of their

message number. The first message is iþ 2, which is

received at time iÿ kþ 2, and the last one, message j,

is received at time jÿ k.

(U3) {Time 0}. If v is not the root of the tree, then, at time 0,

vertex v sends to its parent its lip-message, if it has
one.

(U4) {Time iÿ kþ w; . . . ; jÿ k}. Let w be the number of lip-

messages at vertex v. If v is not the root of the tree,

then, starting at time iÿ kþ w, vertex v sends to its

parent sequentially in increasing order of their

message number all its rip-messages. The first of these

messages is message iþ w and it is sent at time

iÿ kþ w, and the last message is message j and it is
sent at time jÿ k.

End of Algorithm Propagate-Up

Lemma 2. Algorithm Propagate-Up is feasible, i.e., every
vertex v at level k in the tree receives the messages in steps as
specified in (U1) and (U2), and every nonroot vertex v in the
tree has the messages available when they need to be sent as
specified in Steps (U3) and (U4). It is assumed that no other
procedure sends messages that interfere with the ones sent by
algorithm Propagate-Up.

Proof. The proof is by induction on the height of the
vertex v.
Basis: Vertex v has height 1 (it is a leaf node). Clearly, the
total number of messages originating in the subtree rooted
at v is one and it is the s-message i, which is available at
vertex v at time 0. Since there are no l-messages nor r-
messages, it follows that the all these messages are
received as specified in Steps (U1) and (U2).

There is nothing else to prove when vertex v is the
root of the tree. So, let’s consider the case when v is a
nonroot vertex. Since message i is the s-message at v, it is
available at time zero and message i is either a lip-
message or a rip-message at v. So, if message i is a lip-
message, then it is possible to send it at time 0 as
specified by Step (U3). On the other hand, if it is a rip-
message, then it is scheduled to be delivered at time
iÿ k. From the DFS labeling, we know that i � k, so
iÿ k � 0. So, it follows that it is available to be sent as

specified in Step (U4). This completes the proof of the
base case.

Induction Hypothesis: Assume the lemma holds when v

has height lÿ 1 � 1.

Induction Step: Show that the lemma holds when v has

height l.
By definition, the l-message at v is a lip-message in

exactly one subtree of v. Since every subtree of v has a
height less than l, then, by the induction hypothesis, we
know that the lip-message iþ 1 in a child of v is sent at
time 0 from a child of v to v. Since no other processor sends
a message to v at time 0, it follows that the l-message is
received by v as specified in Step (U1).

By definition, every r-message in v is a rip-message in
exactly one subtree of v. Since every subtree of v has
height less than l, then, by the induction hypothesis, we
know that r-message iþ �, for 2 � � � jÿ i, in v is sent
at time iþ �ÿ ðkþ 1Þ from a child of v (remember that
the child of v is at level kþ 1) and, thus, received at time
iþ �ÿ k by v. Therefore, each r-message is received
starting at time iþ �ÿ k. Since the first r-message, if any,
is iþ 2, then � ¼ 2 and the messages start arriving at
time iþ �ÿ k ¼ iþ 2ÿ k. Since the remaining r-mes-
sages are received sequentially, then Step (U2) can be
correctly executed.

There is nothing else to prove when v is the root of the
tree. So, let us now consider the case when v is a nonroot
vertex. Since message i is an s-message, it is available at
time 0 at v and it is either a lip-message or a rip-message.

If message i is a lip-message, then it is available to be
sent at time 0 and it can be sent as specified in Step (U3).

If message iþ � for some 0 � � � jÿ i is a rip-message
at v, then, if it is an s-message, it will be available at time
zero at v if it is an l-message, then, since we have
established Step (U1), it will be available at time 1 at v,
and if it is an r-message, then, since we have established
Step (U2), it will be available at time iþ �ÿ k at v. Since
i � 1 and i � k then, in all cases, it arrives at v by time
iþ �ÿ k, which is the same time at which it will be sent to
its parent. Since the remaining rip-messages will arrive
sequentially in ascending order of their message number,
we know Step (U4) can be correctly executed. tu

Algorithm Propagate-Down (v)

If vertex v is not the root of the tree, then perform Steps (D1)

and (D2), and, if it is a nonleaf vertex, then also perform

Steps (D2) and (D3).

(D1) {Time 2; . . . ; iÿ kþ 1 and jÿ kþ 3; . . . ; nþ k}. From
time 2 to time iÿ kþ 1 and from time jÿ kþ 3 to time

nþ k nonroot vertex v receives all its o-messages from

its parent.

(D2) {Time 2; . . . ; iÿ kÿ 1 and jÿ kþ 1; . . . ; nþ k}. All the

o-messages received as in Step (D1)

by nonroot and nonleaf vertex v are sent to all the

children of v by vertex v at the same time they are

received, except for the messages received at times
iÿ k and iÿ kþ 1, if any, which are sent at time

jÿ kþ 1 and jÿ kþ 2. When i ¼ k, then no messages

are received by v from its parent at times iÿ k and

iÿ kþ 1.
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(D3) {Time iÿ k; . . . ; jÿ k}. From time iÿ k to jÿ k,

messages i to j are sent by nonleaf vertex v, in

increasing order of their message number, to all its
children, except to the child of v, which already has

the message. The only message that it sends to all the

children of v is message i. When i ¼ k, message i is not

sent at time iÿ k, but it is sent at time jÿ kþ 1.

End of Algorithm Propagate-Down

Lemma 3. If Algorithm Propagate-Down is feasible, then

Algorithm Propagate-Up is feasible, i.e., the root of the tree

receives all its messages as in Lemma 2 (see Steps U1 and U2),

then the messages are available to be sent as in Step (D3) and,

in the remaining vertices, if the messages are received as

specified by Step (D1) and Lemma 2 (see Steps (U1) and (U2)),

then all the messages will be available to be sent as specified in

Steps (D2) and (D3). It is assumed that no other procedure

sends messages that interfere with the ones sent by algorithm

Propagate-Down.

Proof. Let vertex v be the root of the tree (it is at level zero). By

Lemma 2, we know that, at time i ¼ 1; 2; . . . ; nÿ 1,

message i will arrive at v and that is precisely the time at

which these messages will be sent to each child that does

not already have the message, and message 0, which is

available at time zero, will be sent at time n. Therefore, the

root of the tree propagates the messages as in Step (D3).
The proof is by induction on the level (� 1) of vertex v.
Basis: Vertex v is at level one (Vertex v is a child of the

root). Since the parent of vertex v is the root, we know
that Step (D3) in Propagate-Down sends from the root
each b-message i at time i and it arrives at v at time iþ 1,
for 1 � i � nÿ 1. Message 0 is sent at time n and arrives
at v at time nþ 1. Therefore, all the o-messages will

arrive at v from its parent during the time intervals
2; . . . ; iÿ kþ 1 and jÿ kþ 3; . . . ; nþ k as specified in
Step (D1). Therefore, all these messages can be sent as
specified in Step (D2). From Lemma 2, we know that
messages i; . . . ; j are available to be sent to all the
children of v as specified in Step (D3).

Induction Hypothesis: Assume the lemma holds when v is

at level lÿ 1 � 1.

Induction Step: Show that the lemma holds when v is at

level l.
Vertex v is at level l which is greater than two. Since

the parent of vertex v is not the root, we know that Step
(D3) in Propagate-Down sends from the parent of v all
the o-messages and they arrive at v as in Step (D1)
because the parent of v is at level kÿ 1. Therefore, all the
o-messages will arrive at v from its parent during the
time intervals 2; . . . ; iÿ kþ 1 and jÿ kþ 3; . . . ; nþ k and
all these messages can be sent as specified in (D2). From
Lemma 2, we know that messages i; . . . ; j are available to
be sent to all the children of v as specified in Step (D3).tu

The schedules given in Tables 1, 2, 3, and 4 are for the

vertices with the messages labeled 0, 1, 4, and 8 in Fig. 5.

The schedule for the vertex with message labeled 0 is

straight forward. Message i is received at time i and it is

sent at time i. The schedule for the vertex with the message

labeled 1 is simple since it receives the b-messages and then

the o-messages.
The schedule for the vertex with the message labeled 4 is

more complex since it includes messages 2 and 3 that are

delayed. The schedule of the vertex with the message

labeled 8, it is more complex since messages 6 and 7 are the

ones delayed at the node.
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TABLE 1
Schedule for the Vertex with the Message Labeled 0 in Fig. 5

TABLE 2
Schedule for the Vertex with the Message Labeled 1 in Fig. 5



Procedure ConcurrentUpDown just overlaps the sche-

dules generated by algorithms Propagate-Up and Pro-

pagate-Down.

Theorem 1. The communication schedule generated by procedure

ConcurrentUpDown has a total communication time nþ r
for any network with n processors and radius r.

Proof. The proof of this theorem follows from Lemmas 2
and 3 provided that we show that the assumption about
the messages being sent by algorithms Propagate-Up
and Propagate-Down not interfering with each other
actually hold, and every vertex receives all the messages.
Vertex v receives messages at time 1 and at times iÿ
kþ 2 to jÿ k and sends messages (if it is not the root) at
time 0 and at times iÿ kþ w to jÿ k. On the other hand,
procedure Propagate-Down receives messages at times
2 to iÿ kþ 1 and jÿ kþ 3 to nþ k and sends them out at
times 2 to iÿ kÿ 1, jÿ kþ 1 to nþ k, and iÿ k to jÿ k.
Clearly, all the messages received by the two procedures
are received at different times. The same holds for the
ones sent by the procedures, except for the ones sent at
times iÿ kþ w to jÿ k. But, from Steps (U4) and (D3), it
is clear that the same messages are being sent at these
times; therefore, since processors may send the same
message to more than one processor, there is no conflict.

From Steps (U1) and (U2), it is easy to see that the root
receives all the b-messages. Every leaf node receives all
the o-messages because of Step (D1). The nonroot and
nonleaf nodes receive all their b-messages ((U1), (U2))
and o-messages (D1). Therefore, the resulting schedule
solves the gossiping problem. tu

4 DISCUSSION

We have presented an algorithm to construct communica-
tion schedules with total communication time at most nþ r,
where r is the radius of the graph. The algorithm is efficient
and generates near optimal solutions. By near optimal, we
mean that it generates a schedule with total communication
time at most 1.5 times that of an optimal one. This follows
from the fact that the radius, r, of a network is at most n=2.
The most time consuming part of the algorithm is finding a
minimum-depth spanning tree which takes OðmnÞ time. All
the other Steps of the algorithm to construct the schedule
take OðnÞ time. In many applications, one has to execute the
gossiping algorithms a large number of times, so that is why
it is important to perform gossiping in a tree efficiently. The
construction of the tree is performed only when there is a
change in the network, which we assume remains constant
for long periods of time.

A minimum-depth spanning tree for a straight line graph
with an odd number of processors is a tree whose root is the
center processor of the line graph and each of the two
subtrees is just a straight line. When the graph has 2mþ 1
vertices, for any positive integer m, the radius of the graph
and the tree is m. In Section 1, we showed that every
schedule for such instance of the gossiping problem has
total communication time greater or equal to nþ rÿ 1. The
one that our algorithm constructs is nþ r. One may
improve the performance of our algorithm by one unit,
but the protocol for each processor will not be uniform and
the algorithm will be much more complex. The reason is
that one needs to alternate the delivery of messages from
different subtrees.

GONZALEZ: AN EFFICIENT ALGORITHM FOR GOSSIPING IN THE MULTICASTING COMMUNICATION ENVIRONMENT 707

TABLE 4
Schedule for the Vertex with the Message Labeled 8 in Fig. 5

TABLE 3
Schedule for the Vertex with the Message Labeled 4 in Fig. 5



Our algorithms can be easily adapted for the online case.
The only global information that they need is the value of i,
j, and k. Once this information is disseminated throughout
the network, each processor may send its messages at the
specified times. Our algorithm can also be easily adapted to
the weighted gossiping problem where each processor has
at least one message to transmit. The idea is to replace a
processor that needs to send l messages with a chain with l
processors. In practice, one only mimics this splitting
process.
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